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Abstract

Cramer-Rao type integral inequalities for the integrated risk, for es-
timators for parameters based on ramdomly censored data, are derived.
As applications, lower bounds for the locally asymptotic minimax risk
for estimators of parameters in the exponential and Weibull case for
the proportional hazard model, are obtained and locally minimax esti-
mators of the relevant parameters are identified.
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1 Introduction

Suppose that on a certain probability space, ξ and η are random vari-

ables with distribution functions F(x,θ) and G(x,θ) respectively where

θ £ Θ C Λ1. Further suppose that £i,ξ2>—>fn are independent and iden-

tically distributed (i.i.d.) as ξ and 771,7/2, ,τ?n are i.i.d. as 77. Define

ζi = min(£, ,f/, ) and ί, = J(£ t < 77;), 1 < i < π, where I(A) denotes the

indicator function of the set A. It is easy to see that ( t , 1 < i < n are

independent and ίt, 1 < i < n are also independent random variables.

We assume that & and 77; are not observable but (Cή^) is observable for

1 < i < n. As is well known, the set of data ( £ , <$;), 1 < i < n so obtained is

termed in the literature as randomly censored data and is common in studies

in survival analysis and reliability. It is assumed that £;'s are independent

of censoring random variables 7y, 's.
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Abdushukurov and Kim (1987) obtained lower bounds for the variance of
unbiased estimators of the parameter θ based on the data (£, , 5t ), 1 < i < n.
They have obtained analogues of Cramer-Rao and Bhattacharya bounds in
the uncensored case and discussed the conditions under which the bounds
are attained.

Wyckoff and Engelhardt (1980) derived Cramer-Rao lower bounds for
estimators based on data obtained from type II censoring and presented a
method for numerically evaluating these bounds. Among others, Eubank
and La Riccia (1982) and Crow and Shimi (1982) studied the problem for
type I censoring.

Here we consider a Bayesian version of the problem. Suppose λ( ) is a
prior density for θ and θ is an estimator of θ based on Z{ = (£t , #f ), 1 < i < n.
Then R(θ,θ) = Eθ EZ\Θ(Θ - θ)2 is the risk of the estimator θ under the
squared error loss function. The problem of interest is to obtain lower bounds
for the risk i2(0,0) analogous to the Cramer-Rao lower bound obtained by
Abdushukurov and Kim (1987) and other lower bounds over various classes
of estimators.

For recent work on the Cramer-Rao type integral inequalities in the
Bayesian frame work, see Prakasa Rao (1991, 92) and Bhattacharya and
Prakasa Rao (1995).

2 Preliminaries

In the sequel, we will assume that F and G are absolutely continuous with
densities / and g respectively and that λ( ) is a prior density for the pa-
rameter θ. It is easy to see that Z = (C, δ) has the joint density given

by

h(z θ) = h(x,y;θ) = i 1

with respect to the product measure μ x v where μ is the Lebesgue measure
on the real line and v is the measure with mass one at the points {0} and
{1}. Here G = 1 - G and F = 1 - F.

Assume that h( ) is differentiable with respect to θ and the set {x : Gf —
0} U {x : Fg = 0} does not depend on the parameter θ. It is easy to see that
the score function is given by

d log h y d= ( 1 - y ) d -
~ Gf dθ{Gf) + ~ΎΓ dθ{ 9) ( }dθ ~ Gf dθ{
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and the Fisher information is given by

m m

= EZ\θ
d \ d(Gf)

Of) dθ
>JZ\β

GfFj

= EZ\θ
(d(Gf)\ + E

G2 p \ dθ )

since d(l — δ) = 0. It is easy to check that

(l-δ)d(Fg)V

Fg dθ \

(1-δ)2 (d(Ff)\

-{ dθ )Z\θ (2.2)

EZ\θ

and

Hence

EZ\θ

t2 (d(Gf)\
G2 p \ dθ )

(1-δ)2 (d(Fg)\

F2g2 \ dθ )

-L

-L d 1
dθ J

dx

I{θ) = ί
JR

log (Of)
dθ

Gfdx JR dθ \ g a x (2.3)

Two cases are of special interest in survival analysis and reliabilkity stud-
ies: Case (A) The censoring distribution G does not depend on the parameter
0; Case (B) The pair (F, G) follows a proportional hazards model (PHM) i.e.,
there exists a constant β > 0 such that

G(x,θ) = [F(x,θ)]β, -oo<a;<oo. (2.4)

In the following discussion, we assume that β is known and is independent
oΐθeθ.

Case (A) The Fisher information is given by

Fgdx.

Case (B) (PHM) In this case, it is easy to see that

log G = βlogF,

(2.5)

(2.6)



166 B.L.S. Praiasa Rao

and

gF = βfG.

Differentiating (2.6) and (2.7) with respect to θ, it follows that

d logG _ d log F

dθ dθ

and

Hence, the relations (2.7) and (2.9) imply that

(2.7)

(2.8)

(2.9)

= L~d log (Of)
dθ

Gfdx+ ί
JR

\d log (Fg)

dθ
Fgdx

(2.10)

3 Lower bound for the risk for the class of unbi-
ased estimators

Suppose the following regularity conditions hold :

(Cl) f(x,θ) and g(x,θ) are differentiable with respect θ and

/ ΛΛ dX < °°' /
JR dθ JR

dg
dθ

dx < oo;

(C2) log JiVfi
dθ

θ log g(η θ)
oo, Ev]θ p2f_| < oo;

(C3) 0 < I(θ) < oo;

(C4) the set {x : Gf = 0} U {x : Fg = 0} does not depend on 0; and

(C5) suppose that φ(ζ, δ) is an unbiased estimator oϊφ(θ) and differentiation
with respect to θ under integral sign is permissible in the relation

/ / φ(x, y)h(x, y; θ) dx dv(y) = φ(θ), 0 6 0. (3.1)
JRX «/{0,l}

Let φ\θ) denote the derivative of φ(θ) with respect to θ.

Theorem 3.1 (Abdushukurov and Kim (1987)): Suppose the conditions
(Cl) to (C5) hold. Then

(3.2)
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In particular, for φ(θ) = 0,

^ f ^ (3.3)

for any unbiased estimator of θ based on Z. It is again easy to check that
if Z t , 1 < i < n are n i.i.d. random vectors each distributed as Z = (C,<5),
then

for any unbiased estimator 0 of 0 based on Z t , 1 < i < n. Taking expecta-
tions over both sides with respect to 0, it follows that the risk

Λ(M) -

>

nEΘ(I(θ))

by the elementary inequality

E
 (F) S W) (3-6)

for any positive random variable Y. Here E$( ) denotes the expectation with

respect to the prior density λ( ) such that EΘ(I(Θ)) < oo.

Hence we have the following result.

Theorem 3.2 : Suppose the conditions (Cl) to (C5) hold. Then

mf E(θ - θf > * (3.7)

where I(θ) is given by (2.3) and VQ denotes the class of unbiased estimators

for θ.

4 Lower bound for the risk for the Bayes estimator

Suppose θ is the Bayes estimator of θ given Z{ = (ζi,δi), 1 < i < n with

respect to the squared error loss function corresponding to the prior density

λ( ) for θ. Then

θ = / θhθlZ(θ\z)dθ (4.1)
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where

Se
i=l

Furthermore

E[(θ - θf\Z = *) = J&(θ - θγhθlZ(θ\z)dθ = v\ (say). (4.3)

Theorem 4.1 : Assume that the classical regularity conditions hold for
the validity of Cramer-Rao inequality for the family of conditional densities
hθ\z(θ\z)> θ e Θ f o r e v e r y z G R x ί 0 ' 1 ) - L e t Zi = (Ci>*0> 1 < < < n be
i.i.d. as defined earlier. Then

ί¥τU(iW) <4 4)

where
2

and

with the prior density λ( ) restricted to the class of priors for which F < oo.

Proof : Note that E(θ - θ]2 = Ez[v2

7}. The theorem follows now as a

consequence of the application of Cramer-Rao inequality for conditional set
up given z, taking expectations on both sides of the Cramer-Rao inequality
and using the inequality (3.6). For details, see Schutzenberger (1959) or
Prakasa Rao (1991).

5 Lower bounds for the posterior risk for the class
of all estimators

Method 1 (Weinstein and Weiss (1985))

Let
g(z;θ) = h(z-θ) λ(θ). (5.1)

Note that </(•) is the joint density of (Z; θ) = (£, δ] θ). Define

v-w^B? <5 2)
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for any d and 0 < s < 1. Let

μ(s, d) = log E[LS(Z; θ + d, θ)]. (5.3)

Then, Weinstein and Weiss (1985) proved that, for any estimator θ of θ
based on Z t , 1 < i < n,

d2e2μ(s,d)

~ β )

for all d and 0 < 5 < 1. One can get a better bound by taking the supremum

of the right side of the inequality (5.4) over all d and 0 < 5 < 1. One obvious

choice for s is s = | .

We now compute μ(s,d) for the problem under consideration.

Note that

μ(s,d) = log E[Ls(Z;θ + d,θ)]

h(Zl;θ)

where

= ί J h'ixty θ + Qtf-fay θ) dx dv{y)

RX {0,1}

= ίh'faO θ + Qtf—faO θ) dx

R

+ ί h'ίxyl θ + Qtf—ixtl θ) dx
JR

= f(Fg)s

e+d(Fg)l~Sdx+[(Gf)s

e+d(Gf)l-sdx. (5.6)
JR JR

Case (A) (G does not depend on θ) : Observe that

r(fl; d,,) = / (F)^(F)J-S

5 dx+[ (f)Mf))-G dx (5.7)
JH JR

where (#)# denotes R(x,θ).
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Case (B) (PHM) : Here

r(0; <f, β) = (1 + /?) JR(Gf)se+d(Gf)]-sdx. (5.8)

Method 2 (Babrovsky and Zakai (1976))

Following the approach used in Hammersley - Chapman - Robbins in-
equality (cf. Lehmann (1983)), when the differentiability assumption does
not hold, Babrovsky and Zakai (1976) obtained the inequality

E[θ - θf >
E λ _ K{Z;θ+d)

K{Z;Θ)

for any d / 0 where K{Z\Θ) is the joint density of Z,
and θ and θ is any estimator of θ. Note that

(5.9)

^)? I < i < n

Case (B) (PHM) : In this case

and hence

K(Z; θ + d) ψ A(g +

where (g)^ denotes

Method 3 (Borovkov and Sakhanenko (1980))

V ' ;

Following Borovkov and Sakhanenko (1980) (cf. Theorem 4.1, Prakasa
Rao (1991)), it follows that

- 0 ) 2 > ί^feD
E ( i
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= T Γ Έ ^ 2 ( 5 1 2 )
nJ + H n n2 v J

where

^ ( | ( M ) ) " (5.13)

and V is the class of all estimators θ* of θ. Detailed conditions for (5.12) to
hold are given in Prakasa Rao (1991). the inequality (5.12) can be weakened
to obtain a computable possibly weaker lower bound. In fact

inf E(θ* - θf > .* - 4 (5.14)
θ*ev v J ~ nE(I(θ)) n2 v ;

by the inequality (3.6). This inequality can be compared with (3.7) for the

class T>o of unbiased estimators θ* of θ.

6 Locally asymptotic minimax bounds

Extending the Borovkov-Sakhanenko bound, Prakasa Rao (1991) proved
that, for any estimator q(θ*) of q(θ),

iEm"Z (6.1)
E,

under some regularity conditions on q( ) and the family of distributions,
where

Id log h(Z;θ)γ
[ j ( 6 2 )

As a consequence, it follows that, for any #o

ton^oo sup EZV[Vϋ(q(r) - q{θ))f > ί ^ | f (6.3)
θeDn l{θo)

where Dn — [\θ - ΘQ\ < εn] and 0 < εn with ε~2 n~ι —• 0 as n -> oo. Here

q\θ) denotes the derivative of q(θ) with respect to θ and Θ° denotes the

interior of Θ.

Case (B) (PHM) : If q(θ) = 0, then the lower bound is jA^r and hence

- θ)f
θeDn

^ ( 6 4 )
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7 Example

Example 7.1 Suppose F ~ exp(0) and G ~ exp(βθ) where β is a known
constant. Then

m =

mf E(θ - θf >

and hence

where Vo is as defined earlier in Section 3. In this case, it can be checked
that

θlds
and

μ{s,d) = log Eθ
λ(θ) J { θ + ds

to compute the Weinstein-Weiss lower bound given in Section 5. Further-

more

and hence

E

K{Z;θ

K(Z Θ)
l \ θ

" X(θ + d)
X(θ)

d2

= Eθ

K{Z Θ)

Note that

Therefore

EΎ\Ω \e
θ \ n
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and

Hence the Babrovsky-Zakai lower bound defined in Section 5 is

for any d φ 0.

The Borovkov-Sakhanenko lower bound as defined in Section 5 is given

by

In this example, 7(0) = 0~2 and hence

θeDn

where Dn is as defined in Section 6.
It is easy to check that

n
θ =

is the MLE of θ in this example where ζi ~ exp((l + β)θ) and

Here minimax lower bound is attained and the estimator θ is a locally asymp-

totic minimax estimator of θ in the model.

Remark : The results in Example 7.1 can be easily extended to the case
when F is the Weibull distribution with density function

f(x,θ) = θηχi-1e-θχΊ , x>0
= 0 , x<0

and the censoring distribution G is the Weibull distribution with density

function
g(x,θ) = β θηx^1 e~βθχΊ , x>0

= 0 , x < 0

where 7 and β are known. This can be seen by applying the transformation

Y = XΊ and the problem reduces to Example 7.1.
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8 Remarks

At the time of presentation of this paper, Prof. Jon Wellner has brought the
work of Gill and Levit (1992) to the author's attention where they use Van
Trees inequality (Van Trees (1968)) to obtain minimax convergence rates in
various non - and semiparametric problems. As was pointed out in the intro-
duction, inequality derived by Van Trees (1968) has been obtained earlier by
Schutzenberger (1959). Applications to obtain locally asymptotic minimax
estimators in several examples through a Bayesian version of Cramer-Rao
bound, extending the work of Borovkov and Sakhanenko (1980), were dis-
cussed in Prakasa Rao (1992) and Bhattacharya and Prakasa Rao (1995).
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