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Abstract
In this paper, a new approach for forecasting a time series based on

a Markov mesh model that incorporates some key features of a leading
indicator series is proposed. The features of the leading indicator series
are incorporated via a weighting scheme in which the weights are as-
sessed by a Bayesian approach. The Bayesian approach is implemented
by a Gibbs sampling technique. The overall scheme proposed here can
be viewed as Kalman Filtering in two dimensions using the raster scan
method.
Key Words: Dynamic Linear Models, Gibbs Sampling, Image Pro-
cessing, Kalman Filtering, Markov Fields, Mine Detection, Raster Scan,
Simulation, Warranties.

1 Introduction and Motivation

For forecasting a single time series, there are a wide variety of techniques
that are currently available. Of these, those that are based on the theory of
dynamic linear models (DLM) have recently gained much popularity. The
DLMs, also known as Kalman Filter models, are discussed in the recent
books, [9] and [6]. The inference and extrapolation algorithms of the DLMs
can be justified via the Bayesian paradigm (cf. [4]). It is by now well
known that forecasts from a single series can be greatly improved if certain
key patterns and features from an associated series can be incorporated
into the inference mechanism. The associated series is typically a series
which precedes the series of interest, and [1] p.402, refers to such a series
as a leading indicator series. The leading indicator series gives us advanced
signals about potential changes in the behaviour of the series of interest,
and in so doing, enhances our ability to provide improved predictions of the
latter. For example, if the series of interest is the number of housing starts
per month, then a leading indicator series could be the monthly change in
population. Other such examples can be found in [1] pp.407-412.
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Figure 1: Time Series of Warranty Claims Data
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Our interest in the question of forecasting using leading indicators was
motivated by the problem of estimating financial reserves to meet (failure)
warranty claims on automobiles; see [7]. Warranty claims, in the form of
cost/unit, for automobiles of a particular model year, say 1990, arise as a
time series indexed by the time in service, months, for that model year. The
leading indicator series is the warranty claims data for the previous model
year. 1989 in our case. In Figure 1, we show two observed series on warranty
claims, the series of interest, labelled "Cost-90," which pertains to the claims
for the 1990 model year and the leading indicator series, labelled "Cost-89,"
which pertains to the claims for the 1989 model year. The series of interest
covers the time period of 15 months in service (MIS) whereas the leading
indicator series covers data until 27 MIS. Our objective is to forecast the
"Cost-90" series'for a time horizon of 60 MIS to cover a 5 year warranty on
the 1990 model year. The desired forecasts should be based on both, the
"Cost-90" series and also the "Cost-89" series.

The traditional approach to forecasting using leading indicators is based
on the "transfer function" modelling ideas of [1], p.335. Here, observations
from the series of interest are linked with the observations from the lead-
ing indicator series by a linear function with unknown coefficients that are
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estimated from the data. The inference and identification mechanism used
by [1] is frequentist, and is predominantly based on the principal of least
squares. The point of view of this paper is different. First, we model our
series by a "state-space formulation" in which the state parameters of the
series of interest are linked with the state parameters of the leading indi-
cator series. Second, the inference and updating mechanism used by us is
Bayesian. Our set-up can be viewed as Kalman filtering in two dimensions.
This methodology has found applications in areas such as image processing,
mine detection, tomography, etc.; see [10] and [11] for an overview.

The organization of our paper is as follows. In Section 2 we describe our
model and Section 3 pertains to inference. Inference, though straightforward
in principle, gets complicated because of the ensuing non-linearities in the
model. The complications are overcome by simulations involving the Gibbs
sampling technique (cf. [2]), which de facto plays a key role in addressing
problems of the type considered here. Section 4 describes in more detail
the warranty forecasting problem which motivated our work. In the inter-
est of emphasizing the model structure, the overall plan of inference, and
relevance to the motivating application, details pertaining to the underlying
distributions and their related manipulations have been de-emphasized.

2 Dynamic Linear Models With Leading Indica-
tors

The basic DLM consists of an observable quantity Yt which is related to an
unobservable vector of parameters θ_t, via a vector of known coefficients F_t

and an unobservable error ut through the observation equation

Yt = E!tθt + uu (1)

where t denotes an index, usually time. The vector θ_t is known as the state

vector, and ut as an "innovation". The defining feature of a DLM is the

notion that θ_t evolves with time with an underlying Markovian structure of

the form

θt = Gtθt-i + Vu (2)

where G_t is a known matrix, and v_t an unknown vector of innovation terms

which describes deviations from the Markov structure specified above. The

relationship (2) is known as the system equation. In the case of a Gaussian

set-up, θ_t and v_t are assumed to be multivariate normal, and ut a univariate

normal. Also, it is a common practice to assume that the sequences {ut}

and {vj} are mutually and contempraneously independendent, and that v^ is

independent of θ_t. The DLM with a leading indicator series can be structured

as follows.
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First, in the interest of simplicity, suppose that F_t is a unit vector and

that the matrix G_t is the identity matrix. Then, if Y\j denotes the leading

indicator series, and Y2,t the series of interest, we would postulate that, for

ί = l , 2 , . . . ,

Yi,t = Kt + «i,t, (3)

and that

θi,t = θht-i + vhu (4)

with uij ~ Λf(?,U) where "X ~ Λ/"(μ,σE)" denotes the fact that X has
a Gaussian distribution with location (scale) μ (σ 2). Similarly, we assume
that v l j t ~ N{f,VU) with V specified, and U ~ IG(no/2,do/2) where "X ~
IG(α, by denotes the fact that X has an inverted gamma distribution with
shape (scale) parameter a (b). For the series of interest, Y2?ί, we postulate
the relationships

Ϊ2,t = 02,t + «2,t, (5)

and

#2,* = 7*2,t-i + (1 - 7)01,* + Ό2%U (6)

for t = 1,2,..., where w2jί ~ Λ/*(/,ZY), v2>ί ~ Λ/*(/, VZY) and the weight coeffi-
cient 7 ~ Betα(δι,δ2), where "X ̂  Betα(α,6)" denotes the fact that X has
a beta distribution with parameters α and b.

Contrast the relationships (4) and (6). The former has a Markov chain
structure, which in (6) has been extended to two dimensions making the
set-up what is known as a "Markov random field." When forecasting with
multiple time series, say I, the Markov field is formed by the two dimensions
of time, /, and series ^,^ = 1,2,...,. This field forms a four neighbor system,
where 0^? the system level of series ί at time t, can be expressed in terms
of the corresponding levels of series I at times (t — 1) and (t + 1), plus the
corresponding levels of the two neighboring series 0£_i?t and #^+i,t at time
/. That is, we may write θ^t = 7i^,ί-i + 72^,t+i + 73^-i,t + 74^+1,* w i t h
the weights 7 t > 0 and Tt\η{ = 1. Equation (6) is a special case of the
above, appropriately modified to accomodate the nuances of a single leading
indicator series. Specifically, 72 and 74 are set equal to zero, and 71 is
replaced by 7 with 73 = 1 — 7.

2.1 Markov Random Fields

The foundations of Markov Random Fields (MRF) lie in the physics liter-
ature of ferromagnetism; see [3]. We overview here some basic notions and
ideas of MRF's.

Suppose that £ is a lattice of points. Then a neighborhood system Λί on
C is defined as

Aί={η^CC:-ieC}, (7)
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such that for any α G £, α £ ηα and b e ηα & α e ηb. The set ηα thus
consists of the neighbors of α. It is clear that ΛΓ can be varied, describing
elaborate spatial dependence. In two dimensions, relatively simple neighbor-
hood systems are usually adequate, the two simplest being the four neighbor
system Λf(°°) and the eight neighbor system Λf(e\ or Markov mesh. The
four neighbor system describes the case when a point in the field is en-
tirely determined by its neighbors: above, below, left and right. The model
θt,t = Ί\®ι,t-\ + 720*-i,t + 730*-i,t + 74^+i,t mentioned before is based on
the four neighbor system. The eight neighbor system is a four neighbor
system to which the four diagonal points are added. Adjustments must be
made at the boundaries of the field. The choice of a neighborhood system is
motivated by the application. With image re-construction one typically uses
the four or the eight neighbor system. In (6) we have used a two neighbor
system. In applications of tomography and mine detection one considers
lattices in three dimensions and then chooses an appropriate neighborhood
system. Our motivation for considering a MRF to describe the evaluation
oϊ #2,ί — s e e (6) — is the belief that the series of interest and the leading
indicator series have a common trend, for otherwise we could treat the two
series seperately.

2.2 The Raster Scan Method

Since our series of interest #2,t a n d the leading indicator series θij are chrono-

logical, we choose to transverse the MRF using the "raster scan method."

This essentially means that we first treat the series which occurs first, namely

the leading indicator series, and then the series of interest Θ2,t This method

of traversal prompts the following set-up of the two-dimensional dynamic

linear model:

Yt,t = Ot,t + uitU * = 1 , 2 , . . .

θt,t = 7i0/,t-i + 720/,t+i + 730/-i,t + 740*+i,t + v/ft, * = 2 , 3 , . . . (8)

for* = 1,2,...,.
For series one, that is, for ί — 1, the above equations are the standard

ones given by (1) and (2) — with appropriate simplifications. The equations

for the other series are extended to reference the previous series. For our

application I = 2, η2 = 74 = 0, and 73 = 1 - 71 with 71 = 7. Thus the

model given above simplifies as:

Yι,t = Θι9i

Θ2,t = 702,
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for t — 1,2,..., with 7 interpreted as a weight which captures the amount
of dependence of #2,ί on its previous value #2,t-i and upon its corresponding
value in the leading indicator series, namely 0i?ί.

To complete the specification of the model, we need to describe our

prior beliefs surrounding the errors, the initial value of the system variable

0i>o, and the weighting parameter 7. Prior beliefs about wi?ί, ^2,*, v\^ and

ΐ>2,f were specified before, via the Gaussian/inverted gamma model. The

parameter θ\$ is assumed to be such that θ\$ ~ Λ/̂ H, \U) with α and b

specified. Finally, as was stated previously, 7 ~ Betα(δ\,f)2) with δ\ and 62

specified.

We remark that there are three mechanisms via which information from
the leading indicator series is incorporated into the series of interest. The
first is via the weighting coefficient 7; the second is via the scaling constant
Uj which is unknown but is assumed to be such that U ~ IG(no/2,do/2)
with no and do specified. The third is via 02,o> where #2,0 has the same
distribution as the posterior distribution of θι$ given the data from the
leading indicator series. To conclude, the set-up (9) proposed here requires
a specification of the constants V, α, 6, #1, 82, ^0 a n d do- It is said to
be non-linear because in the second equation of (9), both 7 and #2,ί-i a r e

unknown. Were 7 to be known (specified) then standard results from the
DLM theory — see, for example, [4] — can be adapted for inference and
predictions. With 7 unknown, the closed form results of the DLM are not
possible to obtain, and inference and predictions are to be undertaken via a
simulation based technique such as the Gibbs sampler. Details are given in
Section 3 below.

3 Inference and Predictions

Suppose that the leading indicator series consists of t\ observations, Y^ =

(Yi ?i,..., Yi^y, and the series of interest consists of %2 observations Y2 —

(Y2,i? .,1^2,t2)
/. The following notation helps to simplify the ensuing text:

JZi'= (t*l,l, ' . .,«!*)'> E l = (*l,0, *l fi, . . . , *Ί,n) ' , & = (0, ,O A l > A»)'>

i = 1,2, where n (> ίi) is the forecast horizon, and a = (α,0, . . .,0)' is an

(n + 1) x 1 vector.

We also need to define the following matrices:

' 1 (Γ
1 1

1 1
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where Jfc is an (A; x fc) identity matrix and 0 is a (t\ x 1) vector whose entries
are identically zero.

Then, in matrix notation, the Yi/s and 0i?ί's of (9), for t = 1,2,.. . , t i ,
and our prior beliefs about the errors and the state vector Θi can be written
as:

with (F x | t0 ~ ΛΓ(d,W2oo), (£il^) ~ λΓ(L,UluJ, and (Θx|t/)
where I = ^ α and C_ = Aj^DjAί

Using standard prior-to-posterior manipulations [cf. [5]] it can be shown
that

where

Hh = ί

D = Q

Furthermore, the posterior distribution of U is given as

where

7ii = no + t\,

dx = do + (Y1-B1lY(B1CB!1+Itl)-\Y1-B1t).

Hence, unconditional on 17,

The notation "X ^ Γn(α,6)" denotes the fact that the vector X_ has a

multivariate Student's-t distribution with location vector α, scale matrix 6

and degrees of freedom n.

As mentioned before, the above inferential results are very standard; the

reader may refer to [9] for more details on the derivation of (12) and (11).

Equation (12) can be used to forecast Yi^+i, Yi^+2, , the unobserved

values of the series of interest.
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If the vector Θ^ is partitioned as [Θ.n, Θ.12], where Θ_n — (0i,o,..., #i,*i)'
and Θ.12 = (#1,^+1,.. .^l,™)'? and the corresponding partitions of mΎ and D_
are as follows:

m ( ΊRU\ ( Dn D12 \

Πh = 1 , 2 2 = I 1 ,
V 22112 / V £ 2 1 ^ 2 2 ,

then the predictive distribution of the vector Y_ιn =
the form

lΣi) - T ^n i (rn

, ., Yi,n) ι s °f

(13)

The discussion thus far has centered around inference and prediction for

the leading indicator series. For inference and predictions for the series of in-

terest, we need to introduce, in addition to the vector Y2 — (̂ 2,1? ? ^2,ί2)
/?

the following additional vectors and matrices: V_2 = (Θ.1,1*2,1 > •^2,n)/

5

C/2 = (tt2,i» ^ 2 l t 2 ) / , & = [Q,Iί2,Q, . . , 0 ] ( t 2 X ( n + 1 ) ) , A 2 ( 7 ) = [A 2 1 ( 7 ) |A 2 2 (7)],
where

A2χ(7) =

1

7 (1-7)

7

2 7(1-7) (1-7)

\

A22(7) =

0

1

7

(1-7)

\

0

1 0

n-2 n-3

7
.71-1 -wTl-2

• 1 0

• Ί 1 /
1 I (n+l)xn

Then, in matrix notation, the Y 2 /s and the 0 2 j ί ' sof (9), for/ = 1,2,.. . , / 2 ,

can be written as

/ ύ \ I
^2,0 \

Θ2 = ^1,2 + A2

Y.2 = R2Q.2 + U.2

with prior beliefs about the errors given by
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Our prior opinion on Θ.2 should be based on Y_λ since the leading indicator
series gives us information on the state vector of the series of interest. By
the assumption that #2,0 = (0i,o|Hi)>

(
^ 2 2

where

idrt) = A2I(Ί)ΏII,

Σ(7) - A21

Once again, standard prior-to-posterior manipulations show that the pos-
terior distribution for Θ.2 given Y_2 (and also y χ ) , were 7 to be known, is of
the form

(14)

where

222(7) = E(7) + Σ ( 7 ) ^ ( 5 2 Σ ( 7 m

Averaging over the posterior distribution of ί7, where

(Eη7,l^)~JGφ^), (15)

with

we have
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3.1 Inference and Prediction Based on the Gibbs Sampler

Equation (16) provides inference about the (n + 1) dimensional state vector
Θ.2 when 7 is known. When 7 is unknown, as in the case assumed here,
the Kalman filter model becomes non-linear and closed form inference is
not possible. However, since we have all the necessary full conditional dis-
tributions for implementing the Gibbs sampler (see [2]), we will use this
technique for inference about () 2 , U a n d 7, conditional on Y_λ and Y2 alone.
The full conditionals needed to generate a sample from the joint distribution

a) (Θ2|C/,7,Σi,r2)

c)

The equality in part b) follows since U is judged independent of Θ.2.
Equation (14) provides us with the distribution of the quantity labelled a)
above and Equation (15) provides the distribution of the quantity labelled
b). To assess the distribution of the quantity labelled c) we invoke Bayes'
Law by which

T;2 | ^ r A ( l ^ i : ) (is)

The second term on the right hand side of (18) is simply the prior dis-
tribution of 7. The first term is obtained via standard techniques [cf. [5]]
as

Thus Equations (14), (15), (19) and the prior beta distribution of 7 can
be used to generate samples from the joint distribution of (Θ.2, i / ^ l i j , Z 2 ) .
Suppose that M such samples are generated, where M is large, say 100. Let
the i-th generated sample be denoted by the vector

ffl(0 Λ(0 0(0 0(0 0(0 r/(0 ΛOy
1^2,09^2,1' * ? t ;2,ί2' ί ;2,ί2+l' * ">Oel,n->V W ) •>

for i = 1,. . . , M. Since (u2j\U) ~ λf(i,U), for j = 1,2,..., we shall use each

ί/W to generate the n innovation terms ^ 2 ) 1 ,^ 2 ? 2 , . , 4 , ^ 2 = 1? ?-WJ

via the distributional relationship (u2j\U^) ~ ΛΓ(/,W^), j = l , 2 , . . . , n .
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Since Y2j = θ2j + u2ίj, j = 1,2,..., n, we can approximate the mean of the
predictive distribution of Y2,t2+k, k = 1,2,..., (n - t2) via the Gibbs sample
estimate

-j M

The predictive distribution of Y2}t2+k, k = 1,2,...,(n - t 2 ), is estimated

via the histogram of (fl^+fc + ^L+fc)' * = 15 ^ Similarly, the his-

togram of 0^j, z = 1,...,M estimates the posterior distribution of θ2j,

j = 0,1,. . . , n and the mean of this distribution is estimated by

Ί M

iΣί (22)
i=l

Finally, the posterior distribution of the weighting constant 7 is estimated
by the histogram of 7W, i = 1,..., Af, and an estimate of its mean is simply
the average values of 7W. This estimate of the mean gives us a clue as to the
extent of the impact of the leading indicator series on the series of interest.

3.2 Extensions to Censored Data

In the discussion so far, we have limited our analysis to the case of complete
data. In practice, data is often censored, so the inference of the previous
section must be extended to deal with incomplete data. We consider two
types of censoring. The first type is inherent in the warranty claims data,
wherein the data is cost/unit and refers to the average cumulative claims
per unit. The data for t months in service (MIS), It, can be written as
Yt = ^~{X\t + %2t + + Xrtt) where rt is the number of units for which
we have data at time /, and Xα is the claims data for unit i at time t.
Censoring comes about because units are manufactured at different times
with the consequence that r = r0 > r\ > r2 > The number of censored
units at time t is ct = r - r*.

We propose two methods of handling this censoring. The first method is
based on the observation that claims data for t-MIS is based on fewer units
than claims data for (t - 1)-MIS. Since the data is decreasingly robust, a
simple solution is to adjust the observational variance accordingly. Specif-
ically, we would define the observational variance at time t to be normally
distributed with variance rU/rt

An alternative solution employs data augmentation (cf. [8]), wherein
unobserved data is introduced into the Gibbs sampler as further unknowns.
The resulting structure of the full-conditional distributions is typically very
simple, and leads to a straightforward implementation of the Gibbs sampler.
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For the problem discussed, the unobserved data is the future repair data for
the units. Hence, we introduce the variables Y/, F 2 ' , . . . , into the Gibbs sam-
pler, where these represent the observations that we would have observed in
the absence of censoring. The Gibbs sampling mechanism is easily adjusted
to deal with these extra variables.

The second form of censoring considered is the censoring of observations
due to clerical errors or irregular data collection. This is otherwise known as
missing data. Again, the solution to this problem is to employ data augmen-
tation, wherein the missing observations of Y^ are introduced into the Gibbs
sampler as further unknowns. As in the case above, the simple structure of
the full-conditional distributions leads to a straightforward implementation
of the Gibbs sampler.

4 Forecasting Warranty Claims

The model of Equation (4) is known as the "steady model". It is suitable for
forecasting a time series that is generally level; that is, the observations tend
to fluctuate around a constant value. However, an examination of Figure 1
shows us that both, the leading indicator series and the series of interest,
have an upward trend which tend to be generally linear. In order to describe
such series (4) needs to be extended as follows:

(23)

where V and W are specified constants, and as before, U ~ I G(tψ ,-§-).

The parameter 0 l j f denotes the level of the series, and the parameter /?i |t,

the trend. Prior information about 0i?o and /?i?o, the initial values of the

parameters is described via the distribution

^\u\~Aί((γ\,u( °l T°ll, (24)
3i,o , VV 6i,o , V Pσoτo rζ , ,

with σo, To and p specified.
For the series of interest Y2?ί, we postulate a relationship analogous to

(6) except that the weighting constant 7 is applied to the parameter βij
instead of the parameter θ\^. There are two reasons behind this choice. The
first is that forecasts obtained via weighting βιit turn out to be superior to
those obtained via weighting 0 l j t . The second reason is more structural. It
is more meaningful to suppose that the underlying trend in the series of

Yi,t

θltt

βlΛ

= 01 ,t + UιtU

= 0i,ί_i + βχ

= /Jit.i + WΎ

t-i + vu

u

with

, with

with

- λί(f,K)

- AT(r,VU)

- N{ι,wu)
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interest would mimick the underlying trend of the leading indicator series.
Accordingly, we have

Y2,t = #2,t + ̂ 2,ί9 with u2yt ~

Θ2,t = Θ2,t-i + β2tt-i + v2,t, with v2ft - λί(f,VU) (25)

+ «>2,t, w i t h W2ft - Λf(ι,WU)

As before, given ί7, the innovation terms wi?ί, ^i ? ί, wi?ί, u2iti ^2,t a n ( i ̂ 2,ί
are serially and contemporaneously independent. The prior on 7 is again a
beta distribution with parameters 6χ and S2. The prior on #2,0 and /?2,o is
determined by the relationship

where the constants si and s2 are specified by the user, and in our ap-
plication depend on the nature of the difference between the automobiles
manufactured in the 1989 and the 1990 model years.

Inference and forecasts based on the model Equations (23) and (25) pro-
ceed along the lines indicated in Section 3 with appropriate modifications to
include the trend term βιit and its weighting by 7. Application to the data
of Figure 1 are summarized in the section below.

4.1 Application to Data and Summary of Results

For the cost/unit data on warranty claims, we apply the models (23) and
(25) with n 0 = 5, do = 2, δτ = δ2 = 1, p = 0, σg = 0.01, η? = 0.1, V = 0.01
and W = 0.2. This choice of values is arbitrary. The constants αi?o and δi?o
— the initial values of #i?o and /J^Q — are chosen from data on "pre-warranty
claims", that is, claims made by the automobile dealers of the manufacturer,
prior to the delivery of the vehicles. Because of reasons of confidentiality,
these numbers are not revealed here. However, since the leading indicator
series Y\j consists of 27 observations the effect of the initial values on the
rest of the analysis is negligible.

In Table 1, we summarize the results of our analysis of the series of
interest, by way of forecasts of Y2j based on the 27 observations of the
leading indicator series (i.e. t\ = 27) and 5 observations of the series of
interest (i.e. t2 = 5) and also 10 observations of the series of interest. With
each case, the forecast horizon is 5. In order to show the effectiveness of
incorporating information from the leading indicator series on forecasts of
the series of interest, we also show — see columns 4 and 6 of Table 1 —
forecasts that are based on previous values of the Y2ft series alone. That is,
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Index

t

6

7

8

9

10

11

12

13

14

15

Observed

Values

0.693

0.752

0.814

0.845

0.915

0.974

1.098

1.162

1.196

1.196

Cumulative

Squared Error

Predicted Values of Y n

Based on First 5

27Obs

ofYi.t

0.688

0.760

0.829

0.895

0.959

0.005

NoObs

of Yht

0.729

0.819

0.909

0.998

1.088

0.068

Based on First 10

27 Obs

ofYi.ί

0.987

1.046

1.101

1.152

1.203

0.009

No obs

oίYu

0.968

1.021

1.074

1.127

1.181

0.019

Moments of the Posterior Distribution of 7

(when its prior distribution is uniform)

Mean

Variance

0.419

0.069

0.315

0.043

Table 1: Comparison of Actual and Predicted Values
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when the model (23) is applied to the series Y^t and the forecast horizon is
5.

An inspection of the cumulative squared errors of the forecasts shows that
incorporating the 27 observations from the leading indicator series results in
a substantial reduction of forecast error from that which is obtained via
an extrapolation of Y2j alone. The mean of the posterior distribution of
7 averages to be about 0.37 suggesting that the leading indicator series is
assigned a weight of about 0.63. Recall that the mean of the prior of 7 was
0.5.
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