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Abstract

A method which may be called a maximum modified kernel like-
lihood estimation is introduced to estimate the intensity of the mul-
tiplicative intensity model for a counting process. This model can be
used in survival analysis under general censoring patterns. The asy-
moptotic properties of the resulting estimator and the selection of the
kernel bandwidth are discussed. Its asymptotic distribution is found
to be same as that of Ramlau-Hansen's estimator. From a simulation
study, it is seen that the finite sample behaviour of the proposed esti-
mator for the hazard rate with right censored data is better than that
of Ramlau-Hansen's estimator.

1. Introduction. The multiplicative intensity model introduced by Aalen

(1978) is the statistical model for counting processes for which the stochas-

tic intensity admits the decomposition into a functional deterministic factor

a(t) and a predictable stochastic process Y(t). This model has been widely

applied to the life history data arising in biomedical studies (see Ander-

sen, Borgan, Gill and Keiding (1993)). Using martingales and stochastic

integrals, Aalen (1976,1978) developed nonparametric estimators for certain

cumulative intensities.

Ramlau - Hansen (1983) proposed an estimator for the intensity of a
counting process by smoothing the martingale estimator (the Nelson-Aalen
estimator) of the cumulative intensity. Other methods, analogous to that of
density estimation, have been studied for estimation of α. Detailed biblio-
graphic remarks concerning these are given in Andersen et al (1993, p.324).
It is known that a nonparametric unconstrained maximum likelihood esti-
mator for a does not exist since the likelihood is unbounded. One of the
approaches adopted to overcome this problem, is Grenander's (1981) method
of sieves. In this approach the log-likelihood function is maximized over a
subset of the parameter space with the subset 'converging' to the parameter
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space as the sample grows. Karr (1987) suggested a sieve using the regularity
criteria

S(mn) = {α > 0 : (l/ran) < α < mn, | o! |< ranα},

where mn is a parameter chosen based on the sample and o! is the derivative
of α. Later, Leskow and Rozanski (1989) derived a histogram sieve estimator
for α. The asymptotic variance of both these estimators is closely related
with that of Ramlau-Hansen's estimator.

In this paper we adopt a method which could be considered as a 'local
sieve'. We use a kernel function to smooth the likelihood and to obtain
an estimate of the intensity. In a recent paper Thavaneswaran and Jagbir
Singh (1993) obtained a similar estimator by solving the smoothed optimal
estimating function. A similar approach is also mentioned in Hjort (1992).

In Section 2, the construction of a maximum modified kernel likelihood
(MMKL) estimator is discussed. Asymptotic properties of the MMKL esti-
mator such as consistency and asymptotic normality are stated in Section 3.
Section 4 contains some discussion about the optimum choice of the band-
width. In the last Section we use this approach to obtain an estimator of the
hazard rate function based on right censored data. We compare its finite
sample behaviour with that of Ramlau-Hansen's(1983) estimator through
simulations.

2. Maximum modified kernel likelihood estimation. Let (Ω, J7) be
a measure space equipped with a filtration {Tf>t G [0,1]} satisfying the
usual conditions. We observe a sequence of counting processes {N(n\t),t G
[0,1], ra G λί} defined on (Ω,.F) and adapted to the filtration. Let V^ =
{P^ α G /} be the set of candidate probability measures corresponding to
the counting process N^ where the index set I consists of all left continuous
right hand limited, non-negative functions a G £i[0,1]. We assume that the
(P™, {^})-intensity process of JV(n) is given by A(n\t) = α(ί)Y(n)(j), where
{γ(n\t)} is a sequence of T%- predictable processes which are observable.
The Measure Pn is chosen to correspond to the function a equal to one. It
is known that for each n, the family is dominated by Pn (Karr (1991) ch.
5) and

= exp

The basis of inference is the log-likelihood function

Ln= [\l - a(s))Y(n\s)ds + ί\og(a(
Jon

As already observed by Karr (1987) a direct maximization of Ln is mean-
ingless as it is unbounded in α. Heuristically the value of a at a point s
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governs the process N^n\t) only in a neighbourhood of s. Thus in order
to estimate a(s) it is enough to consider a portion of the likelihood which
gives more emphasis to the behaviour of the process around s. This can be
accomplished by computing the kernel log-likelihood

Ln(K,h,s) = I' iϋΓ(i=^)(l - α(tO)Y(n)(u)Λ*
Jo fi n

where K is a non-negative smooth symmetric function having support [-1,1]
and satisfying / ^ K(u)du — 1 and h is the bandwidth parameter. However,
Ln(K, /i, s) is still unbounded if a is allowed to vary in I. If we assume that
a is continuous then for small h, Ln(K, h, s) can be approximated by

L*n = L*n(K,h,s) = ( 1 - Φ ) ) I

αOO)£ I* K(S-^)dN(n\u). (1)
a Jo a

We write a(s) = a. Now i* is bounded in 'a1 and the maximum of (1) is
attained at

_ _ /o1 K((s - u)/h)dN(«)(u)
h { ) - ( 2 )

which we call the MMKL estimator.
Remark 2.1: The estimator in (2) can also be obtained in a manner anal-
ogous to the kernel density estimator discussed in Silverman (1986). More
explicitly, a modification of the maximum likelihood histogram sieve estima-
tor

a { S ) = t[fθlΛkY^(u)du

proposed by Leskow and Rozanski (1989) results in (2). We note that Leskow
(1987) has studied a smooth estimator of a given by

&(s) = (l/h) ί K((s - u)lh)ά\u)du,
Jo

whereas Ramlau - Hansen's (1983) estimator of a is
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where β(s) is the martingale estimator (the Nelsen-Aalen estimator) of the
cummulative intensity /0

5 a(u)du. Both these are different from the estimator
(2).

3. Asymptotic properties. In this section we state the properties of

consistency and asymptotic normality of the MMKL estimator. The proofs

are omitted as they follow from, by now, standard techniques in this area,

namely from the properties of the Martingales arising in the Doob-Meyer

decomposition of the counting processes (see Andersen et al (1993)).
We make the following assumptions. Let s be an interior point of [0,1].

A.I Y(n\u)/n —• ξ(u) in probability, uniformly in a neighbourhood of s as
n —• o o .

A.2 The functions α and ξ are continuous and ξ(s) > 0.
A.3 a is differentiate at s.
Consistency:
Theorem 3.1 : Under assumptions A.I and A.2,
®h(s) —• Oί(s) in probability as n —>• oo, h —> 0 and nh —> oo.
Asymptotic Normality:

Theorem 3.2: Assume that A.I to A.3 hold.
Then, y/nh(άh(s) — ot(s)) converges in distribution to a normal variable with

mean zero and variance (OL(S)/ξ(s)) f^ K2(u)du, as n —• oo, h —• 0, such

that nh —• oo and nh3 —> 0.

Remark 3.2 : It may be noticed that the asymptotic distribution of the pro-

posed estimator coincides with that of Ramlau - Hansen's (1983) estimator.

4. Choice of the bandwidth. As in the case of density estimation,
the choice of the the bandwidth is crucial. For density estimation cross
validation techniques are usually employed. The idea of cross validation
is that of minimizing the mean squared error. Below we discuss how an
estimate of the mean squared error can be obtained from the sample and
thus suggest a method of local bandwidth selection.

We assume that a satisfies the Lipschitz condition of order p; that is,

\a(s)-a(t)\<M\s-t\p,

where M is a constant. In the following expressions, we let

Kh = K((s -

Let

MSE(άh(s)) = E(άh(s) - a(s))2

[βKhY(»){u)du
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\β
[

(u) - α(s))du + β

where I\,Ii, and I3 are defined below and where

Mn(t) = Nn{t) - ί α(u)Yn(u)du
Jo

is a square integrable martingale.

|7*i K(u)Y(n\s - hu)(α(s - hu) - α(5))du]1 ~ [ J
Using Lipschitz condition,

/2χ K(u)Y(n)(s - hu)du

Similarly,

h<E

h -

nl

ΛK(u)YW(s-hu)duMhP\ , ,

/_!_ /ί(ίfc)y(n)(θ — hu)du J

70

1gh)dM(")(tt)l

_β KhYW(u)du\

l/V^h)βKhdM(n\u) I 2

J
1

nh

Under A.I and A.2, for large n, I2 can be approximated by

Finally,

nΛf(β)y_i" v ;

n)(ω)(α(u) - α(s))d« x JjJ

(/0

1ϋrΛy(»)(tt)dtt)

Using Cauchy - Schwarz inequality we have

h < 2(/i/2)
1 / 2

We propose an estimate MSEl(s) of MSE{&h{s)) as follows:

1/2
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But in the above expression both α(s) and ξ(s) are unknown. One possible
way, is to replace α(s) by its estimator άh(s) and nξ(s) by Yn(s). Therefore,
in practice one can do the following. Compute

1/2]

(4)

The optimum choice of h is then the value of h that minimizes CV(h, s). The
validity of the above procedure was verified in case of hazard rate estimation
through a simulation study.
Remark 4.1: It is easy to see that (3) is minimized at

Substituting the value of h* in (3), one can see that

lim sup sup [MSEl(s)n2p^2p+1^] < 00,
n ^ ° ° ( ) l ]

where I(p) = {α £ / : α satisfies Lipscitz condition of order p).
Remark 4.2 For p < 1, the optimal h* satisfies the conditions /Ϊ* —>
0, nh* —> 00 and n/ι*3 —> 0 as n —• 00 required for the asymptotic properties.
Remark 4.3: Observe that h* = C(l/<(3)) 1/( 2 p + 1) and that Yn(s) can
be used as an estimate of nξ(s). Thus the following subjective choice is
appealing. Plot several curves with h(s) = (l/Yn(θ))5,0 < δ < 1 and choose
the estimate that is in close accordance with one's prior idea about the
intensity.

5. Hazard rate estimation. Consider independent identically distributed
non- negative failure times X\,..., Xn with distribution function F and
hazard rate α. Let TΊ,. . . ,T n be the corresponding censoring times with
distribution function H. Assume that the censoring times are independent
of the failure times. The number of failures in [0,ί], that is,

is a counting process with stochastic intensity Λ(n)(/) = α(t)γ(n\t), where
y(n)(ί) = Σy=1I[Xj > t,Tj > t] denotes the number of individuals under
observation just before time t. The MMKL estimator of α(s) reduces to

αh{s) -
_ G((s _ Zj)/h)y
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where Dj is the indicator of death for the j-th individual, Zj = min(Xj, Tj)
and G(s) satisfies K(s) = dG(s)/ds. It may be recalled that the estimator
suggested by Ramlau - Hansen (1983) is given by

Notice that άh(s) makes use of the failure times and the censoring times ex-
plictly whereas, Ramlau - Hansen's estimator uses only failure times and the
number of uncensored individuals under observation at the time of each fail-
ure. Thus maximum modified kernel likelihood estimator makes use of more
information available in the data than the Ramlau - Hansen's estimator. In
Table 1, we give the results of a simulation study carried out.

Table 1

c

.5

2

3

t

.3

.4

.5

.6

.7

.8

.9

.3

.4

.5

.6

.7

.8

.9

.3

.4

.5

.6

.7

.8

.9

α(t)

.913

.791

.707

.645

.598

.559

.527

.6

.8

1.0

1.2

1.4

1.6

1.8

.27

.48

.75

1.08

1.47

1.92

2.43

CF
n=40

h=

MSE

(1)
163

166

172

182

201

220

258

43

67

92

124

189

282

519

28

46

63

113

176

269

425

.3

MSE

(2)
146

153

158

161

171

185

220

37

56

81

108

161

234

410

27

42

57

103

154

238

391

= .5

n=80

h=

MSE

(1)
141

156

160

166

175

189

197

36

45

61

94

131

212

300

21

39

56

97

155

246

381

-.2

MSE

(2)
129

143

152

155

164

168

178

28

42

61

88

122

193

281

20

37

51

92

146

231

366

CF =
n=40

h=

MSE

(1)
157

161

166

179

188

204

221

38

59

77

106

143

215

398

25
41

56

107

159
252

408

.3

MSE

(2)
152

149

156

159

168

182

199

36

51

68

101

133

197

341

23

37

51

102

151

240

381

.25

n=80

h=
MSE

(1)
139

144

153

158

166

180

186

32

54

69

91

130

186

344

18

31

44

76

113

191

244

-.2

MSE

(2)
128

136

141

153

158

169

178

29

47

63

78

119

168

318

17

29

39

71

98

165

211

In the above simulation study, the failure times follow a Weibull distribution
with scale parameter 1 and shape parameter C and censoring variable follows
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a uniform distribution. The simulation is based on 2000 random samples
each of size n. Mean squared errors of the estimators are computed at
different points for two values of n, censoring fraction CF, bandwidth h
and with C = .5,2, and 3. In Table 1, a(t) denotes the hazard rate while
MSE(l), MSE(2) denote the mean squared error times 103 for the Ramlau-
Hansen and the MMKL estimators, respectively. The Epanechnikov kernel
is used throughout.
Concluding Remarks:

The method of estimation dicussed above can be used to obtain a smooth
estimator for various other models. For example, the method can be used to
estimate the drift function of a linear stochastic differential equation when
the likelihood can be written using Theorem 7.7 of Liptser and Shiriyayev
(1977). The method also can be used to estimate the time dependent co-
variate effects in a Cox-type regression model discussed by Zucker and Karr
(1990) and by Murphy and Sen(1991). Details for the latter model are in-
cluded in Anilkumar (1994).
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