
Chapter 7

Stochastic models of
environmental pollution

7.1 Introduction

Stochastic partial differential equations (SPDE's) arise from attempts to
introduce randomness in a meaningful way into the study of phenomena
hitherto regarded as deterministic. As examples one may cite recent research
in chemical reaction-diffusions, neurophysiology or turbulence. In almost
all cases, one takes as the starting point, the partial differential equations
(PDE's) provided by the deterministic theories. The following PDE (given
here in a somewhat simplified form) has been used in a deterministic study
of pollution or water quality in a basin or reservoir:

DAφ-

with non-conductive boundaries. Here Δ is the Laplacian operator in a
bounded domain in R2, φ(x\,X2) > 0 is the water quality or chemical con-
centration at the point (cci, #2) in the basin, D is the diffusion coefficient, Vj
is the convective velocity in the Xj direction, K is the heat transfer coefficient
and Q > 0 is the "load" pollutant issued from waste outfall.

The above equation is taken from a paper of T. Futagami, N. Tamai and
M. Yatsuzuka [54] in which numerical methods for its solution are studied
in detail. A PDE that corresponds to a transient or dynamic version of this
model will be given in the next section (Eq. (7.2.1)).

Another model is the following river pollution model proposed by Kwak-
ernaak [36] and studied by Curtain [6]: Suppose that the number of deposits
in a section of the river of infinitesimal length dx {x being the distance co-
ordinate along the river) behaves according to a Poisson process with rate
parameter \{x)dx where λ(x) is a given function. The number of deposits in
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212 CHAPTER 7. ENVIRONMENTAL POLLUTION

non-overlapping sections are assumed to be independent processes and the

amounts of chemical pollutant deposited each time at location x are inde-

pendent random variables with given distribution Fx. The time evolution

of the concentration of the chemical at a location x and at time t, u(t,x) is

supposed to be described by

JU(t, x) = D^u{t, x) - V^u{t} x) + £(t, x) (7.1.2)

where D is the dispersion coefficient, V is the water velocity and £(£, x) is the
(random) rate of increase of the concentration at (£, x) due to the deposits
of chemical waste described above.

We consider the pollution in a domain X — [0}£\d where the case d = 1
is the river pollution problem and the case d > 1 can be applied to problems
of atmospheric pollution.

This chapter consists of our work in [30] and is organized as follows:
In Section 2, we first consider the pollution process on X = [0,£]d as a

distribution valued process ut. Then, we show the existence of the density
function u(t, x) so that the pollution process can be studied as a random
field. Finally, we point out the difference between the case d = 1 and d > 1,
i.e. the second moment of the L2-norm of u(t, •) is finite for d — 1 and,
usually, infinite for d > 1.

In Section 3, we consider a more realistic model for the river pollution
problem. For this model, we calculate the covariance structure of the ran-
dom field u(t, x) and study the limiting behavior as t tends to infinity. A
relationship between the deterministic PDE (7.1.1) and the stochastic evolu-
tion equation (7.1.2) is also obtained when the leakage rate of the pollution
process is strictly positive.

In Section 4, we study the river pollution model in which a tolerance
level is imposed. In contrast to the models of Sections 2 and 3, this model
leads to a nonlinear (or quasilinear) equation. For this model, we consider
the smoothness and boundedness of the random field u{t,x).

As mentioned at the end of Theorem 7.2.1, when d > 1, the basic result
on the existence and uniqueness of solution (Theorem 7.2.2) is obtained as
an application of the general theory of nuclear space valued SDE's studied
in Chapter 6. We have to rely on this theory also for the quasilinear SDE
treated in Section 4.

We consider the following filtering problem in Section 5: Suppose we have
k stations to measure the water pollution and the observations are given by

Yt = ί IT Γ *X u(s,
Jo ze Jxi-βi

where cci, , cc*. are the stations and B\, , B^ are independent Brownian
motions.
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7.2 Environmental pollution model with Poisson
deposits

In this section, we first introduce the stochastic model of chemical concen-
tration in a region assumed for simplicity to be X = [0, ί]d due to dispersion,
drift, leakage of the environment and random deposits of chemicals. Then,
we solve the stochastic partial differential equation (SPDE) model for d = 1
by making use of the Green's function. This method does not apply to the
case d > 1, so we introduce a nuclear space Φ and consider the model as
a SDE on the dual space Φ' of Φ. After the existence and uniqueness of
solution of the Φ'-valued SDE are established by making use of the results
of Chapter 6, we show that the solution actually lies in a suitable L2 space
by verifying Sazonov's theorem in this setup.

In the absence of random deposits, the chemical concentration u(t} x) at
time t and location x should satisfy the following partial differential equation

—u(ί, x) = Lu(t, x) - au(t} x) (7.2.1)
(so

with Neumann boundary conditions, where L = DΔ + V V, D is the

dispersion coefficient, V = (VΊ, , Vd) is the drift vector, a is the leakage

rate, Au = 0 + + 0 , V = (gf-, , ̂ ) and V V denotes the inner

product of V and V.

The chemicals are deposited at sites in X at random times τ\(ω) <
T2(ω) < "- and locations κi(ω), ̂ (ω)^ with positive random magnitudes
Aι(ω), ^2(0;), . Taking these random deposits into account, (7.2.1) can
be written formally as the SPDE

—u(t,x,ω) = Lu(t,x,ω) - au(t,x,ω) + ΣAj(ω)δKj{ω)(x)lTj{ω)==t (7.2.2)

with Neumann boundary conditions where δx is the Dirac measure at x.

For A C X and B C R+, let

N([0,t]xAxB)= £ lβ(A>))UKH).
j:τj<t

We make the further assumption that τi,T2, •••, are the jump times of a
Poisson process and that (κ,j, Aj),j — 1, 2, are i.i.d. random variables so
that N is a Poisson random measure on R+ X X X R+ with characteristic
measure μ (In Kwakernaak's model μ(dxda) = λ(x)Hx(da)dx) on X X R+.

For d = 1, the SPDE (7.2.2) has the following meaning as an integral
equation: For any continuous / on [0,^],

/ u(t1x)f(x)dx — / tt(0, x)f(x)da
Jo Jo
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= (DAu(s,x) - (V V)u(s,x) - au(s)x))f(x)dxds
Jo Jo

+ [ I ί°° af(x)N(dsdxda). (7.2.3)
Jo Jx Jo

The following theorem solves the SPDE (7.2.3) when d = 1.

T h e o r e m 7.2.1 Suppose that

pi ΛOO

/ / aμ(dxda) < oo,
Jo Jo

then the SPDE (7.2.3) has a unique solution given by

u{tyx) = 6" α t / uo{y)p(t}x,y)dy (7.2.4)
Jo

ft ft ΛOO

+ / / / ae-a^"^p(t - 5, x, y)N(dsdyda)
Jo Jo Jo

where p(ί, cc, y) is the Green's function of the operator L — D-j^p — V-^ with

Neumann boundary conditions (φf(0) = φ'{£) — 0) given by

and

^ ( ^ ) 2 j ; (7.2.5)

/n ίΛis case, u(t, x) is a random field defined for each (ί, ίc).

Proof: If a > 0, then

pt pi poo

I I I cbe~ζX^t~s'p(t — s^x^y^μ^dydcb^ds (7.2.6)
J o Jo Jo

00 pt pt poo 1( _ .

~ T^Q Jo Jo Jo 3

00 1 f* f°°
< N / / aμ,(dyda) sup{|<^>7 (cc)| : j > 0 ίc G [0,^]} < 00.
~ ^ a + λj Jo Jo
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For a < 0, since only finite many terms of a + λ] can be non-positive, the

conclusion in (7.2.6) still holds. Hence u(t, x) in (7.2.4) is well-defined.

The SPDE (7.2.3) has at most one solution as can be seen as follows: Let

Ui(t,x), i = 1,2 be two solutions of (7.2.3) with the same initial condition.

Writing ύ(t, x) = uχ(ί, x) - u2(t, x) we have

/ ύ(t,x)f(x)dx= / / (DΔύ(s,x) - (V V)u(s,z) - aύ(s,x))f(x)dxds
Jo Jo Jo

which yields the PDE

—u(ί, x) = DAύ(t, x) - (V V)ϋ(t, x,ω) - aύ(t} x, α>), t > 0, 0 < x < £

ύ(0,x) = 0

aΠd A f i ( t O ) = A f i t / = o ί > 0
dx dt

The above Neumann problem has the unique solution u = 0 thus proving

the assertion.

By direct verification, u(t,x) given by (7.2.4) solves the SPDE (7.2.3). I

The method used in the above theorem is not applicable to the case
of d > 1 since the series corresponding to (7.2.6) does not converge. To
avoid such convergence difficulties, we formally regard u(t, x) as an infinite
dimensional process ut determined by its action on all "smooth" functions
φ in the sense

ut[φ]= I u(t,x)φ(x)p(x)dx (7.2.7)
J x

where p{x)dx is appropriately chosen such that the operator L on H =
L2{X,ρ{x)dx) is positive definite and self-adjoint. The appropriate form of
(7.2.3) is now the integral equation

ut[φ] = UQ[Φ] + / (us[-Lφ] - aus[φ])ds+ / / / aφ(x)p(x)N(dsdxda)
Jo Jo Jx Jo

(7.2.8)
where ut is a continuous random linear functional on a space Φ of "smooth"
functions. It is convenient in the present context to take Φ to be the CHNS
constructed below: Let

pίx\ _ e X p i _2 y^ CiXi I

V i=l J

where C{ = ^ , i — 1, , d. It is easily verified that the operator L with Neu-
mann boundary conditions on H has eigenvalues and eigenfunctions given

by



216 CHAPTER 7. ENVIRONMENTAL POLLUTION

and

Φji ~jAxu ••-,*<*) = Φ)x

respectively where λ* and φfa) are defined by (7.2.5) with the index 1
replaced by i, for i = 1, , d and j = 1, 2, . Let Γ t be the semigroup on
H generated by L. For φ G if and r G R, let

where < ψ, φ > is the inner product on H. Define

φ = {φ e H : \\φ\\r < oo Vr G R}

and let Φ r be the completion of Φ with respect to the norm || | | r . From
now on we shall write Φo for H. It is easy to show that the canonical
injection from Φ r + r i to Φ r is Hilbert-Schmidt if we take r\ > | . Hence, Φ
is a countably Hilbertian nuclear space. Applying Theorems 6.2.2 and 6.3.1,
we have

Theorem 7.2.2 If there exist r$ and Γ2 such that E\\uςJ\2_rQ < oo and there

exists a constant K such that, for any φ G Φ,

/ Γ aφ(x)p{x)μ{dxda) +[ Γ \aφ(x)p(x)\2μ(dxda) < K\\φ\\2

Jx Jo Jx Jo
(7.2.9)

then (7.2.8) has a unique Φ-pi-υalued solution where pi = ri + max(ri +

Proof: Take

, υ)[φ] = —υ[Lφ] - aυ[φ] + aφ(x)p(x)μ(dxda)
Jx Jo

and

G(t1υ}{x1a))[φ]^aφ(x)p(x).

It is easy to see that (A, G, μ) satisfies the assumptions (I) and (M) with

Po = n + r 2 and q = p + 1. Hence, by Theorem 6.2.2 and 6.3.1, (7.2.8) has

a unique solution which lies in Φ _ P l . I

(7.2.9) is an important sufficient condition in the above theorem. The

next theorem gives an equivalent condition for (7.2.9).

Theorem 7.2.3 (1°) Condition (7.2.9) holds if and only if

[ ί°° α(l + a)μ(dxda) < oo. (7.2.10)
Jx Jo
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(%?) Suppose that (7.2.9) holds and let V\ and v2 he two finite positive mea-
sures on X given by

Γ
/»oo

aμ(dxda) and v2{dx) = p(x)2 / a2μ(dxda).
Jo

Then r2 = 0 if and only ifvι(dx) < dx, u2(dx) < dx, p(x)~1Ulfa € H and
1/2jj*' is bounded. Here dx is d-dimensional Lebesgue measure (d> 1).

Proof: (1°) For the "only if" part, (7.2.10) follows from (7.2.9) by letting
φ = φo...o in that inequality. Now, we only need to prove the "if" part. For
simplicity of notation, we assume that d = 1. Note that (7.2.10) implies that
both v\ and v2 are finite measures. For any φ £ Φ, we have

rl ΛOO I f i ΛOO

/ / \aφ{x)ρ{x)γμ{dxda) + / / aφ(x)ρ{x)μ{dxda)
Jo Jo \Jo Jo

= [iφ(x)2dv2([O,x])+\ ίtφ(x)du1([0,x])
Jo \Jo

= φ(£)2v2([0,ί))-2 ί1 φ(x)φ'(x)u2([0,x])dx
Jo

< v2([Q,£]) (φ(£)2 + J φ(x)2dx + J φ'{x)2dx

+2(v1([0,£}))2 (φ(ί)2+e£φ'(x)2dx\ .

Let

M = max
Ύ ID

and note that

\φ3{x)\ <M, \φf

3{x)\<My[\ό.

From φ{x) = Σ < φj,φ > Φj(%), we have

/ φ{χfdx + / φ\xfdx
Jo Jo

(7.2.11)

< M2[Σ\<φ,φj>
\j=0 \j=0
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_ < C\\φ\\\ (7.2.12)

where

3=0

So, (7.2.9) follows from (7.2.11) and (7.2.12).
(2°) The "if" part is straightforward. For the "only if" part, suppose that
r2 = 0. Since

ί ί°°
/ / (aφ(x)p(x)f μ(dxda) < K\\φ\\l

Jx Jo
we have

/ φ{x)2u2{dx) <K I φ{x)2p{x)dx. (7.2.13)
J X J X

As Φ is dense in if, (7.2.13) still holds for φ G H. Hence, for any measurable
subset C of A', we have

i/2(C) < K I p(x)dx.
Jc

So, u2(dx) < dx and U2^ < Kp{x) is bounded. For i/χ, we note that, by
assumption,

φ^> φ(x)u1(dx)
J X

is a linear functional on Φ and continuous with respect to the norm || ||o,
this implies that there exists h G H such that

V\{dx) — h(x)p(x)dx.

Our result follows immediately. I

As ri > j > 0, Theorem 7.2.2 only tells us that (7.2.8) has a unique solu-
tion ut as a distribution valued process. The next theorem gives a sufficient
condition under which the density function u(t, x) exists and the expression
(7.2.7) makes sense.

Theorem 7.2.4 Suppose that r0 — r2 = 0 and μ is a finite measure on
X X R+. Then, for any t > 0, ut G Φo as.
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Proof: Let j t — e~atTtu0. It follows from r$ = 0 that yt is a Φo-valued
random variable. It is easy to see that the unique solution ut of (7.2.8) can
be represented as

ut = 7t + Mt

where Mt is a Φ'-valued random variable given by

ft f ΛOO

Mt[φ]= / / ae'a^-8\Tt^8φ)(x)p(x)N(d8dxda)1\fφeΦ. (7.2.14)
Jo JxJo

It is easy to see that the characteristic function of Mt on Φ is

(J*J J
Let Φ be a function on Φo defined in the same way as Φ with φ replaced by
h e Φo As r2 = 0, it follows from Theorem 7.2.3 that Φ is well-defined. If
we can prove that Φ is a characteristic function on Φo, then there exists a
probability space (Ω,^, P) and a Φo-valued random variable Mt such that,

Eexp(iMt[φ\) = Epexp(iMt[φ]).

As Φ'-valued random variables, Mt and Mt have the same distribution and
hence,

P{ω : Mt G Φo) = P{ω : Mt G Φo) = 1.

Therefore we only need to show that Φ is a characteristic function on Φo.
It is easy to see that Φ(0) = 1 and Φ is positive definite function in Φo

By Sazonov's theorem, we only need to prove that Φ is continuous at 0 in
the 5-topology. Suppose that Φ is not continuous at 0 in the 5-topology.
Then there exists eo > 0 such that, for any nuclear operator 5, there exists
a φs G Φo such that < Sips, Ψs >o< 1 and |Φ(VΉ) - 1| > e0.

Consider a sequence of mappings Sn on Φo defined by

oo

S"Ψ = Σ 2JΊ+-+J* K ^ Φjl'"jd > 0 Φil'"id'

It is clear that Sn is a self-adjoint nonnegative definite nuclear operator on
Φo. Therefore for this 5n, we have ψn G Φo, such that < Sn^n^n >o< 1
and |Φ(^n) - 1| > €0.

As I exp(iae~as(Ts^n)(x)p(x)) - 1| < 2 and μ is a finite measure, we see
that

pt p /*co , v

lim logΦ(V>n)= / / / lim r " " ^ ) ! 1 ) * ) - l) μ(dxda)ds.
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But, for s > 0, we have

\(Tsφn)(x)\<

31'"3d

31'"3d

31 "'3d V

where

Kλ = s u p { | ^ 1... i d(x)| :x €

is finite. Hence, l imn-^ logΦ(^ n) = 0. This contradicts from | Φ ( ^ n ) — 1| >

•
Under the conditions of Theorem 7.2.4, we know that ut is Φo-valued

and we are interested in its second moment. The following theorem tells us
that in most applications the second moment of \\ut\\o is finite if d = 1 and
infinite if d > 1.

Theorem 7.2.5 Suppose that ro = T2 = 0 and μ is a finite measure on
r XR+.

(1°) Ifd=l, then E\\ut\\l < oo for any t

(2°) If d > 1 and there exists a positive constant c such that V2\^ > cp(x),

then, for any t, we have £?||ut||o = oo.

Proof: (1°) As in the proof of Theorem 7.2.1, we may assume that a > 0.
Let Mt be given by (7.2.14). We only need to prove that J5||Mt||o < °°
Note that

E{<Mt,φ3>l)
ft f ΛOO

= a2e
Jo Jx Jo

+ ( ί ί Γ ae-(a+λΛsφj(x)p(x)μ(dxda)ds
\Jo JxJo

< K if e-2(a+λ>>ds + I /*

here K is the constant appearing in (7.2.9). As λj « j 2

} we have

E\\Mt\\l = E ί M{t, x)2p{x)dx < f ) E{< Mu φf >g)
3=0
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0 0 / K K \

The assertion (2°) of the theorem can be proved similarly. I

Example 7.2.1 In Kwakernaak's model μ(dxda) = λ(x)Hx(da)dx. Take
λ(x) = 1 and Hx(da) = H(da), then

Πa2H(da)>cp(x)
Jo

and hence E\\ut\\Q = oo in this case.

7.3 Pollution emissions at different sites along a
river

In this section, we consider a more realistic model for concentration of unde-
sired chemicals which are released by different factories along the river. Sup-
pose that there are r such factories located at different sites «χ, , κr E [0, ί]
where the interval [0,-£] represents the river. Each of the factories deposits
chemicals in terms of independent Poisson streams iVΊ(ί), ,iVr(ί) with
random magnitudes {A\(ω), j = 1,2, •} which are independent and have
common distribution Fi(da). The chemicals deposited are uniformly dis-
tributed in (κ,i — €{, K{ + β;), i = 1, , r.

The model described above can be written mathematically as follows

—u(t, x) = D—u(t, x) - V—u{t, x) - au{t, x)

+ Σ Σ f ^ W W ^ H (7 3 1)

where (τ/(α/), j = 1, 2, •} are the jump times of N{(t). This model can be
regarded as a special case of the SDE studied in Chapter 6 and be solved
by applying Theorems 6.2.2 and 6.3.1 if we make the following definitions.
Let Φ be defined as in the last section with d = 1. Define a Poisson random
measure N on space R+ x [0,-ί] X R+ by

Ni(t)

N([0,t] xAxB) = ΣUte) Σ is(Λ-M)

for any A C [Q,ί\ and B C R+. Also define two measurable maps A :
R + x Φ ' - > Φ' and G R + x Φ ' x [0,£\ x R + ^ Φ ' by

, υ)[φ] = -v[Lφ] - aυ[φ] + YJ°^
i Γ * Φ(y)p(y)dy (7.3.2)
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G(x, a)[φ] = [ * # ? WpWy * = *, < = 1, , r
v ' J m I 0 otherwise

where a{ = / R aFi(da) and fi is the parameter of the Poisson process Ni(t).

It is easy to see that the characteristic measure of N is

μ(A XB) = Σ U^i)m(B) (7.3.3)

for any A C [OJ] and B C R+ and (A,G,μ) given by (7.3.2) and (7.3.3)
satisfies the assumptions (I) and (M) of Chapter 6. Hence, (7.3.1) has a
unique Φ;-valued solution.

Because of the practical importance of the model (7.3.1), we study its
various properties. First of all, we consider the regularity of the solution of
(7.3.1) and calculate its mean and covariance.

T h e o r e m 7.3.1 u. G D([0,T],Φo) and, for any t1 > t > 0, x,y G [ 0 , 4

Eu{t,x) =

and

r 1 _ e ( + j )

Σ Σ h * i λ . „ ^-(^1 «)Φii*)> (7 3 4)

Cov{u{t,x),u(t',y)) (7.3.5)

l uo[φk])

' 1 - e-(2α+
+ Σ Σ f& \ • Λ

j,fc < = 1 ΛJ + λ k + Zθί

where

bi= a2Fi(da). (7.3.6)
J

1

/ φ()()d and

Proof: It follows from (7.3.1), (7.3.2) and (7.3.6) that

Γ ί Γ G(x,a)[φ3]N(dsdxda)
Jo JxJo

j] - \{a + χj)us[Φj] - Σ fiaiΦj(κ>i, *i) I d s

J° \ i=l /

+ / / Π G(x,a)[φ3]N(dsdxda). (7.3.7)
7o 7^^o
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Making use of Itδ's formula, we have

= f I -2(α + \j)u9[φj]2 + 2u8[φά] Σ f

rt p poo ,
/ / / ((tt^[^

) Jx Jo v

Hence

< (2|α| + 1) Γ £?ti.[^ ]2ώ + * Σ K /
1 / 0 i=i

It follows from Gronwall's inequality that, for any t <T

Eut[φά}
2 <

Hence

exp((2|α|

exp((2|α|

where

Note that

< oo

(7.3.9)

i=o

^ '
/ /

^ 0 Jo JxJo

= Σ2/ Σ/W

Σ f Σ= 4Γ Σ /<&<* + 2 Σ fi f Σ ^ « . [ ^f Σ (7-3.10)
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It follows from (7.3.8)-(7.3.10) that

<
i=o

(7.3.11)

As u.[φj] G D([O,Γ],R) for each j , (7.3.11) implies that u. G £>([0,T], Φo).
The derivations of (7.3.4) and (7.3.5) are routine and we leave them to the
reader. I

The following theorem studies the limiting behavior of the solution ut of
(7.3.1) as t tends to infinity.

Theorem 7.3.2 Suppose a — 0, then, as t tends to infinity

(1°) ,
1 2c

- e
, a.s. in Φ o .

(2°) Let

Then, as Φo-valued random variables, yt converges in distribution to
where ξ is a real-valued Gaussian random variable with mean 0 and variance

Proof: (1°) By (7.3.7) and ut G Φ o, we have

ft p ΛOO

ut = Ttu0 + G(x, a)[φo]N(dsdxda)φo + ξt
Jo JxJo

(7.3.12)

where

Note that

00 ft P POO

Y / /
00 f

j^[Jo
G(x,a)[φj]e^sN(dsdxda)e-χ^tφj.

—• 0, a.s.

As Ni(t)/t —> fi almost surely, we have

1 ft f fOO

- G{x1a)[φo]N{dsdxda)φo
t Jo Jx Jo

i=i e
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We only need to prove that jξt tends to 0 a.s. Without loss of generality,
we assume that r = 1. Then

Ni(t)

j>l k=l

Let ηn = τ^{ω) — r[ ι~1(α;). Then {ηn} is a sequence of i.i.d. random variables
with exponential distribution with parameter f\. Note that, VA; > 0

\n=l

k fci-1

i=n+l

ki -k2 / £ \ k-ki

i / h \

<

where di is given by (7.3.9). Hence

( ί )
/c k

It follows that, as k tends to infinity, ^^fcf^) tends to 0 a.s. and hence

< 0 α.5.

(2°) Let

\ ft f too
= -ί= / / G(s,α)[Γt_,

V* Jo Jx Jo

Then, by (7.3.12)

7t = -7= [ [ Γ G{x,a)[Tt-sφ]N(dsdxda)
Jo JxJo
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1 1 / f* f ί00

= Rt + -7=Ttu0 + - τ / / / G{x, a)[Tt-sΦ\ μ{dxda)ds
Λ/t Λ/t \Jo JxJo

1
= Rt + -p

t

It is easy to see that the second term tends to 0 almost surely. The third

term also goes to 0 as t —> oo, so that we only need to show that Rt tends to

ξφo in Φo in distribution. We show this in two steps. First, we prove that

{V(Rt)} is tight as probability measures in Φo Then, we show that it has

only one cluster point which is the distribution of ξφo. For the first step, let

Pt = V(Rt) G P(Φ 0 ) and

j=n

Note that

/

oo

Ί

2

n{h)Pt(dh) = sup S ^ < Λt,^ >g

Γ h = / / / G(x,a){Tt-sφj\N(dsdxda))
^ n \\ft Jo Jx Jo J

0 0 1 r* r r°°
^ - (G(^,a)[T t _ s ^]
~Lt Jθ JX Jθ

t>\

0 0

3=n
0 0 1 r 1 - e""2

Hence

lim sup ί jl(h)Pt(dh) = 0 and sup ί Jo(h)Pt(dh) < oo.
n-κx> t > 1 J t > 1 J

It then follows from Corollary 2.3.1 that the family {Pt} is tight. Next, let

P* be a cluster point of {Pt}. As V(Φ0) C P(Φ;)> P * a n d u ( f ^ o ) can also
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be regarded as elements in V(β>'), we only need to show that they have the
same characteristic function on Φ. Note that, V̂> € Φ,

Eexp(iRt[φ}) = exp f £ /,- jf* jH (exp (^G(κ,-, α)[2>])

-1 - -^Gί/cj . α ) ^ ] ) F,-(do)ds) .

We then have

Fj(da)ds

2 Λ

Fj(da)ds

as t —* oo

and

-Σ.
3=1

1 r /ΌO

-* -o Σ Λ / G ( ^ ' α

1 r

= - 2 Σ ^ δ i < 4> t° >

Φo]2Fj(da)

9

" j=l

Hence P* and V(ξφo) have the same characteristic function on Φ and hence,
P* = V(ξφ0). I

The next theorem shows the existence of the equilibrium state for the
pollution process when the leakage rate is greater than zero. It also estab-
lishes the relationship between the deterministic equations of the type (7.1.1)
and the stochastic evolution equation (7.1.2).

Theorem 7.3.3 If a > 0, then ut converges weakly in Φo to a random field
UVQ. For x G X, let u{x) = Eu^x), Then u{x) is the solution of the
following differential equation
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where

ά=ι

Proof: It follows from the same arguments as in the proof of the previous
theorem that ut converges weakly in Φo to a random field u^ with charac-
teristic function

(7.3.13)

' /ΌO f OO \

= exp I V fj / / (exp(ze"α5G(/cJ , a)[T8h]) - l)Fj(da)ds .
^ Jo io /

Let ίfcoo be an Φo-valued random variable given by

poo p poo

Jo J x Jo

Comparing the characteristic function of u^ with (7.3.13) we see that Uoo
and Uoo have the same distribution, and hence recalling (7.3.3), we have

ΛOO /» ΛOO

£?t*oo[Λ] = f?δoo[Λ] = / / / e'MG{x,
Jo Jx Jo

= Σfi / e-«sG(κva)[Tsh]F3(da)ds
*r^λ Jo Jo

r ΛOO ΛOO n ΓK3+€3

= Σfi I e~as^Γ τsh(y)p(y)dyFj(da)ds.
j^[ Jθ Jθ 2Cj Jκ3-e3

i.e.

u(x) = Euoo(x)

= / e~asTsQ(x)ds = (α - L ) " ^
Jo

where the last equality follows from (1.2.14). Hence



7.4. POLLUTION WITH A TOLERANCE LEVEL 229

7.4 Water pollution problem
with a tolerance level

In this section, we suppose that there is a mechanism to clean up the river
when the chemical density exceeds a fixed level £(#). For the sake of math-
ematical simplicity, suppose that the changes in the chemical concentration
do not depend on the locations where the chemicals are deposited. In this
case, we consider the following integral equation

v>t[Φ] = uo[φ] + / [us[-Lφ] - aus[φ])ds
Jo

pt poo

+ / / <ξ[Φ] ~ u.4φ])N(dsda) (7.4.1)
Jo Jo

where N is a Poisson random measure on R+ X R+ with characteristic
measure μ on R+. Let X — [0,£\ and consider (7.4.1) on Φ' constructed in
Section 2.

As in the previous sections, we can solve (7.4.1) by making use of The-
orems 6.2.2 and 6.3.1. The next theorem considers the regularity of this
solution.

Theorem 7.4.1 Let ξ G Φp and E\\UQ\\1 < oo. Then u. G D([0, oo),Φp).

The proof is similar to that of Theorem 7.3.1 and is omitted.

Corollary 7.4.1 If ξ G Φp and E\\uo\\p < oo for any p G Z, then u. G
£>([0,oo),Φ).

If the Poisson deposits are bounded, then the following result shows that
the magnitude of the random field u(t, x) can be controlled by the magnitude
of the initial random field u(0, x) and the tolerance level ξ(x).

Theorem 7.4.2 Suppose that the following conditions hold.
(1°) There exists a constant M such that μ{a : a > M} = 0.
(ί2°) There exists a constant C such that u(fd,x,ω) < C for any x G [0,̂ ]
and ω G Ω, where uo[φ] = /Q U(0, x)φ{x)e~cxdx, c is given by (7.2.5) with
subscript 1 dropped.
(3°) a > 0 and μ is a finite measure.
Then

sup u(t, x,ω) < max< Msupf(a?),C > .
t,x,ω I x )

Proof: Let τ\ < r2 < be the jump times of the Poisson random mea-
sure N and Ai, A2, be i.i.d. random variables with common distribution
μ( )/μ(R+). By (7.4.1), for 0 < t < τu we have

ut[φ] = uo[φ] + f\us[-Lφ] - aus[φ])ds. (7.4.2)
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As ut e H, let ut[φ] = f£u(t, x)φ{x)e-cxdx. Then, by (7.4.2), u(t, x) satisfies
the following Kolmogorov equation

—u{t,x) - D-^u{t,x)-V—u(t,x)-au(t,x)

with initial condition u(0, x). Let yt be a [0, ̂ -valued Markov process gener-
ated by DJ^-VJ^ with the Neumann boundary conditions and let p(t, x, y)
be the Markov transition density. Then

/ u(0,y)p(t,x,y)dy.
Jo

Hence
u(t} x) < sup u(0, x) < C.

x

For t = τi, we have

*nM = ̂ i - M + A1(ω)(ζ[φ] - u

i.e.

u(ri, x) = u(ri-, a) + jli(α;)(f (z) - u(r i-, a;)). (7.4.3)

By (1°) we know that Aι(ω) < M a.s. Hence, by (7.4.3),

i f ZW ~.f

i.e

u
) ]fξ(x)>u(τι-,x).

So

^(Ti, x) < max {Mξ(x), (7} < max \ M sup f (z), C \.

By induction, we see that u(t,x) < maxlMsup^^cc)^} for any t > 0. I

7.5 Filtering problem

In actual practice it is not possible, in many instances, to directly observe
the amount of pollution. Information about the latter is obtained through
noisy observations. In such cases we have a statistical filtering problem to
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solve. Making the usual assumption that the noise is Gaussian we have the
following observation model:

f + Bί (7.5.1)

where Bt is a fc-dimensional Brownian motion, E(B\)2 = σ2t and χ; £ Φ,

i = 1,2, , k. In (7.5.1) we have assumed the weighted functions to be

"smooth" instead of ^r l^-*,*<-«)•
Our problem is to find the best linear filter for ut based on the observed

data {Ys : s <t}. i.e. \/φ £ Φ and t > 0, we want to find a function K*(£, 5)
with /0* |JK"*(t, s)|2<is < 00 such that

uf = V^ + /* ^ ( t , s)rfyβ (7.5.2)

is the best linear unbiased estimate (BLUE) of ut[φ], where vf and ϋf*(ί, 5)
are deterministic. By the unbiasedness, we have

So, we only need to study the process mf defined as the second term on the

right hand side of (7.5.2).

For any t, s > 0 and </>, φ £ Φ, let

(7.5.3)

For fixed T > 0, let

L e m m a 7.5.1 Tftere exist index p and f E C(Dτ -> L(i)(Φp)) ^ucΛ that,

Mφ, ψeΦp

t)φ,ψ>p, (7.5.4)

where L(1j(Φp) denotes the collection of all nuclear operators on Φ p fc/.

Definition 1.2.6). Further, for s fixed, f(ί, s) is continuously differentiable

with respect to t £ [s, T]

: ( ί , s ) € ί ? τ i <oo. (7.5.5)sup{||f(M)
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Proof: We give an outline of the proof and leave the details to the reader.
Let pi be given by Theorem 7.2.2 and p = pi + 1. For any (£, s) £ Dχ} it
follows from (7.5.3) and Theorem 7.2.2 that there exists f(t,s) G £(i)(ΦP)
such that (7.5.4) holds. As u0 and N are independent and

iH[φ] = MTtΦ]e-at + / / / ae-a^-s\Tt.sφ)(x)p(x)N(dsdxda),
Jo Jx Jo

Vφ e Φ p and (£, 5) 6 Dψ, we see that

Tts(φ, ψ) = e-«('+s) (Tl(φ, φ) + Tl(φ, φ)) (7.5.6)

where

and

l(φ, φ) = Coυ (uo[Ttφ], uo[Tsφ])

JO

Choose the CONS of Φ p given by

For (έ, s) and (ί', 5) in Dψ, we have

< Σ

and

It follows from the dominate convergence theorem that Γ(ί, s) is continuous
in t uniformly for 5 in [0,T]. The continuity in 5 is proved similarly and
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hence Γ € C(Dτ —• L(i)(Φp)). Similarly, there exists f(ί, 5) £ L^(Φp) such
that

f € c(JDT -> i(i)(ΦP)) and Γ t.((α

Making use of (7.2.8), we have

Ttr(φ,ψ) = Trr(φ,ψ)- fτsr{{a+L)φ,φ)ds. (7.5.7)
Jr

Then for (ί, s) € Dτ>

l(f(t + h,s)-f(t,S))-ϊ(t,s)\\ < sup S||«.||i(p_1)Λ.

Hence Γ(ί, s) is differentiable with respect to ί G [s,T]. The continuity of
J f (ί, s) and the inequality (7.5.5) can be proved in the same way. I

Lemma 7.5.2 (1) For any (£, s) £ DT, φ G Φ and i = 1, , A, tϋe have

k t*
/ * 2 * (7.5.8)

and K^{t^s) is uniquely determined by (7.5.8).
(2) Let p be given by Lemma 7.5.1, then there exists K £ C(Dχ —> R fc®Φ_p)

V^§p. (7.5.9)

Furthermore, for s fixed, K(t, s) is continuously differentiable with respect to

te[s,τ).

Proof: By the definition of m^, for s < t we have

Coυ (ut[φ\ - mf, J°ur[Xi\dr + B{\ = 0.

Hence

f'Ttr{φ,Xi)
Jo

= ΈCoυ( Ϊ
j^[ \ JO

= Σ Γ fκ<t>{t,r)άTrr,{χά,χϊdrdr'Λ-σ2 Γ K*(t,r)idr.
jΞ[Jθ Jo Jθ
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Taking the derivative with respect to 5 on both sides, it is clear that (7.5.8)
holds. It follows from the positivity of the kernel function {^triXj^Xi}} that

ί, 5) is uniquely determined by (7.5.8).
For / G C{DT ^ΈLk® Φ_p), let

(Uf)(t,s)i = f
j=ιJo

Then Π is a continuous linear operator on C(Dτ —» Rfc ® Φ-p) and its norm
is smaller than a finite constant C\ given by

^ / \rsr(XΰXj)\ds+\Γtr(Xhχ3)\:r e[0,T] 1 < i < d).
=1 Jo )

Furthermore, for / G C(Dτ —• Rk®3>-P) which is continuously differentiate
with respect to t G [5, T] and such that

, β y - p : (t, 5) GJDτ,i = l, •••,*!< oo,|^

(7.5.10)
it is easy to see that, for any s > 0 fixed, Π/(ί, 5) is continuously differ-
entiable with respect to ί G [S)T] and Mπ/ < C\Mf. Without loss of
generality, we may assume that C\ < 1 as we can multiply Ŷ , χ; and J3;,
i = 1, , fc, by a small constant without changing the observation equation
(7.5.1).

Let f(t,s)i[φ] = Tts(φ,Xi). Then by Lemma 7.5.1, / e C{DT -H Rfc ®
Φ_p) and satisfies (7.5.10). Let

n=0

and K^(t}s) = K(t, s)[φ]. One can then show that K^{t,s) solves the
equation (7.5.8) and hence (7.5.9) holds. It follows from Lemma 7.5.1 and
(7.5.10) that, for 5 fixed, K(t}s) is continuously differentiate with respect
to t G [s,T]. •

Finally, we state and prove the main result of this section. For simplicity
of notation, we take σ = 1 and a — 0.

For t G [0, T] and φ, φ G Φ, let

= Coυ (ut[φ] - uf} ut[ψ] - uf) .
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Theorem 7.5.1 (1°) Let p be given in Lemma 7.5.1. Then there exists
7 e C([O,T],L(1)(ΦP)) such that

Ίt{Φ, Ψ) =< ΊtΦ, Ψ >P, V(?ί), Ψ e Φ

and % i>s the unique solution of the following equation on Ltι\(Φp):

Ίt = Ίo~ f [ΊsL + Lηs + Ytf xύ ® (^Xi)) ds + tQv (7.5.11)

where Qp is a nonnegatiυe operator on Φ p given by

P ΛOO

(GPΦ, Φ)p = G(Φ, Ψ)= a2φ(x)ψ(x)μ(dxda).
y Jx Jo

(2?) There exists a continuous Φf-valued process mt such that mf = mt[Φ]
for any φ G Φ where mt is the unique solution of the following SDE on Φ'

mt[Φ] = - J* \m.[Lφ] + ΣΊι(Φ,XUm*bci\\ds (7.5.12)

* ft

Σ/
ΊΞiJo

Proof: It follows from (7.5.7), (7.5.8) and standard Hubert space techniques

that, V(ί, s) € Dτ, φ€$ and i = 1, , k,

%-K+(t, s)i - K-L*(t, s)i + Σ K% t)jK*i (ί, s)i = 0.

Then

fc ft
mt[φ] = £ / K*(t, s)jdYi (7.5.13)

/; (/; i )
Σ f [ (Lφ £= Σ jf [ (κ-Lφ{r, s)ά - £ K*(r, r)iK*(r, *)

Σ/
=i / 0

= Γ (m.[-Lφ] - Σ ^*(«, ^im.Ixi]) ds+Σf Kφ(s, 8)3-dY>
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Letting s = t in (7.5.8), we get

* ft
Kφ(t,t)i = Ttt{φ,χύ-Σ K*{t,τ)

3=1 J 0

* ft

3=1 J θ
3

* rt
= Cov{ut[φ] - £ / ϋΓ*(t,r)itιr[χ, ]dr>ttt[χi])

= Cov(ut[φ] - ώf, «t[χi]) = Coυ(ut[φ] - uf, ut[χi] - iif)

= Ίt(Φ,Xi) (7.5.14)

Hence, it follows from (7.5.13) and (7.5.14) that mt satisfies (7.5.12).
Note that

Ίt{Φ,Φ) = Coυ(ut[φ]-mt,ut[ψ]-mt)

= Ttt{φ, i>) - Cov(mt[φ],mt[φ]).

By (7.5.6), we have

Γtt(φ,ψ)-roo(Ttφ,Ttψ)
rt p /»ooft p /»OO

= / / / a2(Tt-rφ){x)(Tt-r<ψ)(x)p(x)2μ(dxda)dr.
Jo Jx Jo

Hence

Jt

τtt(Φ,Φ) = -
p poo

+ / / a2φ(x)/φ(x)p(x)2μ(dxda)
Jx Jo

pt p poo

- a2(Tt_rLφ)(x){Tt-r<ψ)(x)p(x)2μ(dxda)dr
Jo JxJo

pt p poo

- a2(Tt_rφ)(x)(Tt-rφ)(x)p(x)2μ(dxda)dr
Jo Jx Jo

On the other hand

Coυ(mt[φ],mt[ψ]) = Coυ(mt[φ]}ut[ψ])
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Hence

—Coυ(mt[φ]}mt[φ])
at

i=lJθ

k k t

' k r*{ r, A

k

— Σ"fr(^» Xi)Jt(Φi Xi) — Cot;(?nt[L<^], mt[φ]) — Coυ(πit[φ], mt[Lφ]).

Therefore

A
 k

i + £(<£> Φ) ~ Σ 7t(ώ Xi)Ίt(Φ, Xi)-
dt

Now we prove the uniqueness for the solution of (7.5.11). Let 7' be
another solution of (7.5.11), ά = 7 — 7' and

M = sup J Σ llXillp (ll7t||L(Φp) + II7*ΊIL(ΦP)) : 0 < ί < τ | .

As

—at(φ,φ) = -at(Lφ,φ)-at(φ,Lφ)
at

ί>, XihtiΦ, Xi) + Ίί(Φ, Xi)<*t{Φ, Xi)} ,

it is easy to see that

| |ά t | |L(φ ) < M / ||ά5||z,(Φ )d5,

ί^°
Therefore
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and hence άt = 0 for all t £ [0, T]. The uniqueness for the solution of (7.5.12)
is verified in a similar fashion. I

Remark 7.5.1 One can show that Vf = Vt[φ] for Vt G Φ' and, moreover
that

Ut = Vt + mte Φ_p, a.s.




