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Abstract

In this paper, we present a Bayesίan decision theoretic frame-
work for the design of accelerated life tests. In our development,
we assume that quality of inference at the "use stress" is the only
concern to the designer and use a quadratic loss function as the
design criterion. We derive optimal designs for exponential life
models under a given form of an "acceleration function" using
a complete test. Linear Bayes methods play an important role
in our making inference. Sequential processing of information
and the ability to obtain one-point designs make the approach
attractive for developing adaptive design strategies.

1. Introduction. In accelerated life testing (ALT), items are sub-
jected to an environment that is more severe than the use environment
(i.e., the normal operating environment) in order to induce early fail-
ures. The accelerated environment is achieved by increasing the levels
of one or more of the stress variables that constitute the environment.
For instance, typical stresses associated with mechanical and electronic
devices include temperature, wind, pressure, amplitude, and voltage.
Test data collected in the accelerated environment are then used for
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inference about the failure characteristics of the items in the use en-
vironment. An important assumption that facilitates inference is the
assumed form of the time transformation function or acceleration func-
tion [see Mann, Schafer and Singpurwalla (1974), p. 421] that describes
the relationship between the failure characteristic of interest and the
applied stress level. This relationship is specified based on engineering
judgement and the physics of failure for the given situation.

The design problem in accelerated life testing is concerned with
specifying the number and magnitude of the accelerated stress levels,
and the number of items to be tested at these stress levels. To date,
the majority of the literature on accelerated life testing has focused
on inference about the failure behavior in the use environment given
the data collected in the accelerated environment. A review of the
sample theoretic literature is given in Nelson (1990), and Mazzuchi
and Singpurwalla (1988) provide an overview of the Bayesian methods
for inference from ALT's.

The majority of the work published regarding the design of ALT's
relied on sample theoretic methods [see, for example, Nelson (1990)].
Recently, some Bayesian approaches have been presented by Verdinelli,
Poison and Singpurwalla (1993), Menzenfricke (1991) and Chaloner and
Larntz (1992). Most of these approaches are based on the theory of op-
timal Bayesian designs for linear models [see, for example, Chaloner
(1984)]. Consequently, the results are applicable to ALT designs when
the life model is normal or lognormal. In this paper, we present a
Bayesian approach for obtaining optimal ALT designs when the un-
derlying life model is exponential. The extension of our approach to
the normal, lognormal, and Weibull models is straightforward. Our
approach accommodates complete sample tests, as well as Type I and
Type II censored tests. In addition, the methodology can be used for
a wide variety of specified time transformation functions including the
Power Law, the Arrhenius and Eyring Rules, and their stress dependent
(dynamic) equivalents.

2. Formulation of the optimal design problem. Let m denote
the number of distinct stress levels used for ALT, and let Si denote
the value of the zth accelerated stress level for i = 1,2, . . . ,m. The
subscripts are used to indicate distinct stress levels and do not imply
any specific ordering in terms of the magnitude of the stresses. It
is assumed, however, that each of the accelerated stress levels yields
an environment at least as severe as Su> the stress level in the use
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environment, that is, S% > Su for i = 1,2, . . . ,m. Let Πi denote the
number of items tested at the ith stress level and n = Σ7Lι Πi is the
'predetermined number of items to be used in the ALT.

Finally, let Y^ represent the lifelength of the j th item on test at the
ith stress level and y^ its realization for j = 1,2, . . . ,71*. The number
of failures observed at the ith stress level is denoted by r;. Using the
notation above, define the information U from the zth stress level by

1% = {Suni}ri7yij9 for j = 1,2, . . . ,7**} for ί = 1,2, . . . , m ,

and assuming that testing proceeds from stress Si to Sm, define the
available information Di after testing at the ΐth stress level by

A = { 4 A - i } for < = 1,2, . . . ,m.

The information available prior to testing is denoted by DQ.

The main purpose of ALT is to provide a prediction of a failure
characteristic, such as the mean life or the failure rate, at the stress level
in the use environment. We call this level the use stress. Assuming that
quality of inference is the only concern to the designer and denoting
the failure characteristic of interest at the use stress by ηUJ we assume
that the designer's loss function is quadratic

(2.1)

Having selected the optimality criterion, the design problem consists
of the following decisions:

• what is the form of the estimator for the failure characteristic at

the use stress?

• how many stress levels should be used?

• what levels of stress should be used?

• how many items should be allocated to each stress level?
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The optimal ALT design problem can be viewed from a decision theo-
retic perspective and the corresponding decision tree can be presented
as shown in Figure 1.

Figure 1. Decision Tree Representation of the Optimal ALT Design
Problem.

In Figure 1, the number m, the values of the stress levels 5Ί, . . . ,Sm

and the numbers of items n 1 } . . . , nm to be allocated to each stress level
are specified at decision node V\. The node 3?i is random and represents
the results of ALT (i.e., the observable quantities

{r»,yy>i = l J 2 > . . . > m a n d j = 1,2,... ,71;}).

The selection of the form of the estimator ήu given the test information
is represented by the node Z>2. Finally, the random node 5R2 repre-
sents the true but unknown value of the failure characteristic ηu, and
(Vu — ήu) denotes the realized loss.

The solution of the design problem is obtained in the conventional
manner by folding back the decision tree [see, for example, Raifϊa (1970,
p. 23)] by taking expectations at the random nodes and minimizing
the expected loss at the decision nodes. For example, at node V2, it is
well known that the posterior mean of ήu minimizes the quadratic loss
function so ήu = E (ηu | Dm). Also, it can be shown that, at node X>i,
the optimal design is obtained by minimizing the preposterior risk over
all possible values of m, Si) and π;, that is, the optimal design is given

by

(2.2)
uύn^ {E [V (ηu | Dm)}} ,

where V (ηu \ Dm) denotes the posterior variance of ήu given the test
data and the expectation is taken with respect to Dm) the data.
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The above formulation of the optimal design problem is valid for
any life model, time transformation function, and failure character-
istic of interest at the use stress. Furthermore, the failure frequencies
{ri i = 1, 2, . . . , m} displayed on the branch following node 5Ri of the
decision tree can be either random or specified, thus reflecting various
testing scenarios including testing each item until failure (r^ = Πi Vi),
testing until a specific number of failures (r; fixed Vz), and testing until
a specified time (r^ random).

In what follows, we will present an approach for identifying ALT
designs that are optimal with respect to the criterion of minimum
quadratic loss when the lifelengths of the items on test are exponentially
distributed and all items are tested until failure.

3. The exponential life model. Assuming that the jth item on
test at the zth stress level is assumed to have a constant failure rate,
λi, the failure density for the lifelength Yy is given by the exponential
model

(3.1)

where the subscript i on the failure rate, Â , and the lifelength,
indicates that these quantities are dependent on the stress level, Si.
The relationship between the failure rate and the stress level is assumed
to be given by the power law, as is common in both biometry and
reliability,

(3.2)

where θ\ and #2 are unknown, positive-valued coefficients. It is assumed
that (3.2) is valid over a particular range of stress levels and that θ\ and
#2 are constant over the range of stress levels for which (3.2) is valid.
This range is denoted by Su < Si < SH where Su is the use stress and
SH is the highest stress for which (3.2) is valid but is not so high as to
cause instantaneous failures.

The time transformation function, (3.2) can be linearized by taking
the natural logarithms of both sides and written as

(3.3)
ηi = \og(Xi) = Fβ,
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where F; = (1, log (Si)) and θ' = (log (θλ), θ2). We assume that the
test designer is interested in predicting the logarithm of the failure rate
at the use stress, given by

(3.4)

where F u = (1, log^u)). The first step in finding the optimal design
given by (2.2) is to obtain the posterior variance of ηu,

(3.5)
V{ηu\Dm)= F'uV(θ\Dm)Fu.

Assume complete testing, that is, let r; = Π; for all i, with the data
relevant to θ being the observed lifelengths. Under the assumption
of the power law and exponentially distributed lifelengths, the joint
posterior distribution for θ\ and Θ2 cannot be obtained in closed form
for any reasonable joint prior distribution of θ\ and #2- Consequently,
the variance-covariance matrix V (θ \ Dm) is not directly available.
However, V (θ \ Dm) can be obtained in an approximate manner using
a sequential procedure developed by West, Harrison and Migon (1985).
Henceforth, we call this procedure WHM.

The WHM procedure is based on the linear Bayesian estimation
(LBE) methods of Hartigan (1969) and allows for updating of the first
two moments of θ in a sequential manner from (θ \ D^i) to (θ \ Di)
for i — 1, 2, . . . , m. Prior to testing at stress level 5i, the distribution
of θ is partially described by the first and second-order moments, irii-i
and Ci_i, respectively, and we denote this by

(3.6)
(θ\ A-i)

Using (3.2) then yields the first two moments of the prior distribution
of ηii

A - i ) =
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(3.7)

At this point, a full distributional form for the prior of ηι can be speci-
fied to facilitate further analysis. As pointed out by West, Harrison and
Migon (1985), the form of this prior distribution is arbitrary, providing
(3.7) is satisfied. Analytical results for the posterior distribution of ηι
can be obtained by using the conjugate prior for r\i which, when (3.2)
holds, is the log-gamma density:

(3.8)
p(η{ I A - i ) O

where aj and δj are prior parameters selected such that

(3.9)

where Φ (•) and Φ' (•) are the digamma and trigamma functions [see
Abramowitz and Stegan (1965)], respectively. The prior parameters α*
and bi are specified such that the first two moments of ηι agree with
(3.7).

After testing at stress level Si, the posterior distribution of r/i given
Di can be obtained by a standard application of Bayes' theorem. Under
the scenario of a complete test, the sufficient statistic is the total time
on a test at Si, i.e., the sum of the observed lifelengths of the Πi items
on test at Sf

(3.10)

and by Bayes' theorem, the posterior distribution of τ\i is a log-gamma

density, that is,

(3.11)
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It follows from (3.11) that the posterior mean and variance of r/j are
given by

E fa I Di) = Φ [fit + n) - log (hi + U) •

(3.12)

Posterior conditional moments of 0, E (θ \η^ Di) and V (θ | rfc, Di)
can be obtained in an approximate manner using the LBE method of
WHM. Then by using (3.7) and (3.12) with s< = Q_iF;, the posterior
moments of (θ | Di) can be obtained as

(3.13)

C~V(Θ\D)-C zz>Q = V (θ I A) - Q_χ - s i S i

If the entire iteration is repeated for each of the m stress levels, inference
about failure characteristics at the use stress can be made by obtaining
the distribution of (ηu | Dm). It follows from (3.7) that

E(ηu I Dm) = F^m m ;

(3.14)

Again a full distributional form can be specified for ηu given Dm as a
log-gamma density with parameters au and bu chosen to satisfy Φ (au) —
log (6tt) = E(ηu\ Dm) and Φ' (au) = V{ηu\ Dm).

4. Identification of optimal designs. We note that the optimal
design given by (2.2) requires evaluation of E [V (ηu | Dm)\ , the expec-
tation of the posterior variance with respect to the distribution of Dm.
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Considering the form of the posterior variance of θ, given by (3.13), it
is evident that V (ηu \ Dm) is not a function of the data. As a result the
optimal design (2.2) can be obtained by minimizing F ^ C m F u over n*,
m, and Si for i = 1, 2, . . . , m. This poses a formidable task due to the
implicit nature of the trigamma function. Furthermore, the sequential
nature of the procedure results in the expression of C^ in terms of Ci_i
being a complicated function. However, the posterior variance in (3.14)
can be simplified by using an approximation to the trigamma function,
namely,

(4.1)

whose accuracy increases with z.
Using approximation (4.1), and after a considerable amount of al-

gebra, the posterior variance in (3.14), can be rewritten as

(4.2)

V(ηu I Dm) = F'u (CO1 + FF')" 1 Fu >

where the first Πι columns of F are (1, log (Si))', the next 71% columns
are (1, log 62)', and so on, with the last nm columns being (1, log (Sm))r

The matrix F is referred to as the design matrix. As a result, the pos-
terior variance given by (4.2) is a specific case of the more general
preposterior risk analyzed at length by Chaloner (1982, 1984). Using
results from Chaloner (1982), it can be shown that the optimal ALT
design can be concentrated at a single point which implies that all n
items can be tested at one stress, SJ. We note that the one-point op-
timal design can be justified when the approximation (4.1) is accurate.
However, numerical investigations by Vopatek (1992) also indicate the
existence of such one-point optimal designs without using the approx-
imation. It can be shown that using the one-point optimal design, a
series of alternative optimal designs can be generated involving more
than one stress levels [see Vopatek (1992)]. Alternatively, the designs
can be derived in an adaptive manner, namely, by testing Πi <n items
at S* followed by a revision of uncertainties and the specification of an-
other one-point design at S*+1, and the process continues in a sequential
manner, where for each of m stages the optimal one-point design for
fixed sample size n is found. We note that such an adaptive design
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strategy can be useful in situations where there exists high uncertainty
about model parameters. In what follows we will present one-point
optimal designs for some special situations.

In a complete test, items are tested until all fail. Considering the
one-point design where m = 1 and using our notation, Dm is written
as Di = {/;, Do} to represent the information from testing at the single
stress level Si, as well as any relevant background information. The
posterior variance (or the expected loss) can be rewritten as

(4.3)

V(ηu\Di) = F^QF,,

= F U C O F U -

- F'CF (F'C

One immediate observation considering (4.3) together with the fact
that the trigamma function Φ' (α̂  + n) is a decreasing function of its
argument is that, as n increases, the expected loss decreases over all
stress levels. In addition, the expected loss is not dependent on spec-
ification of mo, the prior mean vector for θ. Further insight into the
optimal design is made possible by considering various forms of Co, the
prior variance-covariance matrix for 0.

The special case of (3.2) when θ2 = 1 yields the linear form of the
power law, that is, λj = θiSi. In this case it can be shown that the
prior variance of the logarithm of the failure rate is

(4.4)
V (ηu I Do) = F.CoFi = V (log ft) I Do).

Also, the posterior variance-covariance matrix Cj for 0, does not de-
pend on 5i, and therefore it does not matter what stress level is applied.

Another special case of the power law occurs when λ; = S^ (i.e.,
θ\ = 1 in (3.2)). In this case it can be shown that

(4.5)

V(ηu I Di) = KWu = V(Θ2\ Do) (log(Su))
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The expected loss (4.5) implies that the expected loss decreases as Si
increases due to the inverse relationship between Si and α .̂ Thus, the
optimal design is to test all the items at the highest possible stress,
that is, S* = SH.

When the prior variance-covariance matrix for θ is diagonal, i.e.,

\DO) 0 1

~ϋ~L ° V(Θ2\DO)\'

indicating that log(#i) and θ2 are assumed to be uncorrelated prior to
testing, the optimal stress level is influenced by Su,n, and the prior
variance of θ\. Using the approximation (4.1), the expected loss given
by (4.3) can be written in the form of (4.2), where

(4.6)

and Xi = log (Si). After considerable amount of algebra, it can be
shown that there is only one point that satisfies the necessary first
order conditions for a local minimum, and the second derivative of the
expected loss with respect to Si is positive when evaluated at the point

(4.7)
O* _ c[&i — Ou

We note that (4.7) implies that the optimal stress level is close to the
use stress when there is a large number of items on test. Also, increased
prior uncertainty about log(#i), as expressed by V(log(#i) | D o), re-
sults in an optimal stress level near Su. As mentioned earlier, S* is
not affected by the prior mean vector m 0 for θ. Finally, the optimal
stress level is not dependent on prior uncertainty about the parameter
θ2. We note that (4.7) is obtained by using the approximation (4.1),
and therefore, it may be more appropriate to refer to it as an "approx-
imately" optimal design. However, using numerical methods, Vopatek
(1992) obtained optimal one-point designs very similar to those given
by (4.7). Numerical methods also indicated that the location of the op-
timal stress moves towards Su as n and V(log (θ\) | Do) are increased.
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Derivation of optimal designs for Type I and Type II censored ALTs
as well as for other types of time transformation functions and their
dynamic forms were also considered in Vopatek (1992).
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