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Abstract

Consider a system that is subject to failure and must be re-
placed when this occurs. If it costs less to replace the system
in advance before failure, it may be advantageous to use an age
replacement policy. However, the optimal age to replace the
system is unknown if the underlying model for machine failure
is unknown. This paper reviews various schemes that balance
the conflicting goals of gathering enough information about the
lifetime distribution, and simultaneously controlling costs by re-
ducing system failures.

1. Introduction. In general, optimal replacement policies are
designed to reduce the number of system failures and minimize main-
tenance costs by adopting a schedule of planned replacements. A great
deal of literature [see Thomas (1986) and Valdez-Florez and Feldman
(1989) for review articles] is devoted to the study of optimal replace-
ment policies. By far the greater part of this literature is concerned
with finding the optimal policy when the underlying model for system
failure is known. Much less work has been done to actually estimate
these optimal policies based on maintenance history data. Most esti-
mation procedures that have been developed are based on observing a
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fixed number of complete lifetimes. For systems and equipment that are
long lived or costly, the luxury of obtaining a sample of complete life-
times before a maintenance policy is implemented may not be practical
or affordable.

An attempt to minimize costs and failures needs to be made even
while collecting the data to be used for estimating an optimal policy.
A practical approach will be to estimate adaptively after a complete
lifetime pilot sample is obtained. By this we mean that, at replace-
ment (whether it is due to system failure or stipulated by the current
maintenance policy), the current estimate of the optimal policy is up-
dated. The difficulty and challenge of successfully implementing such
a scheme is to balance the conflicting goals of gathering enough infor-
mation about the system lifetimes for estimation and simultaneously
trying to control costs by preventing system failures.

Barlow and Proschan (1965) provide a general description of main-
tenance policies including the age replacement policy (ARP) that we
shall describe now. A system is replaced at age φ (planned replace-
ment) or at failure (unplanned replacement), whichever comes first. If
the cost C\ of an unplanned replacement is more than the cost c<ι of a
planned replacement, ARP can lead to considerable savings. The usual
criterion for choosing the optimal age φ* of replacement is to minimize
long run expected cost per unit time. Let X L , X 2 , be a sequence of
independent and identically distributed system lifetimes with distribu-
tion F supported on the positive half-line. The actual cost of the first
n units under the ARP at φ is

(1)

Cn (φ) =

where / (A) is the indicator function of set A. The amount of time the
n units have functioned is (Xι Aφ) + (X2 Λφ)+ h (Xn Λ </?), where
Λ denotes the minimum.. Let Nφ (t) be the number of replacements by
time t so that

The cost Cn (φ) described in (1) is a renewal process. Thus it can
be easily verified that the long run expected cost per unit time is [see
Barlow and Proschan (1965, p. 86)]
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(2)

\ t J μ

where S = 1 — F (φ) and

An alternative interpretation of (2), is that for an ARP at age φ, C (φ)
is the long run average system unavailability, where C\ is interpreted
as the expected time to repair the system and c2 is the expected time
to replace the system with a new one [cf. Barlow (1978)]. Under
broad conditions, there is a unique and finite time, say φ*, where C (•)
attains a global minimum [cf. Bergman (1979)]. We call φ* the optimal
replacement time and C (φ*) the optimal cost. Minimizing C (φ) is only
one possible cost criterion. See Ansell, Bendell and Humble (1984) for
a discussion of alternative criteria.

In practice φ* is unknown since F is unknown and must be esti-
mated. Bather (1977) introduced a method of adaptively constructing
an estimator φn of φ* based on past experience. Using his estimator at
the 72th stage, if the unit fails prior to ψn) then the cost C\ is incurred;
otherwise the unit is replaced at ψn incurring cost c2. The age of the
unit at the nth replacement is then used to update the estimate φn,
producing <£>n+i The cost after n units is

(3)

Since φ^s are typically not independent and identically distributed, Cn

is not a renewal process which complicates the analysis of this ARP.
Bather constructed an adaptive procedure so that under mild conditions
on F , φn converges to φ* with probability one. In this setting, the
number of replacements by time t is equal to
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(4)

An important result of Bather's (1977) is that

(5)

with probability one.

Several other innovative approaches have been investigated for es-
timating φ* [cf. Bergman (1979), Ingram and Scheaffer (1976), and
Arunkumar (1972)]. Graphical methods have also been discussed by
Bergman (1977) and Barlow (1978). These approaches are based on
fixed-sample (i.e., non-adaptive procedures that rely on observing in-
dependent identically distributed lifetimes and thus do not allow trun-
cation of the lifetimes). The cost after n units is nc\ and hence these
procedures can't achieve (5). However, these procedures are not with-
out merit. Typically, before the adaptive ARP is implemented, the
researcher will conduct a small pilot sample of complete lifetimes and
get an initial estimate.

Adaptive methods have been much less studied. Frees and Ruppert
(1985) extended the results of Bather in two directions. They showed
that any sequence {φn} converging to φ* almost surely and satisfying
some mild measurability conditions implies (5). This result opens the
door for other types of adaptive procedures. In particular, they in-
troduced a stochastic approximation estimator ψn and give conditions
under which it converges to φ*. They also proved nΐ~ε (φn — φ*) con-
verges in distribution to a normal random variable, where ε is a positive
number depending only on the smoothness of F at φ* and the choice
of the kernel function used in the procedure.

Aras and Whitaker (1991) motivate and develop an adaptive proce-
dure in which the sequence of estimators φn is based on a nonparametric
maximum likelihood approach. Their treatment is similar to Bather's
and follows his ideas closely.

In the following sections we review the above three procedures and
discuss their merits and demerits. For the proofs of these results readers
should refer to the original articles.
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2. Bather's procedure. The procedure depends upon two sets of
constants. Let 60 > &i > &2 * be such that bm —> 0 as m —> 00 and Σ &t
diverges. Define a sequence of independent Bernoulli variables {an}
such that α n = 0 or 1 with probability pn or 1 — pn, respectively. The
sequence {an} is assumed to be independent of {Xn}. When an = 1,
the complete lifetime X n is observed; in other words, the age replace-
ment policy is not implemented. It is assumed that pi = 0. Suppose
we have constructed ψn by using data obtained from the first n units.
After recording the value of α n ,

βn = max{6m: bm < φn,m> 0}
ηn = βn and ξn = ψn, if an = 0;

τ?n = ξn = oo, if α n = 1.

^n is the ARP, which is the same as φn except when an = 1. Note
that φn and ξn can take any positive value, whereas ηn cannot. ηn is
a discredited version of £n along the decreasing sequence {bn}. Bather
introduces {ηn} purely for technical reasons.

In order to complete our inductive specification of the decision pro-
cedure, it remains to construct a new estimate <pn+i F°Γ a nY χ > 0,
and j = 0,1, . . . ,n, let

Yj (x) = 1 if (Xj Λ ηj) > x, and 0 otherwise;
Zj (x) = 1 if ηj > x, and 0 otherwise.

Then S (x) is estimated by using the ratio

n
Σ Zj (X)

j=0

Note that Sn+ι (x) is a right continuous step function with values in
the interval [0,1]. It is non-increasing in x, except perhaps along {bm}.
The set of points {bm} and the random sequence {ηn} with support
{bm} were introduced in order to restrict the location of any upward
jumps in 5n+i {x) along a countable set {6m}. Cost function C is then
estimated by
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Kn (x) = [ciFn +i (x-) + c 2 S n + 1 (re-)] /μ (

where

a;

β(x) = J Sn+1(y)dy.
o

The estimate ^ n + i can be determined by minimizing Kn+\ (x) with
respect to x. The ARP is now completely specified.

The Borel-Cantelli Lemma and the condition that ΣPn — oo imply
that there exists an infinite sequence {7n} along which α 7 n = 1 (and
in between it is 0). Since pn —> 0, Cherbychev's inequality shows that
one can conclude that 7n/n —» oo as n —» oo. Since {an} is assumed to
be independent of {Xn}> Bather's procedure is equivalent to observing
complete lifetimes along some predetermined 'megre' sequence {7n} ,
where jn/n —» oo as n —»• cx>. Bather shows that ( n̂ converges to φ*
almost surely and satisfies (5) as desired.

3. The Frees-Ruppert estimator. Define the function

t

M (t) = (Cl - c2) f(t)Js (u) du - S (t) [ClF (t) + c2S (t)} ,
o

where / is a probability density function corresponding to F. Note that

ftC (t) = KtM (t),

where Kt is a positive function of ί. Instead of assuming C is uniquely
minimized at some point φ*, Frees and Ruppert (1985) assume the
slightly stronger condition that M (i) (t — φ*) > 0 for t ^ φ*. If C is
assumed to be differentiate, then the above assumption is equivalent to
the statement that C has no points of local relative minima. Let g be a
known, strictly increasing smooth nonnegative function. Define ξ* such
that φ* = g (£*). Note that ξ* is unique minimum of C o g and is thus
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a unique, finite zero of g Mog, where "o" denotes composition of two
functions and "•" denotes the product. The function g is introduced to
lead to unconstrained recursive estimation of ξ* rather than to estimate
a strictly positive parameter φ* [e.g., g could be log{l + exp (x)}]. Af-
ter defining an estimate ζn of £*, g could be used to calculate φn, an
estimate of φ*.

It is convenient to describe the Frees-Ruppert procedure with a
paired sequence of independent identically distributed random vari-
ables {Xi,n} Λ — 1)2 with distribution function F rather than a sin-
gle sequence {Xn} Suppose ξι is an initial estimate of ξ* such that
E(£i) < oo, and {En}, {αn} and {dn} are sequences of random vari-
ables. For i = 1,2, define the truncated observations {Zii7l} by Z^n =
mm {ZiiTl, g (ξn +dn)}. It is assumed that an and dn are measurable
with respect to the σ-algebra generated by £1 and Z^^i,] < n — 1.
Typically {αn} and {dn} are chosen such that for fixed α,d > 0 and
7 G (0,1), nan —> a and n 7 d n —> d.

Let y9o be the class of all Borel functions that are bounded and equal
to zero outside [—1,1]. For some positive integer define

Define H (t) = F (g (t)) and let H& be the jth partial derivative of H.

For i = 1,2, let F<,n (ί) = / {^,n < *} and Si>n (t) = l - F<,n (ί). For

is an estimator of H^ (t). The estimator of g1 (ί) M (g (t)) is

(6)

M9,n (t) = (Cl - C2) hn (t) / ^.n («) ^
0

- ^ ( ί ) { c i F 2 ) n ( p ( ί ) ) + c 2 lS 2 > n(y(ί))}.

244



The estimator (6) is constructed so that the conditional expectation
of MgiTl (t), given knowledge up to epoch n — 1 is sufficiently close
to g' (ί) M (g (£)). The estimators ξn are constructed by the recursive
algorithm,

(7)
(ξn) .

Under smoothness assumptions on F and g and growth conditions on
{dn} and {an} , Frees and Rupert (1985) not only prove almost sure
convergence, but also the asymptotic normality of φn.

Estimating F, which is an important intermediate step in Bather's
procedure and in the Aras-Whitaker procedure, is not crucial in the
Frees-Ruppert procedure. Instead, they concentrate on posing the
problem in the framework of stochastic approximation so that they
can apply well developed machinery of stochastic approximation the-
ory. This approach pays rich dividends in terms of a central limit
theorem for φn. Their estimator of F, namely F;>n is based only on the
nth observation and not on earlier data. This does raise fears about
possible slow convergence in practice. However, extensive simulations
by Aras, Whitaker and Wu (1992) indicate that it does fairly well in
practice, especially if the initial guess ψ\ is close to φ*.

4. The Aras-Whitaker procedure. Suppose that when the nth
unit is at risk the current ARP is £n. Let Zi = Xiί\ & be the age at the
ith replacement, δi = I (Xi < ξi) and Qn be the σ-algebra generated by
{(Zi, δi) i = 1, 2, . . . , n} . While ξn is the ARP, ψn is the estimate of
φ*. The data available after n replacements for constructing the esti-
mator φn of φ* is clearly right censored, although not randomly right
censored since ψn depends on earlier data. S is estimated by calculating
the nonparametric maximum likelihood estimator (see Keifer and Wol-
fowitz (1958)). Since ξn is ^-i-measurable by successive conditioning
arguments the nonparametric maximum likelihood estimate is seen to
be that survival function Sn which maximizes the function

n x i *

Π (Q (7 \ Q ( V W * ίQ (7 W *

Thus Sn is the well-known product limit estimator of S:
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where Z ^ , . . . , Z(n) are the order statistics of Z\, Z 2, . . . , Zn and <5(i),
. . . , <5(n) are the corresponding sequence. As in Bather's procedure, an
estimator of the cost function C (•) is

Kn (x) = [ClFn (x) + ̂  (x)] /μn (x).

The current estimator ψn and 99* is where a minimum of Kn (•) is
reached. In order to complete our inductive specification of the ARP,
it remains to construct £n+i after observing (Zn, δn).

Obvious cost considerations demand that £n+i should be 'close' to
φn. Because φn is an estimator of φ*, it is a reasonable choice to use as
the ARP at the nth stage. Since we want to estimate φ* consistently,
it is necessary to allow the unit to operate beyond φn. Let e > 0. For
£n+i = ψn + e> Aras and Whitaker (1991) show that φn —• φ*. However
C^(t)/ί, the actual average cost up to time t, converges to C (φ* + e),
i.e. (5) is only approximately satisfied by this procedure.

It is an open question whether consistency is maintained if e is
replaced by a sequence en that decreases to zero as n tends to infinity.
This will allow (5) to hold. Obtaining a central limit theorem for φn is
also an important open problem.

Though the Aras-Whitaker procedure is strongly consistent, in prac-
tice one should use the following modification. Let {αn} be a nonneg-
ative, 9fn measurable sequence of random variables. Define £ n + i =
ψn + &n + 6. Of course, αn should converge to zero. ζsn measurability
allows the possibility of choosing {αn} adaptively. One could choose
large values of an initially to get a better idea about the location of φ*.

Aras, Whitaker and Wu (1993) use simulations to provide some
guidelines for proper choice of the {αn} sequence. In general, when the
underlying distribution is close to exponential, the value of an should
be large and not decrease as rapidly as when F has an increasing failure
rate. Aras, Whitaker and Wu also report simulation results comparing
the Aras-Whitaker procedure with the Frees-Ruppert procedure. The
former consistently had a lower average actual cost per unit time than
the latter.
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To conclude, none of the above procedures are totally satisfactory
and there is definite need for researchers to come up with better pro-
cedures.
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