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Abstract

Consider a sequence of experiments in which a treatment is
applied at a finite number of levels or dosages, and the cumu-
lative number of responses at each level is observed after each
trial. We consider such experiments in which the primary objec-
tive is to estimate the unknown dose μ that has a probability of
response equal to a fixed value Γ, 0 < Γ < 1. We restrict the un-
known distribution of treatments so as to avoid treatment levels
that are associated with high probabilities of response. When
treatment levels are sequentially assigned to subjects in a way
that forms a random walk, we give the exact expectation (and
variance) of giving treatments that have high probabilities of
response.

1. Introduction. Consider a sequence of experiments in which
a treatment is applied at a finite number of levels or dosages, and the
cumulative number of responses at each level is observed after each
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trial. We consider such experiments in which the primary objective is
to estimate the unknown dose μ that has a probability of response equal
to a fixed value Γ, 0 < Γ < 1, we call Γ the target probability of response,
and we call μ the target quantile. We restrict the unknown distribution
of treatments so as to avoid treatment levels that are associated with
high probabilities of response. Without loss of generality, we focus
on target quantiles that are below the median, i.e. 0 < Γ < 0.5; by
symmetry, analogous results can be obtained for 0.5 < Γ < 1. When
treatment levels are sequentially assigned to subjects in a way that
forms a random walk, we give the exact expectation (and variance) of
giving treatments that have high probabilities of response.

Up-and-down rules are procedures that specify the treatment for
the next trial to be one level higher, one level lower, or the same as
the treatment selected for the current trial. Let n = 0 indicate the
initial trial for which the treatment may be either fixed or random.
Now suppose that the rule for allocating treatments to subjects pro-
duces a sequence of treatments X (n) , n = 0 , l , 2 , . . . that forms a
random walk on Ωx, where Ω x = {xι, x2, , χκ} ι s a finite sam-
ple space of ordered treatments. Since X (0) is the initial treatment,
X (n), n > 1) is the nth treatment after the initial trial. Let the
treatment probability distribution of X (ή) be represented by the K
dimensional vector p (n) = (pi (n), p2 (n), . . . , pk (n)), n = 0, 1, 2,
. . . , where pk (n) = P {X (n) = xk} . If the initial treatment is fixed at
Xi, then pi (0) = 1. Now p (n) depends on the initial treatment and
the transition probabilities given by the treatment allocation rule. For
up-and-down designs, the exact moments of the treatment distribution
are given for the accumulating trials n = 0, 1, 2, .... Then these mo-
ments are used to study the biased coin up-and-down designs given in
Durham and Flournoy (companion manuscript in this volume).

Let Y (n), n = 0 , l , 2, . . . b e Bernoulli random variables with
Y (n) = 1 indicating no response. This notation derives form thinking
of the response as being toxicity, so that a response connotes failure
and no response connotes success. Arbitrary outcomes and treatments
may be denoted by Y and X, respectively, without explicit mention of
their position in the sequence of trials. The probability of response at
x is denoted by Q (x) = P{Y = 1 | X = x} , with P(x) = l-Q(x).
The response function Q (x) is taken to be strictly increasing in x, but
given x, Q (x) is assumed to be constant over all trials n = 0, 1, 2, —

Exact expressions are obtained in Section 3 for the expected num-
ber and proportion of trials at each treatment level; the corresponding
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covariances are derived in Section 4. Asymptotic results for the expec-
tations are included in Section 3, and limiting results for the covariances
are derived in Section 4. In Section 5, the probability of treating within
a specific range of levels is derived. Assuming that responses follow an
extreme value function or a logistic function and that a treatment allo-
cation rule from Flournoy and Durham (companion manuscript in this
volume) is used, these expectations and one standard deviation bands
are graphed as a function of the trials n = 0, 1, . . . 99 (see Figures
1-3). For these particular response functions models and treatment
allocation rules, these figures demonstrate convergence to asymptotic
values. Moreover, it demonstrates how the exact statistics can be used
to study a wide class of treatment allocation rules and alternative model
assumptions.

2. Transitions between treatments. From treatment x^ the
transition probabilities pik in one trial and pik (n) in n trials, respec-
tively, are

(1)
pik = P{X(n) = xk\X(n-l) = Xi}

pik(n) = P{X (n) = xk \ X (0 = Xi)}

n = 0,1,2,...; k = 1,2,..., If. Of course, pik (0) = δik) where δik

is Kronecker's delta function, and since the transitions are assumed
to follow a random walk, pik = 0 for \i — k\ > 1. Thus the random
walk is determined by the probabilities pkik+i, Pk,k-i and pkk that the
treatments will move up from level k to k + 1, down from level k to
k — 1, and stay at level k, respectively, for k = 1, . . . , K, with pkik-\ +
Pkk + Pfc,fc+i — 1 f° r all fc Strict boundaries on the dosages are fixed
by requiring that pio = 0 and pκ,κ+i = 0. Transition functions for the
two biased coin up-and-down designs, BCD I and BCD II, are given
in (1) and (4) of Durham and Flournoy (companion manuscript in this
volume). These designs are used throughout this paper to make explicit
the usefulness of the statistics that are derived.

Let P = [pifc]be the K X K dimensional matrix of transition prob-
abilities from the treatment given in one trial to the treatment given
in the next trial, and note that the nth power of P, P n = \pik (n)] ,
is the K X K dimensional matrix of transition probabilities from the
treatment given in one trial to another that is n trials ahead. P is
regular for BCD I and BCD II, that is, for some n that is large enough,
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1 -I

the elements of P n are all positive. Throughout this paper, we take
P to be regular. Theorem 1 summarizes some well-known asymptotic
properties of regular transition matrices. [See Kemeny and Snell (1960,
pp. 70-71) for a proof].

THEOREM 1. If P is a regular transition matrix, then
(i) the powers P n approach a probability matrix Π;
(ii) each row of His the same probability vector π — (TΓI, . . . , ΈK)
(in) the components of πare all positive;
(iv) for any probability vector p (0), p (0) P n = p (n) —> πas n —> oo;

(υ) PΠ = ΠP = Π.

Note from (iv) that the vector π is the asymptotic treatment probabil-
ity distribution, that is, π^ = lim P (X (n) = Xk), k = 1, . . . , K.
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Suppose that the transition probabilities

{pu > > pκ-i,κ > Pκ,κ+i = 0}

to higher levels are monotone decreasing, and the transition proba-
bilities

{Pio = 0 < P21 < < Pκ,κ-i]

to lower levels are monotone increasing, with p^ > 0 and 0 < Pκ,κ-i
Thus as the sequence of treatments moves higher, it becomes increasing
less likely that this trend will continue, and similarly, as the sequences
of treatments moves lower, the chances of continuing this trend dimin-
ish. One might suspect that these opposing forces would cause the
treatments to concentrate in some particular region. Denote by xκ the
mode of the asymptotic treatment distribution that results from us-
ing such an up-and-down design. Durham and Flournoy (1993, 1994a)
showed that the asymptotic treatment distribution centers around the
unknown quantile μ, in the sense that the limiting treatment distribu-
tion either has a single mode at xK) or it has a mode at both xκ and
xκ-\. Furthermore, they show that if BCD I or BCD II is used and
treatments are equidistant, then \μ — xκ\ < Δ, where Δ is the spacing
between treatments.

3. Expected trial frequencies. Define a function to indicate
whether or not the nth treatment is x^\

Then the frequency with which treatment Xk is used during trials 0
through n is

(2)
Nk(n)= Σ I(X(m)=xk), k = l, 2, . . . , K,

771=0

with Σk=i Nk(n) = n+ 1. For notational simplicity, let the subscript
i in Pi (•) and Ei (•) indicate that the probabilities and expectations,
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respectively, are conditional on a fixed initial treatment X (0) = Xi,
whereas the subscript p will indicate that the probabilities and/or ex-
pectations are taken with respect to a probability distribution p (0) of
X (0). Now from the law of total probability,

(3)

Ei(Nk(n)) = ±
m=0

= Σ Pik (m) = δik + £ Pik ( m ) , k = 1, 2, ..., K.
771=0 771=1

Let N (n) = [Nι (n), . . . , NK (n)] denote the vector of observed num-
bers treated at each level after the nth trial, and let M (n) denote the
K x K dimensional matrices with zth row vector Ei (N (n)), n = 0, 1,
2, .... Then since Ep (Nk (n)) = Σli Ei (Nk (n)) Pi (0),

(4)

when X (0) is random with distribution given by the probability vector
p (0). When the initial distribution is the stationary distribution, (4)
becomes Eπ (N (n)) = (n + 1) Π. This can be seen by taking the expec-
tation of (3) with respect to π and using the balance equations for a sta-
tionary distribution, that is, for k = 1, . . . , K) use Σi-Lj ^iPik {m) — ^k
to obtain

(5)

Eπ (Nk (n)) = Σ^i (π, Σ^oft* H ) = Σl

Let Pfc (^) = Nk (n) / (n + 1) denote the proportion of trials at xk in

n +1 trials. Then (5) is equivalent to i?7r (Pk (n)j = πΛ, A: = 1, . . . , K.
Theorem 2 gives a law of large numbers for the trial frequencies.

THEOREM 2. Consider an up-and-down design with limiting treat-
ment distribution π = (TΓI, π 2 , . . . , 7Γfc). For any initial treatment
probability distribution p (0) = (pi, P2> , Px) > ^ P ( A ( n )) -* πA;7

d /or any e > 0,
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The proof follows from Ep (Pk (n) — πΛ —> 0 as n —• oo, which in

turn follows from Ei (Pk (n) — πk) —> 0 as n —> oo for every i. Details

of this proof can be found in Kemeny and Snell (1960, pp. 73).
To illustrate the usefulness of these statistics, suppose that treat-

ments Ω x = {1, 2, . . . , 9} are available to target Γ = 0.33. We know
from Theorem 1 of Durham and Flournoy (companion manuscript in
this volume) that asymptotically, using BCD I or BCD II, the mode
of the treatment distribution will be as close as possible to μ given the
discreteness of Ωx, and we know that the asymptotic treatment distri-
bution is unimodal. Therefore, starting the experiment at the lowest
dosage, X(0) Ξ 1, as is commonly done in toxicity studies involving
humans, it is of interest to study the performance of the sample mean
of the treatment distribution,

Ei (X) = Σ XkEi (Nk (n)),
K—-L

as a simple estimate of μ. We know from Tables 1 and 2 of Durham and
Flournoy (companion manuscript found in this volume) that, asymp-
totically, such estimates have negative bias of size less than Δ, and if
one is willing to make parametric assumptions regarding the underlying
response function, an exact amount can be added to the sample mean
to correct for this bias.

However, the sample treatment mean initially will have larger neg-
ative bias. To determine the magnitude of the bias of the sample mean
as an estimate of μ when Γ = 0.33, E\ (X) is plotted as a function of n
in Figures 1 and 2 assuming extreme value (a = 6.931, β = 1.97) and
logistic responses (a = —3.569, β = 0.549), respectively.

When targeting Γ = 0.10 with these underlying extreme value and
logistic response functions, the plots of E\ (X) as a function of n are
indistinguishable (see Figure 3). Observing when the curves in Figures
1, 2, and 3 asymptote provides an estimate of sample size for which
asymptotic results provide good approximations. For smaller sample
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sizes, if parametric models are assumed, an exact bias correction to the
sample mean may be made for estimating μ.

4. Covariances between trial frequencies. For the case in
which X (0) is fixed at x^ Theorem 3 states that the covariances be-
tween trial frequencies are sums over trials of the covariances between
treatments. Also, the covariances between treatments are given in
terms of this transition probabilities.

THEOREM 3. After n+1 trials when X(0) has been fixed at x{,
covariances between trial frequencies at levels A:, I = 1, . . . , K are

(Nk (n), Nι (n)) = £ Σ Cm* (I {X (s) =xk),I (X (t) = xt)),
s=01=0

n = 0, 1, 2, . . . , where the covariance between using treatment x^ at
trial s and treatment Xι at trial t is

(6) Coin (I (X (s) =xk),I (X (t) = xt))

Pik (s - t) pu (t) - pik (s) pu (t), if s>t,
= { Pki (t - s) pik (s) - Pik (s) Pu (t), ift>s,

δik - Pu(t)), ifs = t.

PROOF. Because the two transition probabilities of a random walk
do not depend on n, the joint probability of two treatments can be
written as

(7)

P i k ( s - t ) p u ( t ) , if s>t,
Pi = ( X (s) = Xk, X ( ί ) = Xi) = { p k l (t - s ) P i k ( s ) , ift>8

P u ( t ) δ l k , ifs = t.

Furthermore, since the expectation of the product of indicators is a
joint probability, inserting (1) and (7) into the right hand side of the
expression
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= Pi (X (s) =xk,X(t) = xt) - P{ {X (a) = xk) Pi {X (t) = Xι)

yields (6). Using (7), the second moment of trial frequencies given
X (0) = Xi can be written as

(8) Et (Nk (n) Nt (n)) = Ei(£l{X{s) = xk) £ I (X (t) = Xι))
\s=0 t=0 /

s=01=0

= Σ Σ P t t ( s - t ) Pii (t) + £ Σ? Ptα (t - s) Pik (s) + £ Pil (s) δlk.
s=Ό t=0 t=0 s=0 s=0

Inserting (3) and (8) into Ei (Nk (n), Nt ( n ) ) - ^ (Nk (n)) E{ (Nt (n)),
the exact covariance between the trial frequencies at xk and X\ can be
written as

(9) Covi {Nk (n), Nt (n)) = Ei {Nk (n), JV, (n)) - £?< (iVfc ( n)) Ei (N, (n))

= Σ !??»(«-*)?«(*) + £ Σ1p feί(ί-s)Pi fc(s)+ ΣPϋ(s)(5ifc

s=0 ί=0 t=0 s=0 s=0

- Σ Pik (s)pu (s) - £ ΣPik (t)pα (s)
8=0 8=0 ί=0

£ £ i ( ( ( ) k ) , ( { ) = xι)). Π
3=0 t=O

COROLLARY 1. After each trial n=0, 1, 2, . . . when X (0) is
selected with probability p (0),

Cσυp (Nk (n), Nt (n)) =££ Cσυp (I (X (s)=xk),I (X (t) = X ι ) ) ,
3=0 t=0

where the covariances between using treatment xk at trial s and using
treatment x\ at trial t are
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(10) Cσvp(I(X(s) = xk),I(X(t)=xι))

Pik (s - t) pt (t) - Σ Pik (s) Pii (ί) Pi (0) if s > t,

Pki (t - s) pk (s) - Σ Pik (s) Pa (t) Pi (0) if t> s,

if s = t.

Σ
t=l

Σ Pik (t) (δtk - Pii (t)) Pi (0)
1 = 1

COROLLARY 2. When the initial distribution is the stationary
distribution, (10) becomes

(11) Cσυπ(I(X(s)=xk),I(X(t)=Xι))

K
plk (s-t)πι - ii (t) 7Γ; i f s > t }

KK

Pki (t-s)πk - Σ Pik {s) Pa (t) 7Γ< if t > 5,
1

2 = 1
ζ

- Σ Pik (t) Pil (t) TΓi if 3 = t.
1 = 1

It is useful to note that evaluating Covi (I (X (s) = xk), / (X (ί) = Xι))
in (6) at k = I and 5 = t yields

Van (I (X (s) = xk)) = pik (s) (1 - pik (s))

Varp(I(X(s)=xk)) = Σpik{

K
Varπ (I (X (s) = xk)) = πk - Σ {pik (s))πi.

COROLLARY 3. Let Pk (n) = Nk (n) / (n + 1) denote the propor-
tion of trials at xk in n + 1 trials. Then

(n + I)"1 Σ Σ
s=O t=Q

i (I (X (a) = xk), I (X (t) = xt))
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(n + l)Coυp(Pk(n),Pι(n))

Σ t Cσvp(l(X (s) = xk) ,I(X {t) = X ι ) ) .
s=01=0

We now investigate some asymptotic properties. Let C be a K x K
matrix with elements

(12) ckl = Jim (n + 1) Covπ ( f t (n), fi (n))

= lim (n + I ) " 1 Co<;π (TV* (n), JVZ (n)).

Since lim E~ (•) = lim Eπ (•) for all initial distributions p(0), for n

sufficiently large it is sufficient to consider X (0) to be random with

stationary probability distribution π. Thus c^i provides a large sample

approximation to

that is independent of p (0).
Theorem 4 makes CM tractable by expressing c^ in terms of the

stationary distribution and the fundamental matrix for regular Markov
chains, Z = (zij) = (I— (P — Π))~ , where I is the identity matrix.
Let DTΓ be a diagonal K X K matrix with diagonal elements TΓI, π2,
. . . , TΓjζ. A proof can be found in Kemeny and Snell (1960).

THEOREM 4.

C = Dπ-π'π + D π (Z - I) + (z'-l) Dπ.

To see the usefulness of these statistics, suppose again that treatments
Ω x = {1, 2, . . . , } are available to target Γ = 0.33, and that an ex-
periment begins at X (0) = 1. Now we can compute

Varλ (X (n)) = Σ (** - #i (X ( n ) ) V
K—J.
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These calculations give the confidence bands

E\ (X (n)) ± y/Van (X (n))

shown in Figures 1-3. Computational issues relating to the production
of these Figures are discussed in Durham, Flournoy and Montazer-
Haghighi (1994). In particular, they discuss the discontinuities in the
figures appearing at n = 69 that are caused by switching from the exact
calculations described here to large sample approximations.

5. The chances of treating at high levels. In practice, it may
be useful to predict the number of treatments above a specific level, or
within a certain range of levels. For example, when targeting the 33τd
percentile, one may wish to choose a up-and-down rule for which the ex-
pected number of treatments above the 50th percentile of the response
function is small. With such motivation in mind, partition Ω x into two
subsets ωι and ω^ For notational convenience, the expression k £ {%}
will be used to mean {k: x^ € α^} . Define Nω. (n) = Έke^yNk (n) to be
the total number of trials given at levels within the subset α j , j = 1, 2,
respectively. Exact expectations and variances of Nωj (n), j = 1, 2, are
computed by summing (3) and (9), respectively, over those treatment
levels k for which Xk € Uj given X (0) is selected to be Xi :

(13)

Ei(Nω.(n))= Σ # ( t f * ( n ) ) = Σ Σ Pi (X (β) =

Van (NUi (n)) = Σ t£Cwi(I (X (β) =xk),I (X (t) = xι)),
v ' k,ie{j}s=ot=o

k = 1, . . . , K. Of course, it follows directly from (13) that, if the
proportion of trials in region Uj is Pωj (n) = (n + 1)~ Nωj (n), then

Ei (A,, (n)) = (n + I)" 1 Σ Σ Pi (X M = xk)

(n + 1) Van (Pωj (n)) = (n + I)" 1 jΣ g Σ Coϋi (JVfc (n), 7VZ (n)).
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It also follows from (14) that when X (0) is selected with probability
distribution p (0), the mean and variance of Pωj (ή) is

(15)

«, (n)) = (n + I)'1 Σ Pi (0) ( Σ Ek (Nk (n)))

' i=1 Way J
(n + 1) Varp (PWj (n))

Σ
\k,le{J}

asn-» oo. When the initial distribution is the stationary distribution,
(15) becomes

(16)

Eπ (Pωi (n)) = (n + I)'1 ^ Eπ (Nk (n)) =

(n + 1) VαrTΓ ί P ^ (n)J

Σ

as n —» oo.
If the cardinality of Ωx is large and the initial treatment is far from

the target μ, it is possible that a long sequence of increasing or decreas-
ing changes in the treatment levels will occur, depending on whether
the initial treatment was far below or far above the target level, re-
spectively. A long series of treatments far below or above μ would bias
estimators based on the stationary treatment distribution, and there-
fore, it is recommended in practice that observations be truncated after
the first change in the direction of the treatment sequence, that is, if
the initial sequence of treatments is increasing, let X (0) be the first
treatment that is less than the preceding one. This truncation of the
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initial sequence of observations was recommended by Brownlee, Hodges
and Rosenblatt (1953) when sampling according to Dixon and Mood's
(1948) up-and-down design for estimating the 50th percentile.

Suppose again that treatments Ω x = {1, 2, . . . , 9} are available
to target Γ = 0.33, and suppose the experimenter wishes to evaluate
the chances of giving a treatment for which Q (x) = P (Y = 1 | x) >
0.50. As is commonly done in toxicity studies involving humans, again
let the initial treatment be set to the lowest possible treatment, i.e.,
X (0) = 1. Since the probability of treating at high levels depends
on the up-and-down rule that is used and on the unknown response
function, a sensitivity analysis can be useful.

To see how variations in the parametric form of the response func-
tion affect the treatment distribution, we compare the extreme value
response function Q (x) = 1 — exp {— exp {{x — a) //?}} with the lo-
gistic response function Q (x) = exp (α + βx) / (1 + exp a + βx). Sup-
pose the researcher does not know the form of the response function
but predicts an increasing response function with Q (6.50) = 0.50 and
Q (2.50) = 0.10. Then if the responses follow an extreme value distri-
bution, the predicted parameters are a = 6.931 and β = 1.97, whereas
if the responses follow a logistic distribution, the predicted parameters
are a = -3.569 and β = 0.549. Since Q (6.50) = 0.50 for both the
extreme value and logistic response function, and since treatments are
only given at integer values, finding the chances of treating at levels for
which Q(x) > 0.50 is equivalent to finding Pi (X (n) > 6.50), where
now n is the intended number of trials. Now ω = {7,8,9} .

A large sample approximation to Pi (X (ή) > 6.50) is given by (16),
namely Eπ (Pw (n)) = Σ|=7πfc. This approximation can be calculated
using the stationary probabilities given by equations (9) and (10) of
Flournoy and Durham (companion manuscript found in this volume)
for BCD I and BCD II, respectively, assuming an extreme value re-
sponse function or by equations (11) and (12) for BCD I and BCD
II, respectively, assuming a logistic response function. For an extreme
value response function with a = 6.931 and β = 1.97, Σj*=77Γfc equals
0.14 and 0.11 using BCD I and BCD II, respectively, whereas for a lo-
gistic response function with a = -3.569 and β = 0.549, Σ^= 7π f c equals
0.18 and 0.15 using BCD I and BCD II, respectively.

Exact values of expected proportion trials above the 50th percentile,
and its associated variance can be determined using (16):
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(17)

Pi(X(n)>7) = (n + iy1 £ Σ Pλ {X (m) = xk)

(/ (*" (n) > 7)) = (n + I)"2 Σ Σ Σ Cot* (ΛΓfc („), Nt (n))
O t O J f c Z 7

Using (17), the expected proportions of subjects (plus and minus one
standard deviation) receiving treatments greater than 6.50 are graphed
as trials accumulate for n = 0, 1, . . . , 99 in Figure 4 using BCD I and
BCD II to target Γ = 0.33 when responses follow the extreme value
function. Figure 5 displays the same graphs when responses follow
the logistic function. Computational issues relating to the production
of these Figures are discussed in Durham, Flournoy and Montazer-
Haghighi (1994). In particular, again note that discontinuities in the
figures appearing at n = 69 are caused by switching from exact calcu-
lations to large sample approximations.

In both Figures 4 and 5, the expected proportion of subjects re-
ceiving treatments greater than the 50th percentile is seen to approach
its limit from below for both up-and-down designs and both response
functions. This is a consequence of selecting the initial treatment to
be X (0) = 1. Note that an estimate based on asymptotic theory will
overestimate the true numbers for samples as large as 99. The exact
theory can be used to correct for biases in moment estimates that are
caused by starting at low dose levels. The expected proportions ap-
proach their asymptote faster if BCD II is used rather than BCD I
for both the logistic and extreme value response functions. Thus the
expected proportion treated at high levels increases faster using BCD
II than BCD I.

The confidence bounds can be seen to be tighter for extreme value
responses in Figure 4 than they are for logistic responses in Figure 5,
and the probability of treating at levels x > 7 is greater for logistic
responses than for extreme value responses.

Alternatively if the target is Γ = 0.10, graphs of the expected pro-
portions of subjects treated at levels greater than the 50th percentile
are indistinguishable as shown in Figure 6.
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FIG. 4. The probability of treating at
dosages for which the P{toxicity} >.5O,
± 1 standard deviation, when targeting
the 33rd percentile of Q{x) *
|-exp{-exp{U-6.93l)/ l .97}}.
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FIG. 5. The probability of treating at
dosages for which the P{toxicity} >.50 f

± 1 standard deviation, when targeting
the 33rd percentίle of Q(x)
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FIG. 6. The probability of treating at
dosages for which the P{toxicity} >.5O,
± 1 standard deviation, when targeting
the 10th percentile of Q(x) *
|-exp{-exp{U-6.93l)/ l.97}} or

Q U ) = l
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