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Abstract

The primary objective of experiments motivating this work
is to estimate the unknown amout μ of treatment that has a
probability of response equal to a fixed value Γ, 0 < Γ < 1. We
further assume that it is desirable to 'center' the distribution of
treatments around the unknown quantile. This is accomplished
by sequentially assigning treatment levels to subjects using up-
and-down rules, that is, rules by which the treatment used in the
next trial is restricted to be one level higher, one level lower, or
the same as it is for the current trial. We describe two such rules
that asymptotically result in a unimodal distribution of treat-
ment assignments with mode as close to μ as is possible given
the discreteness of the treatment levels permitted. Responses
are assumed to follow an extreme value function and a logis-
tic function to illustrate how a parametric stationary treatment
distribution can be determined by pairing a response function
model with an up-and-down design. The designs are shown to
be robust with respect to the form of the response function.
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1. Introduction. Consider experiments in which a treatment or
stimulus is given, or a stress is applied, at a finite number of levels,
and the number of responses at each level is observed. Quantile esti-
mation is one important objective of such experiments in many areas of
application, including toxicology, item response analysis, and material
stress analysis. In these applications, the unknown response function
is commonly monotone, but nonlinear. Because quantile estimation is
an important problem in many areas of application, a variety of statis-
tical approaches have been developed. For fixed experimental designs,
probit analysis and logistic regression are two standard methods used
for quantile estimation.

For nonlinear response functions, however, the optimal design de-
pends on the unknown parameters, and therefore, an optimal design
cannot be set forth a priori. In order to improve efficiency, several se-
quential approaches have been proposed in which levels of the treatment
are changes as information accumulates. Methods involving multi-
stage or sequential optimal design by Tsutakawa (1967), Chiang (1990),
Flournoy (1993), and Awartani (1993). In the spirit of stochastic ap-
proximation, Wu (1985) proposed sequential maximum likelihood esti-
mation be used to produce a sequence of treatments that converges to
a target quantile. Bayesian approaches have been proposed by Freed-
man (1970), Zellner and Rossi (1984) and O'Quigley, Pepe and Fisher
(1990).

This paper considers a class of rules that are up-and-down designs.
Anderson, McCarthy and Tukey (1946) first brought these designs to
the attention of the statistical community. Dixon and Mood (1948) an-
alyzed a more tractable version of such designs, namely one specifically
designed for estimating the 50th percentile of the response function.
Up-and-down designs have been studied by many, including Wether-
ill (1963), Dixon (1965), Tsutakawa (1967), Wetherill and Glazebrook
(1986), Storer (1989), Flournoy (1990), and Durham and Flournoy
(1993, 1994), among others.

The primary objective of experiments motivating this work is to
estimate the unknown amount μ of treatment, stimulus, or stress that
has a probability of response equal to a fixed value Γ, 0 < Γ < 1. We call
Γ the target probability of response, and we call μ the target quantile.
We further assume that it is desirable to center the distribution of
treatments around the unknown quantile. This is accomplished by
sequentially assigning treatment levels to subjects using up-and-down
rules, that is, rules by which the treatment used in the next trial is
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restricted to be one level higher, one level lower, or the same as it is
for the current trial. We describe rules that asymptotically result in a
unimodal distribution of treatment assignments with mode as close to
μ as is possible given the discreteness of the treatment levels used.

Let Y (n), n = 0,1,2, . . . , be Bernoulli random variables with
Y (n) = 1 indicating that the outcome of the nth trial was a response,
and Y (n) = 0 indicating no response. This notation derives from
thinking of the response as being toxicity, so that a response connotes
failure and no response connotes success. Let Ω x = {xo,#ij .. >%κ\
be a sample space of ordered treatments. Assume that the interval Δ
between treatments is constant, so that xk = x0 + fcΔ, where x0 is
the smallest treatment. Assuming also that the sample size is fixed,
an experimental design is defined by the rule that assigns treatments
to subjects. Often arbitrary outcomes and treatments will be denoted
by Y and X, respectively, without explicit mention of their position in
the sequence of trials. The probability of response given x is denoted
by Q (x) = P{Y = 1 I X = x}, with P (x) = 1 - Q (x). The response
function Q (x) is taken to be strictly increasing in x, but given #, Q (x)
is assumed to be constant over all trials n = 0,1,2, . . . .

Two up-and-down designs are described in Section 2. Then the ef-
fect of these designs on the asymptotic distribution of treatments is
examined. The theory for deriving the asymptotic treatment distribu-
tions is reviewed in Section 3, and some nonparametric properties of
asymptotic treatment distributions are discussed.

Responses are assumed to follow an extreme value function and
a logistic function in Sections 4 and 5, respectively, to illustrate how
a parametric stationary treatment distribution can be determined by
pairing a response function model with an up-and-down design. In or-
der to make some comparisons between the performance of the designs
with different underlying response functions, parameters for the logistic
and extreme value models are chosen so that they coincide at the 10th
and 50th percentiles; specifically Q (2.50) = 0.10 and Q (6.21) = 0.50
for both models. The resulting value of the shape parameter β for the
logistic response function is equal to the prior for β that was elicited
by Flournoy (1994) for estimating optimal treatment levels in a phase
I clinical trial. The location parameter a and the number of dose levels
(namely, 9) in the treatment space are then selected so that the response
function is just slightly greater than zero at the lowest dose level and
just slightly less than one at the highest dose level. That control over
the location of the stationary treatment distribution can be effected
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using the biased coin up-and-down designs is demonstrated targeting
the 10th and the 33rd percentiles. In Section 6, the robustness of the
two designs given different response functions is discussed.

To summarize, given a proportion Γ, we consider designs that will
create a distribution about the treatment μ for which P (Y = 1 | X = μ)
= Γ. Two biased coin up-and-down designs are given that accomplish
this asymptotically can be seen in Figure 1. Here we illustrate, given un-
derlying, unknown logistic and extreme value response functions, that a
distribution centered about the 33rd percentile of the response function
is obtained when fixing Γ = 0.33; whereas when fixing Γ = 0.10, a dis-
tribution centered about the 10th percentile of the response function is
obtained. It is important to note that many ad hoc up-and-down pro-
cedures have been used [for example, see Flournoy (1993) and Storer
(1989)] without theoretical analysis of their consequences.

Stationary Treatment Distributions

4 5 6

Treatment x

Fig. I. Stationary treatment distributions using BCD I and BCD Π.
to target Γ » 0.10 and Γ * 0.33 when
0{x) is logistic value Q(*) * 1 - [l + exp(-3.569 + 0 . 5 4 9 * ) ] " 1 and
Q U ) is extreme value Ό U ) * l-exp {-exp { U - 6 . 9 3 0 / 1 . 9 7 } } .

2. Biased coin up-and-down designs. Figure 2 depicts two
biased coin designs that are each defined so that the resulting transition
probabilities define a random walk on the non-negative integers.
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INCREASE
TREATMENT

NO
RESPONSE
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STAY AT SAME
TREATMENT

_ ^ DECREASE
TREATMENT

b* PfHEADS) * -

FIG. 2. BIASED COIN RULES

The initial treatment X (0) may be fixed or random. In up-and-down
designs, subsequent treatments X (n + 1) depend on the current treat-
ment X (n) by definition. However, we place the random walk in a
random environment by making it depend on the experimental out-
come Y (n) as well. Additional randomness is introduced in order to
provide a mechanism for controlling the location of the treatment dis-
tribution. When this randomness results from the toss of a biased coin,
we say that the treatment allocation procedure follows a biased coin
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up-and-down rule. Therefore, the treatments X (n), n > 0, are random
variables assuming values in the treatment space Ωx. Let b denote the
probability that the result of a biased coin flip is heads. Let pk, qk, and
rk denote the probabilities that the treatment dosages will move up
from level k to k + 1, down from level k to k — 1, and stay at level fc,
respectively. Of course, pk + qk + rk = 1, 0 < k < K. Strict boundaries
on the dosage to be used in the experiment are fixed by requiring that
qo = 0 and px = 0.

BIASED COIN DESIGN I (BCD I). Fix the target quantile Γ be-
tween 0 and 1, and assume that a treatment has been given at level k.
Toss the coin with probability of heads equal to b = Γ/ (1 + Γ), 0 < b <
1/2. If heads is observed, treat the next subject at level k + 1. If tails
is observed and there is no response, treat the next subject at level k,
whereas if there is a response, treat the next subject at level k — 1.

The transition probabilities for treatment xk are

Po = b, q0 = 0, r 0 = 1 - 6,

(1) Pk = b ft = (l
Pκ = 0, qκ = (l-b)Q{xκ),

where k = 1, . . . , K — 1.

To implement BCD I for a particular target, one needs to compute
the coin bias. Suppose the 33rd percentile is targeted. Then Γ = .33,
and so b = Γ/ (1 + Γ) = 1/4 and the transition probabilities (1) become

(2) pk = i qk =
PK = 0, qκ = \Q (%), rκ = \P {xκ),

where fc = 1, ...,K— 1. However if the 10th percentile is targeted,

Γ = 0.10 and b = Γ/ (1 + Γ) = 1/11 and the transition probabilities

(1) become

Po = ΪT; qo = 0, r 0 = g

(3) Pk = i ' p (xk), qk = ψxQ (Xk), r , = ψλP (xk),

PK = 0, qk = ψχQ (xk), rκ = ^

where fc = 1, . . . , i f — 1.
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BIASED COIN DESIGN II (BCD II). Assume that a treatment has
just been given at level k. For 0.0 < Γ < 0.5, let the bias b = Γ/ (1 - Γ)
equal the odds ratio at the target quantile. If not response is observed
and the toss of a biased coin yields heads, then increase the level to
fc + 1; if no response is observed and the coin toss yields tails, then
leave the label at level k; if a response is observed, then decrease the
level to k — 1.

The transition probabilities for the treatments that result from using
BCD II can be expressed in terms of the coin bias and the probability
of response:

Po = bP (x0), <?o = 0, r 0 = 1 - bP (x0),

(4) pk = bP (xk), qk = Q (xk), rfc = (1 - b)P (xk),

PK = 0, qκ = Q (XK) , ro = P (xκ)

where k = 1, . . . , K — 1.
In the special case that Γ = 0.5, b = 1 (the coin is deterministic);

then BCD II is equivalent to the up-and-down method introduced by
Dixon and Mood (1948) for estimating the 50th percentile. However,
suppose the 33rd percentile is targeted; then the coin bias to use is
b = Γ/ (1 - Γ) = (1/3) (2/3) = 1/2. With b = 1/2, the transition
probabilities (4) are

Po = iP(xo), qo = 0, ro = 1 - J

(5) pk = \P(xk), qk = Q(xk), rk = \

r0 = P (xκ)

where fc = 1, . . . , i f — 1 , whereas if the 10th percentile is targeted,
b = Γ/ (1 - Γ) = 1/9 and (4) becomes

Po = \P (xo), qo = 0, r 0 = 1 - §P (x 0 ),

(6) pfc = | P ( x f c ) , gjb = Q(x f c), rfc = | P ( x f c ) ,

Px = 0, £fc = Q (XK) , ro = P (xκ).

where fc = 1, . . . , K — 1.

3. The stationary treatment distribution. Let treatments
be allocated according to BCD I or BCD II. It can be verified that
these designs describe irreducible recurrent random walks, and thus
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well-known theory guarantees that the stationary treatment distribution
7Γ = (π0, τri, . . . , πκ) exists [for example, see Feller (1950) or Harris
(1952)]. The elements of TΓ are called stationary treatment probabilities,
and so long as rk > 0, k = 0, . . . , K,

τrk=lϊmoP{X(n)=xk}.

Let Nk (ή) denote the number of times treatment xk has been used
during the first n + 1 trials. Then, π^ is also the asymptotic proportion
of trials at xk) that is,

7rfc = Im^ Nk (n) / (n + 1) > 0, k = 0 , 1 , . . . , K.

It is also well-known that the stationary treatment distribution can
be obtained by solving the balance equations, πk = πk_ιpk_ι + πkrk +
πfc+iQ'fc+ij A; = 0, 1, . . . , if, (where for convenience, we define P-ι =
Qκ+i = 0) to obtain

(7)

k K k

j=0 3 ' k=l j=l

. i

q

To see that (7) is indeed a solution, rewrite the balance equations as

Then insert Π Xj for π^ to obtain
j=0

k k-1 fc+1

Π λ^ = pfc_i Π λrf + qk+1 Πi=o io

Cancel the terms in common on both sides of the equals sign and insert

λfc = Pk-i/qk and λ*+i = Pk/qk+i to obtain the identity (pk + ςffc) pk-\jqk

= Pk-i + Φb+i Pk-i/qk Pk/qk+i-

Now assume that the response function Q (x) is monotone increas-
ing. Then it can be seen from (1) and (4) that the probabilities
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{<7o> 9i) j QK} form a monotone decreasing set using either BCD
I or BCD II, whereas the probabilities {po> Pi, , PK} form a mono-
tone increasing set. Let K denote the largest treatment level such that
λκ > 1. Durham and Flournoy (1994) showed that, using an up-and-
down rule for which {q0, qι, . . . , <jκ} is a monotone decreasing set and
{Po> Pi> , PK} is a monotone increasing set, the stationary treat-
ment distribution TΓ has a single mode at xKJ except when λκ = 1 in
which case the model of π spans xκ-\ as well. For large samples, this
result justifies considering the sample mode as a non-parametric mea-
sure of central tendency for the treatment distribution. For simplicity,
xκ is called the mode of the stationary treatment distribution, or simply
the mode of TΓ, although it is possible that xκ-ι is a mode as well.
Durham and Flournoy (1994) also showed that the target quantile μ
is bounded within ± Δ of xκ when using BCD II. This result holds for
both designs as is stated in the following theorem without proof.

THEOREM 1. // BCD I or BCD II is used when the response
function is monotone increasing in x, with q\ < po and qx > pκ-i>
then \μ — xχ\ < Δ .

This result suggests using the empirical mode of the treatment distri-
bution as a nonparametric estimate of μ.

Parametric models of the treatment distribution may be obtained
by inserting parametric models of the response functions into (1) and
(4) for BCD I and BCD II, respectively, and then inserting these results
into (7). The resulting limiting treatment distributions are expressions
involving the unknown response function. In particular, since

_ Pk-i _

for BCD I,

Γ P ^ > for BCD II,

= ! , . . . , K9

I Q{xk) 1-1

it follows from the law of total probability that TΓQ = λo, and for k = 1,
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(8)

k

= Π
j=0

= λ0 Π TΓfc =

Tk

for BCD I,

for BCD II,

where

K

K

i + Σ
3=1 UQ(χi)

for BCD I,

forBCDΠ

Parametric models for the limiting treatment distribution now can
be evaluated explicitly by inserting a parametric model for the response
function into (8). Examples are given assuming an extreme value re-
sponse function in Section 4 and a logistic response function in Section
5.

4. Biased coin rules with an extreme value response func-
tion. Suppose the underlying, unknown response function is an ex-
treme value function, namely, Q (x) = 1 — exp {— exp {(x — a) //?}} ,
β > 0. Since the probability of no response is

P(x) = l-Q(x) = exp{-exp{(x-a)/β}},

(x - a) /β = log [log {P {x)Yx}

which, evaluated at the target quantile x = μ, yields

a = μ + βlog{log (P (μ))"1}.

Consequently, the probability of no response can be written in terms
of the target percentile as

P (x) = exp {— exp {{x — a) /β}}
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= exp{-exp{(x - (μ + β log [log (1 - Γ)"1})) //?}}

= exp {log (1 - Γ) exp {(x - μ) /β}} .

Now if (8) is evaluated for treatments that are allocated according
to BCD I, the limiting distribution of treatments is given by 7Γo = λo
and for k = 1, . . . , K,

(9)

= -V
flQ(* Π (1 " exp {log (1 - Γ) exp {(Xj - μ) //?}})

ii

where

K

Σ
fc=l

K

l+Σ
Π

Γfc

Π (1 - exp {log (1 - Γ) exp {fo - μ) //?}})

For illustrative purposes, suppose that the extreme value response func-
tion has parameters a = 6.931 and β = 1.97. Selected percentiles
of this response function are Q (2.5) = 0.10, Q(5.15) = 0.33, and
Q(6.21) = 0.50. For a design in which Ωx = {1, 2, . . . , 9} , the
stationary treatment distribution (9) is shown in Figure 1 targeting
μ = 5.15 (for which Γ = 0.33) and μ = 2.50 for which Γ = 0.10.

The stationary treatment distribution has moments

and

which can be calculated directly from (9). As shown in Tables 1 and
2, for our exemplary response model, £τr (-X") is 4.79 when Γ = 0.33

Varπ (X) = Σti χ2*k - (Σf=
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Table 1.
Targeting Γ = 0.33

when Q (2.50) = 0.10 and Q (6.21) = 0.50

Response Function
Biased Coin Design

Target μ
Eπ(X)
μ-Eπ (X)
SDπ(X)

Extreme Value
BCD I

5.15
4.79
0.36
1.61

BCD II

5.15
4.91
0.24
1.34

Logistic
BCD I

5.24
4.96
0.28
1.66

BCD II
5.24
5.07
0.17
1.42

and 2.43 when Γ = 0.10 with standard deviations 1.61 and 1.12, re-
spectively. Note that in both cases, μ — E<π (X) is less than 0.5 Δ . It
is interesting that the standard deviation of the stationary treatment
distribution is smaller when Γ is close to the boundary of Ωx and the
distribution becomes skewed.

Alternatively, if treatments are allocated according to BCD II, the
limiting distribution of the treatments is given by 7Γo = λo and for

(10)

Γ \k * (exp{ίθ0(l-Γ)e(χ'-1-")//3})

JlJli (l-exp {log (I-Γ)e^

where

K

= 1

Wι = i +

£((ϊWA
For the extreme value response function with parameters a = 6.931
and β = 1.970, the stationary treatment distribution (10) is also shown
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Table 2.
Targeting Γ = 0.10

when Q (2.50) = 0.10 and Q (6.21) = 0.50

Response Functions
Biased Coin Design
Target μ
Eπ(X)
μ-Eπ{X)
SDπ (X)

Extreme Value and Logistic
BCD I and BCD Π

2.50
2.43
0.07
1.12

in Figure 1 targeting μ = 5.15 when Γ = 0.33 and μ = 2.50 when
Γ = 0.10. When Γ = 0.10, the stationary treatment distributions for
BCD I and BCD II are indistinguishable.

Recall that the unknown target quantile is 2.5, and note that the
stationary treatment distribution has a mode at 2. Alternatively, when
Γ = 0.33, the unknown target quantile is 5.15 and the mode of the
treatment distribution is seen to be 5 for both up-and-down designs.
Thus, as expected from Theorem 1, this mode is as close to the target
as is possible given that the design is discrete.

The Eπ (X) calculated from (10) for our exemplary response model
is 4.91 for Γ = 0.33 and 2.43 when Γ = 0.10 with standard deviations
1.34 and 1.12, respectively. Although for both up-and-down designs
and both targets, the expected treatment is less than the targeted per-
centile, the difference between the expected treatment and the targeted
percentile is less than half the interval between treatments. As was
noted for BCD I, the standard deviation of the stationary treatment
distribution for BCD II is smaller when Γ is further out in the tail of
the response function. For Γ = 0.10, the difference between the target
percentile and the center of the treatment distribution as measured by
its mean is μ — E (x) = 0.07 for both up-and-down designs; this is just
a small fraction of the interval between treatments.

5. Biased coin rules with a logistic response function. We
now consider the case in which Q (x) is a logistic response function,
that is, Q (x) = exp (a + βx) / (1 + exp (a + βx)), so that at x = μ,
a + βμ = log (Γ/ (1 - Γ)). In terms of Γ we have

P (x) = (1 + exp (α + βx))'1 = ( l + - ^ exp (β (x - μ)))
- 1
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For example, if Γ = 0.33, a + βμ = log (±/§) = log ( | ) , and

P(x) = (l + ±exp (/?(*-

If treatments are allocated according to BCD I, the limiting distri-
bution of the treatments given by (8) becomes 7Γo = λo and for k = 1,

(11)

= <V
ΠQfo )

= λ0Γ* Π

where

K

\j=l /

For the logistic response function with parameters a = —3.569
and β = 0.549, the stationary treatment distribution (11) is shown
in Figure 1 targeting μ = 5.24 when Γ = 0.33 and μ = 2.50 when
Γ = 0.10. The stationary treatment distributions have expectation

Eπ (X) = ΣίU χk*k and Varπ (X) = £* = 1 x\κh- (ΣLO Whf which
can be calculated directly from (11). As shown in Tables 1 and 2, us-
ing BCD I with this exemplary response model, E^ (X) = 4.96 when
Γ = 0.33 and Eπ (X) = 2.43 when Γ = 0.10 with standard deviations
1.66 and 1.12, respectively.

The limiting treatment distribution that results from using BCD II
is also shown in Figure 1 for the same targets and response function.
This distribution is given by TΓQ = λo and for k = 1, . . . , AT,
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\ ( Γ Ϋ π P

r
^—ψexplβJ^Xj-

x

where

- 1

For the logistic response function with parameters a = —3.569 and
β = 0.549, the stationary treatment distribution (12) is also shown
in Figure 1 targeting μ = 5.24 when Γ = 0.33 and μ = 2.50 when
Γ = 0.10. As shown in Tables 1 and 2, the Eπ (X) calculated from
(12) for this exemplary response model is 5.07 for Γ = 0.33 and 2.43
when Γ = 0.10 with standard deviations 1.42 and 1.12, respectively.
Again for both up-and-down designs and both targets, the expected
treatment is less than the targeted percentile, the difference between
the expected treatment and the targeted percentile is less than half the
interval between treatments. As was noted for BCD I, the standard
deviation of the stationary treatment distribution for BCD II is smaller
when Γ is further out in the tail of the response function. Again for Γ =
0.10, the targeted percentile and the mean of the treatment distribution
differ only by μ — E (x) = 0.07 for both up-and-down designs.
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For the stationary treatment distribution given by (12), Durham
and Flournoy (1993, 1994) showed that, if the range of treatment is
unbounded, 7Γo —» 0 as Xo —> —oo and ΊTK —> 0 as XQ —• oo. In this
situation, since the stationary treatment distribution has its mode at
%k £ Ω x = {^o, Xi, . . . , XK} , it may be possible to arrange Ω x so that
frequencies in the tails of the treatment distribution are small. When
Ω x is arranged in such a fashion, Durham and Flournoy (1994) showed
that (12) can be written as a mixture of two discrete normal distri-
butions with location parameters μ ± 0.5Δ, the same scale parameter
Δ//3, and mixing parameter Γ = P(Y = l\X = μ), that is, k = 0,

(13)

where

Σ
fc=O

exp (-zl/2)

However in many applications, Xo is bounded below by 0, even when
XK may be freely controlled by design. Consider the shapes of the
stationary distributions shown in Figure 1. Using BCD II, when Γ =
0.33, the stationary treatment distribution is concentrated in the center
of Ω x with 98.88% of the probability mass occurring between X = 2
and X = 8, inclusively, and 92.668% of the mass between X = 3
and X = 7, inclusively. Using BCD I, the probability mass is even
slightly more concentrated, and either up-and-down design produces a
stationary treatment distribution that is reasonably bell-shaped. The
shape of the stationary treatment distribution differs markedly when
Γ = 0.10, in which case it is strikingly skewed to the right with 24.06%
of the probability mass at X = 1 and only 0.08% of the mass at X >
7. Thus for an experiment on Ω x = {1, . . . , 9} when the response
function is logistic with parameters a = —3.569 and β = 0.549, (13)
should provide a much better approximation when Γ = 0.33 than when
Γ = 0.10. A more comprehensive evaluation of the goodness of fit of the
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approximation (13) to (12) and its usefulness in designing experiments
is currently in progress.

6. Conclusions. Both BCD I and BCD II center the stationary
treatment distribution around the unknown targeted percentile in the
sense that the mode occurs as close to μ as is possible given the distance
between treatments. When the response function is modeled paramet-
rically, the stationary treatment probabilities may be given explicitly.
They are derived for extreme value and logistic responses.

In order to compare the effect of having different response func-
tions on the stationary treatment distributions, the parameters that
were used for illustrative purposes in Section 3 for the logistic response
function and in Section 4 for the extreme value response function were
chosen so that both response functions would agree at Q (2.5) = 0.10
and Q (6.7) = 0.50. This yields a = 6.931 and β = 1.970 for extreme
value responses with Q(5Λ5) = 0.33 and a = -3.569 and β = 0.549
for logistic responses with Q (5.24) =0.33.

When targeting the 10th percentile of the response functions, the
resulting stationary treatment distributions agree to 4 decimal points
for both up-and-down designs and both extreme value and logistic re-
sponse functions.

Using BCD I to target the 33rd percentile of the response func-
tions, the stationary treatment distribution has expectation 4.79 when
the response function is extreme value and 4.96 when it is logistic,
with standard deviations 1.62 and 1.66, respectively. If BCD II is used
instead to target the 33rd percentile, the stationary treatment distribu-
tion has expectation 4.91 when the response function is extreme value
and 5.07 when it is logistic, with standard deviations 1.62 and 1.66,
respectively.

Thus, both BCD I and BCD II seem robust with respect to the
exact shape of the response function because changing the form of the
model while controlling its location and spread has little effect relative
to the difference between successive treatments.
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