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Abstract

Consider designing a clinical trial in stages; say there are
r stages and a total of N patients in the trial. There are two
treatments available for use with any of the patients in the trial.
Responses are dichotomous. The objective is to maximize the
expected number of successes in the trial. The decision prob-
lem is to choose a number of patients to allocate to the next
stage and to decide how the two treatments should be allocated
within this stage as a function of ΛΓ, r and the current infor-
mation. Information is updated via Bayes theorem after each
stage, and all available information is used in determinng the
design for the next stage. Responses from selections in previ-
ous stages are available and can be considered, but responses
in the current stage are not available until the selections are
to be made for the next stage. We show that optimal designs
have certain monotonicity properties and characterize the class
of optimal strategies for particular iV, r and prior distributions.

1. Introduction. In a clinical trial, each patient is assigned
to a treatment from the set of treatments under consideration. The
assignments are usually made randomly according to some predeter-
mined probability distribution. A large literature concerns sequential
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allocations, assuming that outcomes of previously treated patients are
known when the current patient arrives—see Feldman (1962), Rodman
(1978), Gittins (1979), Whittle (1980), Bather (1981), Berry and Frist-
edt (1985) and Simons (1986). This assumption may not be realistic;
for example, responses may be delayed, or continual updating may not
be possible logistically.

A more realistic assumption is that patient responses are not avail-
able immediately but are available in batches or intermittently. Canner
(1970), Pocock (1977), Berry & Pearson (1985), Witmer (1986), ThaU,
Simon, Ellenberg & Shrager (1988), Simon (1989) and Lan & DeMets
(1989) consider stagewise selection: all allocations are made simulta-
neously for the next m patients on the basis of the currently available
information.

We consider two treatments, labeled 1 and 2, and dichotomous re-
sponses: success and failure. The probabilities of success are p and λ.
The total number N of patients is arbitrary. These N patients will
be treated in a fixed number r of groups (or stages). There are two
possible interpretations for N. First, the clinical trial contains all N
patients. Second, N is the total number of patients with the disease or
condition in question who will be treated with treatment 1 or 2, only
some of whom—namely, n, will be in a "clinical trial." In any case, the
objective is to maximize worth—the overall expected rate of successes
among the N patients.

When deciding how many patients to assign to treatment 1 and how
many to treatment 2 at a particular stage, responses from selections in
previous stages are available and can be considered. However, responses
in the current stage are not available until selections are to be made
for the next stage.

Using standard terminology, this is a bandit problem and treatments
are arms. Bandit problems involve choosing one from among a set of
experiments to observe at each of a number of decision epochs. The
language of clinical trials is appealing and the corresponding literature
is large, but there are other areas of applications, for example, in an
industrial setting, the available experiments are machines or processes.

Pocock (1977) suggested a group sequential design dividing patient
entry into a number of equally sized groups. The decision to stop the
trial or continue is based on repeated significant tests. Improvements
in group sequential procedures from a frequentist perspective allow for
groups of arbitrary size [Lan and DeMets (1989)]. There are some
advantages to having equally sized groups, and one may reasonably

125



choose such a design. But we will argue that for the objective we
consider, such a design does not come close to maximizing the expected
rate of successes over the course of the trial.

In this paper we assume that λ, the probability of success on arm
2, is known and that p, the probability of success on arm 1, is unknown
(or rather, not completely known). We take a Bayesian approach and
regard p to be random. Information concerning arm 1 is formulated in
terms of a prior distribution, F} on p. Observations from the same arm
are exchangeable. The pattern of information is (N, (F, λ),r) and we
call this problem the (iV, (F,λ),r)-bandit.

The optimal allocation avoids the known arm, arm 2, until the last
stage. We find that the optimal length (number of subjects) of the first
stage has rate y/N asiV->oo when F has a beta distribution and λ is
rational. We also discuss the magnitude of this rate.

We prove that when there are two stages, and F is not a beta
distribution, the rate of the optimal length of the first stage will be no
greater than \/ΪV, if F has a "smooth" density function. Furthermore,
if r = 2 and the support of F excludes λ, then the rate of optimal
length in the first stage cannot be greater than log N.

When r > 2, we are faced with choosing the optimal lengths for the
second stage, third stage and so on. These are random variables that
depend on the observations from the previous stages. We discuss some
properties of optimal lengths. When r = 3 and the prior is beta (a,b),
we use tables, computed by backwards induction, to show that the rate
of optimal length in the first stage is \/~N.

2. Some notation. If r = 2, the expected worth of assigning rti
observations to arm 1 and n^ to arm 2 in the first stage is

W2(N,(n1,n2),(F,X))

= — {n1E(p \ F) + n2λ

+(N - m - n2)E{E[p I (Sltm - SΊ,F)] V λ}} ,

where (Si,m — Sι,F) is the posterior distribution of p given Si suc-
cesses and n\ — Si failures on arm 1 under prior F. The value of the
(JV,(F,λ),2)-banditis

(1)
V2(N, (F, λ)) = max W2(N, (m.n,), (F, λ)).

0 < Πi,Π2 < N
< N
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If Π\ and n<ι achieve the maximum in (1), then Πi is an optimal length
for arm i in the first stage.

For any r = 2,3, ... the worth of assignment (ni,n2) in the first
stage is

iHE(p\F) + n2λ]

{Vr-i{N - m - n2,

and the value of the (JV, (F, λ), r)-bandit is

Vr(N, (F, λ)) = max Wr(N, (m, n2), (F, A))
0 < ni,Π2 < JV

Πi + Π2 < JV

with V ĴV, (F, λ)) = £?(p|F) V λ.

3. General results. Berry and Pearson (1985) proved that for all
JV > 2, there exists an n, 0 < n < JV, such that (n,0) is an optimal
allocation. The proof of this result is based on the idea that allocation
(ni, 0) cannot be worse than allocation (τii, 712), and it is usually better.
We restrict consideration to allocations of the form (n, 0).

If there is an n and an i, 0 < i < n, such that (i, n, F) is degenerate
then arm 1 may become known after a finite number of observations.
When this happens, the better arm will be clear. The following is an
example.

EXAMPLE 3.1. If F = O.5<50 + 0.5<5i (that is, p has a symmetric
two-point distribution on {0,1}), then we will learn the value of p after
but one observation: P(p = l |(l,0,F)) = 1 and so £7(p|(l,0,F)) = 1,
and E(p\(Q, 1, F)) = 0. Obviously, arm 1 should be selected for all JV-1
observations remaining after a success and arm 2 should be selected for
all JV — 1 observations remaining after a failure.

An unknown arm 1 can become a known arm after a finite number of
observations only when P{p G {0,1}\F} = 1 or P{p G {0, x, 1}\F} = 1
for some x G (0,1). The complementary case is more interesting. We
will study the case in which (i,n,F) is not degenerate for any positive
integer n and 0 < i < n. In this case, the support of F contains at least
two interior points in the unit interval.
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Define

d(n,F,λ) = E{E\p\(S,n- S,F)} V λ}.

When the support of F contains at least two interior points in (0,1),
d(n,F, λ) is nondecreasing in n for given F and λ. This follows from
Jensen's inequality.

Pearson (1980) proved that limn^ood{n,F,X) = E(p V λ\F). He
adapted a portion of Berk's (1966) proof of a similar result. Pearson also
proved that the smallest optimal length of the first stage, Πi(iV, F, λ, 2),
is nondecreasing in N.

A greater number of observations in the first stage enables more
informed inferences in the second stage. This is an advantage. But
more observations in the first stage means fewer observations in the
second stage. This is a disadvantage since there is more potential for
payoff in the second stage. The optimal allocation is a compromise
between these competing considerations.

In view of above results, it is immediate that for any (F, λ),

limN^V2(N, (F, λ)) = E(p V λ\F),

and when the support of F contains at least two interior points of (0,1),

P(p > λ\F) > 0,

P(p < λ\F) > 0,

limiV^oo7i1(./V, F, λ, 2) = oo,

and

Γ m(N,F,λ,2)
limτv-,00 T ; = 0,

where riι(N, F, λ,2) is the smallest optimal length in the first stage.
This implies that equal stage lengths are not optimal. Moreover, the
difference between the worth functions under the optimal length and
equal length is asymptotically [E(p V λ|F) - E(ρ\F)]/2.

4. Main result, two stages. If F is a beta (a,b) distribution with
a > 0, b > 0, then the rate of optimal length is determined, and in
particular, λ, a and b do not affect the rate. On the other hand, these
parameters do affect the magnitude. We can prove [Cheng and Berry
(1992)] that when λ is rational,

. rn1(JNr>tetα(α> 6)^,2) ^ π
liminl y= > U,
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ni(ΛΓ,ί)eία(α,6),λ,2)
limsup —- Λ- — — < oo,

and if λ is irrational then

(2)
.. n1(Nibeta(a9b)}λJ2)
l imsup— ±J n—'—*- < oo.

N-+ oo y/N

Moreover, simulation results show that nι(N, beta(a, 6), λ, 2) is non-
decreasing in a for given 6, λ and N. Also it is nonincreasing in b for
given α, λ and N (see tables in next section). The intuition is not obvi-
ous. Consider increasing a in which case the probability of success with
arm 1 increases. [Indeed, the probability of any number of immediate
successes with arm 1 also increases.] So using arm 1 becomes more
appealing—recall that in the first stage, arm 1 is used exclusively.

We also believe that

limmf m{N9 beta{a, 6), λ, 2 ) / ^ > 0

when λ is irrational. However, we cannot prove this inequality so far.
Does there exist a prior distribution for which the rate of the optimal

first-stage length is less than y/N? That is, is

liminf m(N, F, λ, 2)/y/N = 0?

The answer is yes. If the support of F excludes λ, then

limsupni(iV,F,λ,2)/logiV < oo
7V->oo

(see Cheng and Berry, 1992). Moreover, in this case let us define the dis-
tance between the two arms to be inf{|x — λ| : x G the support of F}.
The optimal first-stage length is nonincreasing in the distance between
the two arms.

The following example concerns the magnitude.

EXAMPLE 4.1. Let F =beta(α,6) and λ = 0.5. We find that

limsup

, b)[E(p V λ|6eία(α, b)) - E(p\beta(a, b))]

liminf wi(W,6etαM),A,2)
JV-»oo
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α, b)[E(p V λ|6eία(α, b)) - E(p\beta(a, b))] j '

Therefore, for each given a and 6, we may compute the asymptotic
upper and lower bounds for the optimal length. The lower bound differs
from the upper bound by a factor of l/\/2.

5. Main result, more than two stages. Consider general r.
Optimal allocations for stages 2 through r — 1 are random since they
depend on the results from previous stages. Optimal lengths can be
found by dynamic programming. But the focus can reasonably be on
the length of the first stage. The decision problem at the current stage
is the same as for the first stage, except that F, r and N change from
one stage to the next. For instance, stage ΐ, 1 < i < r, is the first
stage of an (r — i + 1)—stage problem with the current distribution
updated based on the previous results. The new bandit problem is
(N^j ( F ^ , λ),r—i + 1) where N^ equals N — number of observations
in the previous i—1 stages; F ^ is the conditional distribution of p given
the results from the previous i — 1 stages. For the same reason as when
r = 2, the optimal allocation in the first stage is of the form (ni, 0). For
the (JV, (F, λ), r)-bandit, let n^iV, F, λ, r) be the smallest value among
those Πi for which (rii,0) is an optimal allocation for the ith stage.

Assume that P{p > λ|F} > 0, P{ρ < λ|F} < 0, and the support
of F contains at least two interior points of (0,1). Then

r- l

and

lim "*v">->">w = o.
N-»oo N

On average, the total length of the first r — 1 stages tends to infinity
with N. But the proportion of the total of N observations contained
in the first stage goes to zero. In particular, the stages should not be
of equal length.

Since the optimal lengths of later stages are random, it is difficult
to make specific statements at stage one concerning these lengths. But
some types of results are possible. An example is the following theorem.
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THEOREM. Suppose r = 3. Assuming

P{p > X\F} > 0, and P{p < X\F} > 0

and the support of F contains at least two interior points of (0,1),
then

(3)

rn2(ΛΓ,F,λ,3)
lim sup P ^ v ' ' y > e

1 ^
J ~

for arbitrary e > 0, where η = P{ρ < λ|F}.

PROOF. The proof of (3) is in two parts.
(a) If Πι(N, F, λ, 3) is bounded above, then since ni is nondecreasing

in JV, there exists an n 0 such that n\ = n 0 when N > No for some No.
Let Si denote the number of successes in the first stage, n^ obviously
depends on 8\. As a consequence of the results in two stages in Section
3, we have

N-n0

and
lim n2(iV, F, λ, 3)ί

N—>oo

for all Si = 0, ..., no. That is,

(4)

and

r n2(iV,F,A,3) n

lim —^—: = 0
N-^oo N — n0

lim n2(N, F, λ, 3) = +oo a.s
N-+00

The properties given by (4) imply that

lim P(n2(iV, F, λ, 3)/iV > e) = 0
N—>oo

for arbitrarily e > 0 and (3) follows,

(b) Suppose

lim m(N,F,λ,3) = +oo.
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Since
P{p < X\F} = η>0,

there must exist a δ such that

X- δ\F} > 0.

Where Si is the number of successes in stage i, we have

(5)

V3(N,(F,X))

E^E{p\{βXtni - SltF))}

- S1 - S2,F))Vλ\S1ή

+E {^η^E (E(p|(5i + ̂ . m + n2-S1- S2, F)) V λ|SΊ)}

j + n 2 - fii - 5 a , F)) V

Considering the right side of (5),we have

(6)
lim ^E(p\F) = 0

and

N-too

= E{pVλ\F).
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Therefore since limjv-oo V3(N, (F, λ)) = E(p V λ|F),

(7)

lim -E < —E (E (p I (S1 + S2, ni + n2 - Sx - S2, F)) V λ

n2

If there exists an e > 0, such that

nfn2(N,F,λ,3) \

then there is subsequence {Nk} such that

Um P{n2(Nk,F,X,3)/Nk > e} > η.

Define

GN = { N
and

RN = {j : £?(p|(i,ni - j,F)) < λ - δ, j = 0,...,

We have lim^oo P{i?Λr} = P{p < λ - <5|F} = τ?δ > 0. Then

(8)

lim -E\^-E(E(p\(S1 + S2,n1+n2-S1 - S2,F))

V λ - E^S^m - S1,F)))\
)
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> lim E{pIRΛ

> lim E{eδIG IR

= lim eδP{GN. Γ) RN.}
k—^oo

= lim eδ{l-P{{GNknRNkY})
K—»OO

> lim eδ (1 - P {{GNkT} - P {&„„)*})
K—>OO

> eδ(η-ηδ)

> 0.

Equation (8) contradicts (7). Therefore (3) holds. D

For the rate of nι(N, F, λ, r), if the rate is \/ΪV, then

limJog^iN.F.λ^/logiN) = l/x.

Tables 1, 2 and 3 give the values of log(n1(N,F,λ,r))/log(N), com-
puted by backwards induction method. Where F = fce£α(l, 1), 6eία(2,1),
6eία(lj 2), r = 2,3; N is the total number of observations, r is the num-
ber of stages, and Πi(iV, 6eία(α, b), λ, r) is the optimal length for the first
stage, the entry in each cell is log(n1(Λ/r, F, λ,r))/log(iV), for various
values of λ.

The numerical results are consistent with our theoretical results.
For all these combinations of α, b and λ,

lim log(n!(iV,F,A,r))/log(iV) = 0.5
N—>oo

when r = 2. Generally speaking, when the prior mean, α/(α + 6), of the
unknown arm is closer to λ, convergence is faster. For instance, when
a = 1, b = 1 and λ = 0.5, Table 1 indicates that

log(ni(10000,6eία(l, 1), λ, 2))/log(10000) = 0.4967.

Considering the results for r = 3, when iV is 5000 or greater, all
entries are smaller than 0.45, and when N is 50000, all entries are
smaller than 0.40. This suggests that the rate of the optimal length in
the first stage is smaller than \/N when r=3. Furthermore it suggests
1/3 as a possible value for
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Table 1.
Ratio of log optimal length and log N (a — 1, b = 1)

λ = 0.3 r = 2
r = 3

λ = 0.4 r = 2
r = 3

λ = 0.5 r = 2
r = 3

λ = 0.6 r = 2
r = 3

λ = 0.7 r = 2
r = 3

TV
50

0.5316
0.4114
0.4974
0.3544
0.4114
0.1772
0.3544
0.2808
0.2808
0.0000

100
0.5396
0.4771
0.4771
0.3891
0.4771
0.3495
0.4225
0.2386
0.2386
0.0000

500
0.54128
0.4461
0.5114
0.3858
0.4899
0.3346
0.4559
0.2883
0.4128
0.2590

1000
0.5303
0.4539
0.5227
0.4101
0.4875
0.3713
0.4601
0.3181
0.4337
0.2817

5000
0.5309
0.4301
0.5202
0.4105
0.4971
0.3825
0.4747

0.33457
0.4416
0.3326

10000
0.5300
0.4180
0.5189
0.3949
0.4967
0.3796
0.4750
0.3459
0.4498
0.3306

50000
0.5386
0.3844
0.5180
0.3784
0.4997
0.3634
0.4810
0.3232
0.4587
0.3011

Table 2.
Ratio of log optimal length and log N (a = 2, b = 1)

λ = 0.3 r = 2
r=3

λ = 0.4 r = 2
r = 3

λ = 0.5 r = 2
r=3

λ = 0.6 r = 2
r = 3

λ = 0.7 r = 2
r = 3

λ = 0.8 r = 2
r = 3

N
50

0.6922
0.6130
0.6557
0.4974
0.5886
0.4114
0.5316
0.3544
0.4114
0.2895
0.3543
0.1777

100
0.6712
0.5880
0.6276
0.5207
0.5731
0.4515
0.5207
0.3891
0.4771
0.3495
0.3495
0.1505

500
0.6448
0.5418
0.6052
0.5045
0.5766
0.4651
0.5361
0.4247
0.4974
0.3705
0.4358
0.3346

1000
0.6325
0.5227
0.5998
0.4875
0.5720
0.4539
0.5376
0.4184
0.5017
0.3920
0.4660
0.3471

5000
0.6110
0.4469
0.5851
0.4416
0.5621
0.4240
0.5359
0.4105
0.5130
0.3731
0.4787
0.3575

10000
0.6016
0.4463
0.5810
0.4390
0.5576
0.4203
0.5350
0.4001
0.5123
0.3796
0.4811
0.3404

50000
0.5890
0.3990
0.5683
0.3927
0.5519
0.3829
0.5311
0.3616
0.5093
0.3409
0.4845
0.3080

Table 3.

Ratio of

λ = 0.3 r = 2
r = 3

λ = 0.4 r = 2
r=3

λ = 0.5 r = 2
r = 3

λ = 0.6 r = 2
r = 3

λ = 0.7 r = 2
r = 3

ίog optimal length and log N (a = 1,6 = 2)

N
50

0.5316
0.3544
0.4508
0.1772
0.1772
0.0000

0.0000

100
0.5396
0.3495
0.4515
0.3495
0.3010
0.1505

*
0.0000

500
0.5418
0.4247
0.4899
0.3705
0.4247
0.3131
0.3858
0.2590

*
0.1115

1000
0.5304
0.4263
0.4971
0.3713
0.4475
0.3010
0.4031
0.2594
0.3181
0.2007

5000
0.5309
0.4105
0.4954
0.3912
0.4639
0.3457
0.4271
0.3011
0.3779
0.2441

10000
0.5301
0.4084
0.4978
0.3763
0.4673
0.3451
0.4311
0.2940
0.3860
0.2698

50000
0.5256
0.3720
0.5010
0.3578
0.4736
0.3233
0.4470
0.2814
0.4149
0.2671

* indicates that nι(N,beta(l,2), λ,r) = 0.
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J^log(m(7V, beta(a, 6), λ, r))/ log(TV).

This is easier to see when λ is slightly bigger than α/(α+fc), for instance,
when a = 1, b = 2 and λ = 0.5,

log(m(50000,6eίo(l,2),λ,3))/log(50000) = 0.3233.

Therefore, the rate of the optimal length in the first stage may well be
\/N when r = 3 and F is beta. We conjecture that the rate optimal
length in the first stage is y/N for general r and beta priors. It seems
reasonable to expect in any case that the greater the number of stages,
the smaller the rate of nι(N,beta(a,6), λ, r).

6. Conclusion. We have addressed the design of a clinical trial
in stages, focusing on the case of two stages. There are two distinct
applications. One is the usual group sequential setting in which the
N patients in the trial are divided in two. In the other application,
the "first stage" is really the entire trial containing N patients and
the "second stage" is the clinical setting in which knowledge obtained
during the trial is used to treat patients effectively.

The goal is to maximize the expected number of successes over the
course of the trial. The length of the first stage is proportional to y/N
in many cases, and we believe that its rate is never greater than y/N ̂
when r = 2. For r greater than two, our study suggests that the length
of the first stage is asymptotically proportional to y/N with beta priors
on the unknown arm.
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