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Abstract

A clinical trial model is considered in which k > 2 treatments
are compared and treatment allocation is data-dependent. A se-
quential procedure for determining the best treatment is inves-
tigated that is a natural generalization of the test for two treat-
ments studied by Robbins and Siegmund (1974). It is shown by
extensive simulation that the error probability for the procedure
is insensitive to the data-dependent allocation rule used. The
estimation formulae of Coad (1994) are shown to give good ap-
proximations to the bias and variance of estimators of treatment
differences.

1. Introduction, Suppose a clinical trial is conducted in which
patients can be allocated to one of k > 2 treatments. The response vari-
able for treatment i at time j , Xy (j = 0,1,...), is normally distributed
with mean μi and variance unity. The sequential procedure we shall
consider is symmetric with respect to the ordering of the treatments,
so properties of the procedure will be invariant under permutations of
the means. Thus, although the means are unknown, we shall assume
for convenience that μ\ > μ<ι > μ$ > > μ^. During the trial, a
treatment can be eliminated if it does not look promising. At the end
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of the trial, we wish to choose the treatment that has the highest mean
response. Additionally, we wish to estimate the treatment differences
μi — μj at the last stage in which both treatments are still in use.

For the case k = 2, the above testing problem was studied in detail
by Robbins and Siegmund (1974). A sequential probability ratio test
was derived for which the test statistics at stage (m,n), that is when
m patients have been allocated to Treatment 1 and n to Treatment 2,
is

(1)
mn ,_ _ v

where X\m and x<ιn are the sample means on Treatments 1 and 2, respec-
tively. Robbins and Siegmund showed that for a large class of allocation
rules, the random sequence {zm,n} has the same joint distribution as
Brownian motion with drift μ\ — μ<ι observed at times {mn/ (m + ή)}.
This result led to the important finding that the error probability for
the test defined by (1) is approximately independent of the allocation
rule used. Such a test enables us to seek a data-dependent allocation
rule that reduces the number of patients on the inferior treatment rel-
ative to pairwise allocation where there are equal number of patients
on each treatment.

There has now been substantial progress in the testing problem for
k = 2: for example, see Coad (1991). But, until recently, the prob-
lem of estimation following the test had not been addressed. However,
Woodroofe (1989) derived an asymptotic expansion for the distribution
function of (1) at the end of the test, in terms of the standard normal
distribution function. More recently, Coad (1994) obtained approxima-
tions for the bias and variance of the maximum likelihood estimator of
μι — μ2 upon termination of the test.

Much less attention has been given to the comparison of more than
two treatments when data-dependent allocation used. The simplest
case is the 5-slippage configuration μi — δ = μ<ι = μ$ = . . . = μ*, where
δ > 0. This case was studied by Turnbull, Kaspi and Smith (1978), who
investigated the cases k = 3 and k = 10. A more detailed study of the
case k > 2 was carried out by Jennison, Johnstone and Turnbull (1980),
the main results of which appeared in Jennison, Johnstone and Turn-
bull (1982). In its simplest form, the sequential procedure studied by
Jennison, Johnstone and Turnbull (1980) is a natural generalization of
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the sequential test for k = 2. Suppose we are at stage (ni, 712, . . .
in the trial, that is when Πi patients have been allocated to treatment
i for i = 1, 2, . . . , fc, and define the test statistics

(2)

Zij

where Xi (rii) denotes the sample mean on treatment i. At each stage
in the trial, we compute the test statistic (2) for all pairs of treatments
that have not been eliminated before that stage. We eliminate any
treatment j for which z%j (rii^rij) > b for some i φ j , where 6 is a
positive constant.

As indicated earlier, Robbins and Siegmund showed that for k = 2
the random sequence {zm,n}

 m (-0 behaves like Brownian motion. They
also showed that the sequence

{Zm,n - mn (μi - μ2) / (m + n), m, n = 1, 2, ...}

is a martingale. Jennison, Johnstone, and Turnbull (1980) showed that,
in general, the Brownian motion and the martingale properties of (2)
are not preserved when k > 2, but it was pointed out that, for this case,
martingales can be constructed that are essentially linear combinations
of the test statistics defined by (2). Furthermore, simulation for k = 10
suggested that Brownian motion provides a reasonable approximation
to the distribution of the random sequence {zij (n^, Πj)} .

In this paper, we wish to investigate the case k > 2 more thor-
oughly. We shall first compare the error probabilities for the procedure
when using different data-dependent allocation rules. For a given set
of parameter values, we would expect these to be similar if Brownian
motion is a good approximation to the distribution of the random se-
quence {zij (rii, Πj)}. We shall also compare the numbers of patients on
the inferior treatments with those using equal randomization. Finally,
the bias and variance formulae of Coad (1994) will be used to approx-
imate the bias and variance of estimators of the treatment differences

μ - μ
We begin in Section 2 by defining the criteria we shall use to compare

the different methods of allocation. Several data-dependent allocation
rules are described in Section 3. In Section 4; simulation results are
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presented for k = 3 and k = 5. Some concluding remarks are made in
Section 5.

2. Criteria for comparing allocation rules. Several criteria will
be used to assess the performance of different data-dependent allocation
rules. We seek rules that are equivalent in terms of choosing the best
treatment at the end of the trial. Thus, defining the error probability
(EP) to be the probability of eliminating the best treatment, we seek
rules that achieve a similar pattern of error probabilities over the k-
dimensional parameter space of the means.

It was demonstrated by Bather and Coad (1992) that the use of
equal randomization, in which equal numbers of patients are random-
ized to the surviving treatments in each stage, can substantially reduce
the total expected number of patients in the trial (ASN) involving k > 2
treatments, as compared with a fixed-sample procedure. The numbers
of patients on the inferior treatments are also considerably reduced,
and they can be further reduced by using data-dependent allocation.
Moreover, in contrast to the case k = 2, a reduction in the numbers
of patients on the inferior treatments does not necessarily lead to an
increase in the total number of patients in the trial. This aspect of
data-dependent allocation seems to have received very little attention
in the literature. It is also important to note that, for the sequential
procedure defined by the test statistics (2), the maximum reduction,
relative to equal randomization, in the expected total number of pa-
tients on the inferior treatments (ITN) is 50%: see Jennison, Johnstone,
and Turnbull (1980).

For Bernoulli responses, a useful measure of the cost to patients
in a trial is the expected successes lost (ESL), which is the difference
between the expected number of successes when all the patients receive
the best treatment and the expected number of successes for the trial.
We can define an analogous quantity for normal responses. Let Ni
denote the number of patients receiving treatment i for i = 1, 2, . . . ,
k. Then we define

(3)

ESL = £ (μi - μt) E
i=2

Since the martingale properties of (2) in general are not preserved when
k > 2, it is difficult to establish an upper bound for the ESL in (3).
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However, for equal randomization, by neglecting overshoot of the stop-
ping boundaries, it is easy to see that a useful bound is given by

(4)
ESL < 2 (A: — 1) 6.

As we shall see in Section 4, the use of data-dependent allocation, in
some cases, can significantly reduce the ESL, without increasing the
ASN.

We shall also be interested in estimating the treatment differences
μι — μj by the estimators

(5)
fa = Xi (N) - xj (N),

where N = πήn(Ni,Nj) is the last stage in the trial at which both
treatments i and j are used. Although we lose some information by
using only the responses up to stage JV, we hope to avoid serious biases
which might arise from time trends in the data. Furthermore, the
bias and variance of the estimators (5) can be approximated, using
the expressions derived by Coad (1994) which neglect all but the two
treatments directly concerned.

3. Allocation rules. Several data-dependent allocation rules are
studied in this paper. These will now be described. Note that for each
rule, one patient is initially allocated to each treatment.

EQUAL RANDOMIZATION RULE (EQUAL). Randomize in the
ratios 1:1: :1 to the s surviving treatments at each stage.

For k = 2, the equal randomization rule minimizes the ASN. The second
rule we consider was suggested by Jennison, Johnstone, and Turnbull
(1980); for the δ-slippage configuration of means, this rule asymptot-
ically minimizes the ASN. As we shall see in Section 4, this rule also
significantly reduces the number of patients on the inferior treatments
for a wide choice of configurations of the means.

JENNISON, JOHNSTONE k TURNBULL RULE (JJT). Random-
ize in the ratios
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where s is the number of surviving treatments. Here the largest weight
refers to the current best treatment

An interesting generalization of the JJT rule can be obtained by-
considering the minimization of a weighted average of the ESL and the
ASN for the (5-slippage configuration of means. The derived rule is a
generalization of the one proposed by Hayre (1979) for k = 2. Suppose
we write the weighted average as

(6)
a ESL + c ASN,

where

ESL = δΣE(Ni), ASN = Σ
i=2 i=l

and α and c are positive constants. We can regard c as the cost of
allocating a patient to any treatment and a as the extra cost of allo-
cation to one of the inferior treatments. By following the argument of
Jennison, Johnstone, and Turnbull (1980), it can be shown that the
following rule asymptotically minimizes (6).

THE GENERALIZED HAYRE RULE (HAYRE). Randomize in the

ratios

- l ) : 1:1 :

where δ is the estimated difference between the current best and second

best treatment means.
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One attraction of the Hayre rule is that we can choose a and c to
reflect the importance we attach to reducing the ESL, as opposed to
the ASN: increasing a relative to c leads to a more adaptive rule. Of
course, putting a equal to zero leads to the JJT rule. For practical use,
since δ will be unknown, we replace it by the estimated mean difference
between the best and second best treatments.

The next rule considered is a generalization of one proposed by
Coad (1991). Although this is a complicated rule, it is highly adaptive,
and the results in the next section will demonstrate how much we can
reduce the ESL, while at the same time highlighting the substantial
increase in the ASN over that for the equal randomization rule.

THE GITTINS RULE (GITTINS). For a discount factor a G (0,1)
and given independent normal priors for the μ;, Gittins index for treat-
ment i is defined as

SUp
r>0

where τ is any stopping time depending on the responses from treatment
i.

The allocation rule is based on these indices which can be computed
at each stage for normal response variables. Let r be a fixed constant,
with r > 1. If

min {n£} < max

where i and j range over the surviving treatments, the next patient is
randomly allocated to one of the treatments attaining min {n£} other-
wise, the next patient is allocated to the treatment that currently has
the largest Gittins index, randomizing in the case of ties.

Observe that r = 1 indicates equal allocation, while r close to two,
say, produces a highly adaptive rule. The choice of a depends on the
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ASN, the total expected number of patients in the trial. Now, the
discount sequence (1, α, α 2 , ...) corresponds to a geometric stopping
time with mean (1 — a)'1. Thus, a = 0.99 corresponds approximately
to an ASN of 100. Note that, although several authors have investigated
the use of Gittins indices for clinical trials involving two treatments,
results of their use in comparing more than two treatments have not
previously been reported.

The last rule we consider is a simple modification of the equal ran-
domization rule with increasing weights given to the better treatments.
One of the advantages of this rule is its simplicity but, as we shall see
in Section 4, its performance is similar to the generalized Hayre rule.

UNEQUAL RANDOMIZATION RULE (UNEQUAL). Randomize
in the ratios 2s~λ : 2S~2 : : 2 : 1, where s is the number of surviving
treatments.

4. Simulation results.
4-1. General For the sequential procedure described in Section 1,

10,000 simulations were carried out for each allocation rule and set of
parameter values. Values for the Gittins index are given in Table 1 of
Gittins (1989) for a selection of sample sizes; for other sample sizes,
approximate values for the indices were obtained by interpolation. To
choose a value for 6, we used the result for k = 2 that a no-overshoot
approximation to the error probability is {1 + exp (2(56)}"*, where δ —
μ\—μ2- I n this paper, we have taken 6 = 6, which for k = 2 and δ = 0.25
gives an approximate error probability of 0.05. For later reference, the
equivalent fixed-sample procedure requires about 75 patients on each
treatment. For the generalized Hayre rule, we have taken a = 1.0 and
c = 0.1. These values indicate that allocation to an inferior treatment
is ten times more costly than allocation to the best treatment. For the
Gittins rule, the discount factor a = 0.99 and r = 1.5.

4*2. Evaluation of properties. We wish to ensure that the error
probabilities for the different allocation rules are roughly the same.
Table 1 gives the error probabilities, the ESL and the expected sample
sizes for the case k = 3.

It is clear that the error probabilities are insensitive to the alloca-
tion rule used. Note that the standard errors of the estimated error
probabilities are approximately 0.0007 for an estimate of 0.005 and ap-
proximately 0.003 for an estimate of 0.1. By comparing the five rules,
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TABLE 1

Simulation results when k = 3; the order of the figures is
Equal, JJT, Gittins, Hayre and Unequal.

ESL

E(N2)

E(N3)

ASN

1.0
0.0
0.0

0.0000
0.0000
0.0000
0.0000
0.0000

26.41
23.94
17.40
18.57
19.72

15.92
17.01
30.71
31.17
23.90

13.21
11.93
8.70
9.35
9.85

13.21
12.01
8.70
9.22
9.87

41.84
40.95
48.11
49.74
43.62

1.0
0.5
0.0

0.0012
0.0014
0.0024
0.0018
0.0021

25.73
23.94
17.38
19.91
19.96

26.20
27.39
58.94
40.87
35.99

25.80
24.72
17.32
20.67
21.17

12.83
11.58
8.72
9.57
9.37

64.84
63.69
84.97
71.12
66.54

1.0
0.5
0.5

0.0036
0.0038
0.0028
0.0031
0.0043

25.53
23.69
17.16
20.84
20.60

31.08
33.13
76.18
46.76
44.10

25.39
23.83
17.30
20.75
20.60

25.67
23.55
17.02
20.92
20.60

82.14
80.51
110.50
88.43
85.30

1.0
0.75
0.5

0.0407
0.0438
0.0457
0.0426
0.0433

23.63
22.45
18.49
20.60
20.00

48.19
49.48
109.73
60.78
61.52

46.62
45.25
40.47
42.13
41.87

23.96
22.28
16.74
20.14
19.07

118.76
117.02
166.93
123.05
122.47

1.0
0.75
0.75

0.0736
0.0750
0.0693
0.0683
0.0723

22.77
22.07
20.25
21.25
20.94

56.69
58.87
129.76
70.38
72.42

45.69
44.12
40.75
42.58
41.72

45.38
44.17
40.25
42.43
42.02

147.77
147.17
210.76
155.39
156.16

1.0
0.875
0.75

0.1878
0.1940
0.1789
0.1819
0.1863

18.91
18.54
18.36
17.83
17.77

71.73
71.81
140.94
79.94
84.37

67.13
65.72
75.84
64.30
65.75

42.08
41.31
35.52
39.16
38.19

180.94
178.83
252.31
183.40
183.31

1.0
0.875
0.875

0.2713
0.2688
0.2692
0.2694
0.2701

16.22

15.95
18.18

16.20
15.90

78.37
78.59
148.27
86.95
89.78

64.54
63.86
71.74
65.36
63.05

65.21
63.70
73.74
64.27
64.12

208.12
206.16
293.74
216.57
216.95

we see that the Gittins rule is most successful in reducing the ESL.
However, its ASN is substantially larger than for equal randomization.
The standard errors of the estimated ESL are no more than 1%. consid-
ering the JJT rule, it is clear that both the ESL and ASN are reduced
compared with equal randomization. This reflects the asymptotic op-
timality property of the JJT rule noted in Section 3. The generalized
Hayre and unequal randomization rules can be regarded as compro-
mises between the JJT rule and the Gittins rule. Indeed, these rules
have similar performance characteristics: there is a significant reduc-
tion in the number of patients on the inferior treatments compared with
equal randomization, and moreover, there is only a small increase in
the ASN.

For the equivalent fixed-sample procedure, the ASN is 225. So,
where there are large differences between the treatment means, there
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is a savings in the ASN of about 80%. The maximum ESL for the

fixed-sample procedure is 150, which compares with an approximate

maximum of 26 in the table for equal randomization: see inequality

(4)
The corresponding results for the case k = 5 are given in Table 2.

These highlight more clearly the same conclusions. Again, for com-
parison, the ASN and ESL for the equivalent fixed-sample procedure
are 375 and 300, respectively. The maximum ESL for equal random-
ization is about 52. Even for small differences between the treatment
means, there is a saving in the ASN of about 15% when using equal
randomization, as opposed to the fixed-sample procedure.

4-3. Results for estimation. We now compare the bias and variance
of estimators of the form (5). As indicated in Section 2, for k = 2,
approximations for the bias and variance can be derived by considering
the sequential test in continuous time: see Coad (1994) for details.
These approximations can also be used for k > 2, by neglecting all
but the two treatments directly concerned. The values included in this
paper are for the approximations after a correction for overshoot has
been made. Note that for the equivalent fixed-sample procedure, the
bias is zero and the variance is 0.0267.

Table 3 gives the bias and variance of estimators of treatment dif-
ferences when k = 3. For estimators of differences involving Treatment
1, the biases are insensitive to the allocation rule used, and in general,
the approximations work well. Note that the standard errors are be-
tween 0.003 and 0.005. When there are small differences between the
treatment means, the true biases for the more adaptive rules tend to
be over estimated by the approximations. This may be due to the trial
being longer for these rules, as shown in Table 1. The agreement is
poor between the simulated and approximate biases of the estimator of

μ2 - μ3
From Table 3b, we see that the variances are also insensitive to

the allocation rule used, and again the approximations work well for
differences involving Treatment 1. Here the standard errors are between
1% and 2%. The results for the variance of the estimators of μ2 — μ3
indicate that the approximation is fairly accurate except when the mean
for Treatment 1 is much higher than for the inferior treatments.

Similar results were obtained for the case k = 5. For the most part,
these confirm the conclusions for the case k = 3. However, one feature
evident from the former is that the approximations for the bias of es-
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TABLE 2

Simulation results when k = 5: the order of the figures is
Equal, JJT, Gittins, Hayre and Unequal.

Ml
M2
M3
A*4
M5

EP

ESL

E(Ni)

E(N2)

E(N3)

E(NA)

E(N6)

ASN

1.0
0.0
0.0
0.0
0.0

0.0001
0.0000
0.0000
0.0000
0.0000

52.40
43.59
34.74
36.18
37.61

17.52
21.61
37.18
39.73
34.24

13.13
10.89
8.68
9.03
9.34

13.06
10.90
8.70
9.03
9.43

13.09
10.89
8.66
9.10
9.38

13.12
10.92
8.71
9.02
9.46

69.92
65.20
71.92
75.91
71.85

1.0
0.5
0.5
0.0
0.0

0.0038
0.0041
0.0036
0.0036
0.0039

50.63
44.38
35.00
39.37
38.22

31.13
35.02
77.53
50.82
49.93

25.44
22.93
17.69
20.42
21.02

25.61
23.12
17.61
20.76
21.00

12.60
10.69
8.66
9.42
8.66

12.50
10.66
8.69
9.37
8.55

107.28
102.42
130.18
110.78
109.17

1.0
0.5
0.5
0.5
0.5

0.0073
0.0065
0.0057
0.0065
0.0061

50.16
44.75
34.71
40.61
40.53

36.22
41.96
95.46
58.07
61.37

24.81
22.33
17.51
20.20
20.21

25.16
22.36
17.45
20.09
20.11

25.14
22.44
17.13
20.44
20.43

25.20
22.39
17.33
20.50
20.31

136.54
131.47
164.88
139.29
142.42

1.0
0.75
0.75
0.5
0.5

0.0768
0.0766
0.0728
0.0749
0.0717

45.79
42.19
36.90
40.66
39.39

57.61
62.07
136.88
75.10
81.85

45.78
43.62
41.08
42.88
43.79

43.67
44.00
41.04
42.74
43.33

22.94
20.18
16.30
19.16
17.57

22.91
20.39
16.44
19.35
17.65

194.92
190.26
251.72
199.24
204.19

1.0
0.75
0.75
0.75
0.75

0.1243
0.1210
0.0995
0.1141
0.1142

44.01
41.80
40.43
41.38
41.35

66.80
70.73
160.22
82.85
94.73

44.18
41.74
40.73
41.66
40.92

44.15
41.90
40.79
41.44
41.39

44.08
41.97
40.33
41.11
41.34

43.63
41.57
39.88
41.33
41.73

242.84
237.92
321.94
248.39
260.11

1.0
0.875
0.875
0.75
0.75

0.3013
0.2935
0.2667
0.2795
0.2814

35.64
33.99
35.60
34.51
34.77

80.27
82.11
164.22
92.72
103.37

64.46
61.75
74.06
64.15
67.72

65.06
62.48
75.95
65.19
67.86

38.96
36.76
33.84
36.57
35.69

38.84
37.07
33.54
36.80
35.61

287.59
280.17
381.61
295.43
310.24

1.0
0.875
0.875
0.875
0.875

0.4068
0.4000
0.3569
0.3764
0.3811

29.60
29.57
35.39
30.30
31.67

81.69
84.72
166.24
94.79
106.75

59.55
59.52
70.97
60.27
64.05

59.49
58.75
70.62
61.00
64.04

58.72
59.52
70.80
60.68
61.79

59.01
58.80
70.70
60.47
63.44

318.45
321.31
449.34
337.21
360.08
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TABLE 3A

Results for bias of x{ (N) - Xj (N), where N = min (Ni9 Nj), when
k = 3: iφper figures in order are simulated values for Equal, JJT,
GittinSj Hayre and Unequal; lowest figure is approximate value.

Ml
M2
M3

— μ-2

— M3

— β3

1.0
0.0
0.0

0.1524

0.1488

0.1549

0.1352

0.1690

0.1589

0.1477

0.1441

0.1549

0.1458

0.1645

0.1589

-0.0012

-0.0066

0.0065

0.0071

-0.0043

0.0000

1.0
0.5
0.0

0.1535

0.1531

0.1563

0.1521

0.1541

0.1574

0.1438

0.1456

0.1381

0.1169

0.1424

0.1589

0.0711

0.0571

0.0143

0.0121

0.0129

0.1574

1.0
0.5
0.5

0.1576

0.1489

0.1487

0.1383

0.1560

0.1574

0.1468

0.1568

0.1588

0.1336

0.1523

0.1574

-0.0104

0.0049

0.0082

-0.0061

0.0017

0.0000

1.0
0.75

0.5

0.1400

0.1323

0.1282

0.1355

0.1371

0.1373

0.1478

0.1355

0.1196

0.1185

0.1358

0.1574

0.0665

0.0591

0.0167

0.0260

0.0289

0.1373

1.0
0.75

0.75

0.1307

0.1294

0.1219

0.1219

0.1285

0.1373

0.1342

0.1292

0.1222

0.1219

0.1295

0.1373

0.0007

0.0017

-0.0005

0.0011

0.0006

0.0000

1.0
0.875

0.75

0.0861

0.0875

0.0840

0.0888

0.0902

0.0912

0.1186

0.1123

0.0989

0.1092

0.1087

0.1373

0.0586

0.0448

0.0276

0.0396

0.0317

0.0912

1.0
0.875

0.875

0.0851

0.0812

0.0714

0.0713

0.0812

0.0912

0.0837

0.0832

0.0684

0.0784

0.0771

0.0912

-0.016

0.0020

-0.0081

0.0077

-0.0046

0.0000

timators involving the more inferior treatments tends to overestimate
the true values.

5. Discussion. A simple sequential procedure for the comparison
of several treatments has been evaluated in this paper with various
data-dependent allocation rules. In particular, we have seen that the
allocation rule has negligible effect upon the probability of choosing the
best treatment at the end of the trial. Further, it was shown that in
some cases the numbers of patients on the inferior treatments can be
reduced below those for equal randomization, and at the same time, the
number of patients in the trial can be reduced. The results in Section
4.3 show that the bias and variance for estimated treatment differences
are little affected by the allocation rule used. Of course, as shown in
Tables 1 and 2, the use of a highly adaptive rule, although significantly
reducing the number of patients on the inferior treatments, can lead to
a substantial increase in the ASN.

Our simulation results indicate that a simple allocation rule such as
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TABLE 3B

Results for variance ofxi (N)-Xj (N), where N = min (Ni} Nj), when
k = 3: upper figures in order are simulated values for Equal, JJT, Git-
tins, Hayre and Unequal; lowest figure is approximate value.

μi - /

1.0
0.0
0.0

0.2045

0.1962

0.2015

0.1881

0.2106

0.2095

0.1999

0.1989

0.2019

0.1932

0.2136

0.2095

0.2955

0.3057

0.3706

0.3683

0.3585

0.1499

1.0
0.5
0.0

0.1276

0.1285

0.1316

0.1285

0.1274

0.1330

0.2067

0.2105

0.2083

0.1980

0.2129

0.2095

0.2475

0.2557

0.2852

0.2893

0.3039

0.1330

1.0
0.5
0.5

0.1358

0.1280

0.1300

0.1194

0.1339

0.1330

0.1251

0.1328

0.1307

0.1200

0.1275

0.1330

0.2037

0.2069

0.2185

0.2132

0.2179

0.1499

1.0
0.75

0.5

0.1209

0.1152

0.1175

0.1146

0.1159

0.1181

0.1434

0.1344

0.1434

0.1318

0.1424

0.1330

0.1866

0.1768

0.1938

0.1880

0.1928

0.1181

1.0
0.75

0.75

0.1177

0.1177

0.1254

0.1139

0.1211

0.1181

0.1260

0.1213

0.1207

0.1114

0.1312

0.1181

0.1718

0.1635

0.1618

0.1681

0.1686

0.1499

1.0
0.875

0.75

0.1331

0.1303

0.1255

0.1252

0.1370

0.1344

0.1258

0.1278

0.1209

0.1274

0.1279

0.1181

0.1600

0.1586

0.1447

0.1550

0.1565

0.1344

1.0
0.875

0.875

0.1386

0.1324

0.1287

0.1250

0.1426

0.1344

0.1377

0.1396

0.1324

0.1250

0.1379

0.1344

0.1570

0.1569

0.1402

0.1471

0.1588

0.1499

the generalized Hayre rule or the unequal randomization rule is an ef-
fective compromise between equal randomization and a highly adaptive
rule such as the Gittins rule. For modest treatment differences, both of
these randomized rules reduce the numbers of patients on the inferior
treatments at the cost of only a small increase in the overall trial size.

We have considered one form of bias in this paper, namely esti-
mation bias. Of course, when one allows the use of data-dependent
allocation, there is also the possibility of selection bias. This can oc-
cur when the experimenter knows which treatment the next patient is
more likely to receive, and he or she allows this to influence the type of
patient admitted. This can lead to misleading conclusions at the end
of the trial. Some simple illustrations of selection bias are described by
Bather (manuscript in this volume).

The estimation results in Section 4.3 indicate that our approxima-
tions for the bias and variance are reasonably accurate for estimated
differences involving Treatment 1. This was also shown by Bather and
Coad (1992) for Bernoulli responses when using equal randomization.
Of course, these approximations were derived by assuming that only
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two treatments are being used. It would be interesting if we cold ob-
tain improved approximations by considering all the treatments in the
trial. We would then hope to provide reasonable approximations for
the bias and variance of estimators involving two inferior treatments.
Some related work by Siegmund (1993) and Betensky (1992) dealing
with the comparison of three treatments may provide a basis for work
along these lines.
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