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Abstract

It is important to detect the structural change in the trend of time se-
ries model. This paper addresses the problem of estimating change point
in the trend of time series regression models with circular ARMA resid-
uals. First we show the asymptotics of the likelihood ratio between con-
tiguous hypotheses. Next we construct the maximum likelihood estima-
tor (MLE) and Bayes estimator (BE) for unknown parameters including
change point. Then it is shown that the proposed BE is asymptotically
efficient, and that MLE is not so generally. Numerical studies and the
applications are also given.
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1 Introduction

The change point problem for serially correlated data has been extensively stud-
ied in the literature. References on various time series models with change-point
can be found in the book of Csδrgό and Horvath (1997) and the review paper
of Kokoszka and Leipus (2000).

Focusing on a change point in the mean of linear process, Bai (1994) derived
the limiting distribution of a consistent change-point estimator by least squares
method. Later Kokoszka and Leipus (1998) studied the consistency of CUSUM
type estimators of mean shift for dependent observations. Their results include
long-memory processes. For a spectral parameter change in Gaussian stationary
process, Picard (1985) addressed the problem of testing and estimation. Giraitis
and Leipus (1990,1992) generalized Picard's results to the case when the process
concerned is possibly non-Gaussian.

For a structural change in regression model, a number of authors studied the
testing and estimation of change point. It is important to detect the struc-
tural change in economic time series because parameter instability is common
in this field. For testing structural changes in regression models with long-
memory errors, Hidalgo and Robinson (1996) explored a testing procedure with
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258 Asymptotic estimation theory

nonstochastic and stochastic regressors. Asymptotic properties of change-point
estimator in linear regression models were obtained by Bai(1998), where the
error process may include dependent and heteroskedastic observations.

Despite the large body of literature on estimating unknown change-point in
time series models, the asymptotic efficiency has been rarely discussed. For
the case of independent and identically distributed observations, Ritov (1990)
obtained an asymptotically efficient estimator of change point in distribution
by a Bayesian approach. Also the asymptotic efficiency of Bayes estimator for
change-point was studied by Kutoyants (1994) for diffusion-type process. Dabye
and Kutoyants (2001) showed consistency for change-point in a Poisson process
when the model was misspecified.

The present paper develops the asymptotic theory of estimating unknown pa-
rameters in time series regression models with circular ARM A residuals. The
model and the assumptions imposed are explained in Section 2. Also Section 2
discusses the fundamental asymptotics for the likelihood ratio process between
contiguous hypotheses. Section 3 provides the asymptotics of the maximum
likelihood estimator (MLE) and Bayes estimator (BE) for unknown parameters
including change-point. Then it is shown that the BE is asymptotically efficient,
and that the MLE is not so generally. Some numerical examples by simulations
are given in Section 4. Section 5 is devoted to the investigation of some real
time series data. All the proofs are collected in Section 6.

Throughout this paper we use the following notations. A' denotes the transpose
of a vector or matrix A and χ( ) is the indicator function.

2 Asymptotics of likelihood ratio and some

lemmas

Consider the following linear regression model

yt = {otfχ(t/n < τ) + β'χ(t/n > r)}zt + uu (2.1)

= r t (α,/3,τ)+iz t , (say), ί = l , . . . , n

where zt = (zti,..., ztq)
f are observable regressors, α = ( α i , . . . , αq)' and β =

(/?i,... ,βq)' are unknown parameter vectors, and {ut} is a Gaussian circular
ARMA process with spectral density / (λ) and E(ut) = 0. Here τ is an unknown
change-point satisfying 0 < r < 1 and (α', β', r) G Θ C W x W x R.

Letting

n—h

, zt+h,jZtk, h = 0 , 1 , . . .

Σ h — Π _ 1
Zt-\-h,jZtki il — ^5 -*-5 ?

t=l-h

we will make the following assumptions on the regressors {zt}, which are a sort
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of Grenander's conditions.

Assumption 2.1.

l+P

(G.I) α£(0) = O{n), i = 1,... ,ςr, and ^ 4 = O(p) for any (1 < Z < n).

(G.2) lim^oo ^ + 1 | ./ α j j(o) = 0 , z = 1,..., q.

(G.3) The limit

lim
n-+oo

exists for every i, j = 1, . . . , q and h = 0, ± 1 , —
Let Λ(ft) = {pij(h);ij = l , . . . ,g} .

(G.4) Λ(0) is nonsingular.

From (G.3) there exists a Hermitian matrix function M(λ) = {M^(λ);i,j =
1,..., q} with positive semidefinite increments such that

R{h) = ί eίhXdM(X). (2.2)
J — π

Suppose that the stretch of series from model (1) yn = (yi, ,yn)' is avail-
able. Denote the covariance matrix of un = (t^i, ,un)' by Σ n , and let
tn — (τ"i, ^n)' with rt = rt(θL,β,τ). Then the likelihood function based
on yn is given by

Ln(α,β,τ) = ( 2 7 r ) r a / 2 | S | 1 / 2 exp \-\(Vn ~ tn)'^-1(yn - t n ) l . (2.3)

Since we assume that {ut} is a circular ARM A process, it is seen that Σ n has
the following representation

Σ n = U*nάmg{2πf(X1), ••• , 2 τ r / ( λ n ) } U n

where Un = {n"1/2 exp(2τriίs/n); t, s = 1,..., n} and λfc = 2πk/n (see Ander-
son (1977)). Write

Then the likelihood function (2.3) is rewritten as

Define the local sequence for the parameters:

α n = α + n-χl2a, βn = β + n~^2b, rn = τ + rΓ1 p (2.5)
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where α, b e Rq and p G R. Under the local sequence (2.5) the likelihood ratio
process is represented as

Ln(αn,/3n,τn)
Zn(a,b,p) = (2.6)

= exp
1 n

9ΛΛT λ^ί
fe=i

Uλk) A(λkή

where dn(λk) = (2πn)-1/2 ιxte
itλfc and A(Xk) = Aλ + A2 + A3 with

[rn+p]

s=[rn] + l

[τn+p]

A2 = - (

s = l

and

s = [τn+p]+l

Here note that dn(Xk), k = 1, 2,... are i.i.d. complex normal random variables
with mean 0 and variance f(Xk) (cf. Anderson (1977)). Henceforth we write
the spectral representation of ut by

= f
J —

eιtλdZu(X). (2.7)

The asymptotic distribution of Zn(α, 6, p) is given as follows.

Theorem 2.1. Suppose that Assumption 2.1 holds. Then for all (α ;, β\ r) G Θ,
ίfte log-likelihood ratio has the asymptotic representation

= (β - α)'Wi + y/τa!W2 +

- ^ Σ Γ^) Σ (
j = —oo s=[τn]+l

- τ)6) + op(l)

= logZ(α,6,p) + op(l),

J — 7 Γ Γ

zse
ιsX{\ + e m
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and

Here W\, W2 and VF3 are asymptotically normal with mean 0
matrix V\,V<ι andVs, respectively, where

covariance

[τn+p]

Σ
β=[rn] + l

zse
isλ

= V3 = -j- Γ 2f(λ)-1dM(λ).
2π J-π

Next we present some fundamental lemmas which are useful in the estimation
of change point.

sup EOίφ^τZ
ιJ2{a, b, p) < exp{-#(α, 6, p)}

βC

Lemma 2.1. Suppose that Assumption 2.1 holds. Then for any compact set
C C θ, we have

where

with some positive definite matrix K and c > 0.

Lemma 2.2. Suppose that Assumption 2.1 holds. Then for any compact set
C c θ , there exist κ(C) = K, B(C) = B such that

sup \\θΊ — «2||2 + H&l — b2\\2 + |pi - P2|2] l

3 Estimation theory

We are interested in the behavior of maximum likelihood estimator (MLE) and
Bayes estimator (BE). To introduce these estimators, we need a loss function
w(y),y eRd which is

1. nonnegative, continuous at point 0 and w(0) = 0, but is not identically 0;

2. symmetric: w(y) = w(—y);

3. the sets {y : w(y) < c} are convex for all c > 0.
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We denote by Wp the class of loss functions satisfying 1-3 with polynomial
majorants. The example of such function is w(y) = |?/|p,p > 0.

The MLE ΘML = (όtf

ML,βML,rML) of 0' = (α',/3',τ) is defined by

L(OLML,&MLITML) — max L(α,/3, T) (3.1)
(α,/3,r)eθ

The Bayes estimator ΘB = (ctB,βB,pB) with respect to the quadratic loss
function l{x) = | |x| |2 and a prior density τr( ) is of the form

ΘB= ί θp(θ\Yn)dθ (3.2)

Jθ
where

fθπ(υ)Ln(υ)dυ'

We suppose that the prior density is a bounded, positive and continuous function
possessing a polynomial majorant on Θ. For Z(u),u = (αf,b\pY, in Theorem

1, define two random vectors u = (α \b , p) and u = (α\b , p) by relations

Z{u) = sup Z(u), (3.3)

ff uZ(u)du_

J Z(v)dv K '

Theorem 3.1. Let the parameter set Θ be an open subset o/R 2 ς + 1 . Then the
MLE is uniformly on (ct,β,τ) G Θ ; consistent

P - lim ΘML = θ
n—>oo

and converges in distribution

^(diag{v^, , v^, n})(θML ~ θ)} — . C(u).
d

For any continuous loss function w G W^p, we have

lim Eew((didig{y/n, , y/n, Π})(ΘML - θ)) = Ew(ύ).
n—> oo

A similar theorem for Bayes estimators can be stated as follows.

Theorem 3.2. The Bayes estimator θβ, uniformly on θ G θ , is consistent

Pθ - lim ΘB = θ
n—> oo

and converges in distribution

£^(diag{V^, , y/n, n})(θB - θ)} —> C(ύ).
d

For any continuous loss function w G Wp, we have

lim Egw((dialg{y/n, , v^, n})(θB - θ)) = Ew(ύ).

Remark. From Theorem 3 and Theorem 1.9.1 of Ibragimov and Has'minski(1981),
we can see that the BE is asymptotically efficient such that
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4 Numerical examples

In this section we report some Monte Carlo results for the MLE and BE of an
unknown change point. We consider the following time series regression model:

where {ut} is a Gaussian AR(1) process generated by

ut = ξut-ι + εt, εt ~ i.i.d.N(0, σ2).

To verify the theoretical results and for comparative purposes, we deal with the
following regressors;

Model (I) : zt = 1 (scalar-valued),
Model (II): zt — cos(z/£) (scalar-valued),
Model (III): zt = (1,COS(Ϊ4))'.

For simplicity, we assume that the parameters α,/3,ξ and σ are known and
focus on the estimation of unknown change point r. The error term εt's are
same across different combinations of parameters and models. The coefficients
(pί,β) are taken to be (0,2), (1,3) and ((0,1)7, (2,3)') for the corresponding
Models (I), (II) and (III), respectively, and v — π/6.

The MLE and BE with uniform prior of r are given by

k = inf{fc : max {Ln(i/n)} = Ln(k/ή)}, TML = k/n

and

respectively. Then we compute the mean and the square root of the mean square
error (RMSE) for TML and τB based on 100 replications.

Table 4.1 summarizes the simulation results for ξ — 0.7,0.9 and n = 100,300.
The change point r is fixed to be 0.5. A closer inspection of Table 1 reveals some
interesting characteristics. First, we notice that, in each case, the RMSE of BE
is smaller than that of MLE, however mean estimates are almost same for all
cases. A change in a cosine trend function seems to increase the bias of a change
point estimators, while for n = 300, the mean estimates lie in the vicinity of 0.5.
The effect of large value of ξ (near unit root) for MLE is particularly significant
for Model (I) in view of RMSE.

The histogram of these results are plotted in Figures 4.1 and 4.2 for ξ = 0.7
and ξ = 0.9, respectively, when n = 100. A study of these figures facilitates
understanding of the simulation results in Table 4.1. It is obvious that the
shape of distributions for MLE and BE is different when ξ = 0.9. The former
has a fatter tail in general, while the latter has high frequencies around 0.5. For
Models (II) and (III), the distributions of MLE and BE are skewed to the right,
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which causes an increase in bias of an estimator. These facts are verified by
comparing the sample coefficient of skewness and the sample kurtosis which are
listed in Figures 4.2 and 4.3 together.

It is questioned how large the RMES becomes for different values of ξ and the
cases when the change point locates the edge of samples. A perspective view
of the result given in Table 1 for the RMSE of Model (I) is shown in Figures
4.3 over a grid of points r = 0.1,..., 0.9 and ξ = 0.1,..., 0.9. According to this
figure, as it is expected, we observe that the RMSE increases as ξ increases.
However it seems that the RMSE's are stable and unaffected by r even though
r is close to 0.1 and 0.9 when ξ is from 0.1 to 0.7. The discrepancy of RMSE
between MLE and BE is significantly large for ξ — 0.9 and τ = 0.5. As it can
be seen from this figure that the BE works better than MLE in terms of RMSE
in all cases.

Next, we investigate the effect of the selection of frequency v in Model (II). The
autoregressive parameter ξ is fixed at 0.7. Table 4.2 presents the results . We
observe that the precision of the change point estimates deteriorates when v is
close to 0 when n = 100. While the consistency is convincing for large n, the
RSEM of MLE and BE becomes large as the frequency v tends to 0.

We summarize the simulation results as follows. First, the performance of BE is
better than MLE in terms of RMSE, which is consistent with the theoretical re-
sult given in the previous section. Even though we assumed that the parameters
except for change point are known, it is expected that similar characteristics will
be observed for the cases of unknown parameters. To see these, we will report
some real data analysis in next section.
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Figure 4.1. Histograms for the results of Table 1 for ξ = 0.7 and n = 100.
The sample coefficient of skewness μι and the sample kurtosis μ2 are: (a) μ\ =
0.70, μ2 = 7.12; (b) μλ = -0.01, μ2 = 4.68; (c) μλ = 0.12, μ2 = 4.74; (d)
μι = 0.42, μ2 = 3.56; (e) μι = 0.18, μ2 = 5.55; (f) μλ = 0.77, μ2 = 5.10.
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Table 4.1

Average estimates and RMSE of τ when r = 0.5

Mean RMSE

n = 100 n = 300 n = 100 n —

MLE BE MLE BE MLE BE MLE BE

Model (I)

Model (II)

= 0.9

0.4955 0.4893 0.5032 0.4983 0.1121 0.0858 0.0497 0.0422

0.4726 0.4924 0.4998 0.5144 0.1981 0.1121 0.1840 0.1220

0.5197 0.5207 0.5000 0.4978 0.1187 0.0854 0.0394 0.0336

0.5081 0.5091 0.4984 0.4975 0.1348 0.1058 0.0425 0.0350

Model (III)

= 0.9

0.5311 0.5313 0.4932 0.4940 0.1100 0.0916 0.0337 0.0282

0.5314 0.5361 0.4900 0.4885 0.1597 0.1315 0.0538 0.0438

5 Real data applications

This section is devoted to the application of change point estimation to three
data sets (Nile data, U. S. quarterly unemployment rate and international airline
ticket sales data) where a visible change point can be observed. Based on
these data, we fit (4.1). The estimation procedure is as follows. First, we
estimate the unknown parameters by a maximum likelihood method. For fixed
k,q < k < n — q, the MLE of α and β is given by

z'tyt and βk =
t=q

Then we can estimate the spectral density of the residual process {ύt = yt —

{όt!kχ(t < k) + βkχ(t > k)}zt} using the following nonparametric estimator

M

Λ,n(λ) =
l=-M

where M = n2/5, w( ) is a weight function and ί\n(/) = n ιΣ™=l
Hence the likelihood function is calculated using this spectral estimates. The
MLE's of unknown parameters are

k = inf < k : max L(άi,βi,i/n) — L(άk,βk,k/n) >
{ q<i<n-q )

= k/n, OLML = OLk and βML = βy (5.1)
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Figure 4.2. Histograms for the results of Table 1 for ξ = 0.9 and n — 100.
The sample coefficient of skewness μ\ and the sample kurtosis μ2 are: (a) μ\ —
0.11, μ2 = 3.25; (b) μλ = 0.34, μ2 = 2.71; (c) μλ = 0.93, μ2 = 5.50; (d) μλ =
0.63, μ2 - 4.00; (e) μλ = 0.54, μ2 = 3.51; (f) μλ = 0.34, μ2 = 2.95.
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MLE

Figure 4.3. RMSE of Model (I) when n = 100.
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Table 4.2.

Average and RMSE of MLE and BE for r when r = 0.5 for Model (II).

n

v MLE

= 100

BE

Mean

n

MLE

= 300

BE

n —

MLE

100

BE

RMSE

n

MLE

= 300

BE

π/2 0.5028 0.5017 0.5005 0.5004 0.0250 0.0201 0.0074 0.0065

π/4 0.4848 0.4849 0.4944 0.4947 0.0584 0.0496 0.0266 0.0211

π/8 0.4840 0.4969 0.4857 0.4895 0.1361 0.1217 0.0551 0.0418

π/16 0.5847 0.5710 0.5183 0.5161 0.2283 0.1629 0.0833 0.0697

π/32 0.5434 0.5381 0.4613 0.4675 0.2141 0.1715 0.1285 0.1021

Next we compute the Bayes estimator. For simplicity of calculation, we postu-
late the result that the asymptotic distribution of OLML and βB are same as OLB

and βB (c.f. Kutoyants (1994)). Therefore the Bayes change point estimator
fB becomes

Σ™ZQ τiLn(OLML,βML >τi) .,

TB = ; _ , * = z/n, i = q,..., n - q.

Nile data

These data have been investigated by an i.i.d. framework, for details see e.g.,
Cobb (1978) and Hinkley and Schechtmann (1987). The data consist of readings
of the annual flows of the Nile River at Aswan from 1871 to 1970. There was
a shift in the flow levels in 1899, which was attributed partly to the weather
changes and partly to the start of construction work for a new dam at Aswan.
We apply a mean shift model for this data with zt = 1. The MLE gives OLML —
1097.75,βML = 849.97 and f = 0.28 (k = 28). On the other hand, the BE
is TB = 0.2790(^ = [τBn] = 27). The original series together with ML trend
estimator are plotted in Figure 5.1. Figure 5.2 shows the posterior distribution
of r, which shows strong evidence that the shift occurred in 1898. These results
agree with those of the other authors.

U. S. quarterly unemployment rates

This data set, (n = 184), is analyzed in Tsay (2002) by use of threshold AR
model for first differenced series. Here we explain a seasonal trend by em-
ploying regression models with trigonometric functions and change point. The
regression function is chosen to be zt = (l,cos(ι/ί))'. A Fisher's test for added
deterministic periodic component rejects the Gaussian white noise at level .01.
We have taken v — 4π/184 which gives the peak in the periodogram. The
MLE detected the possible change point TML = 0.49(/c = 90) and correspond-
ing regression coefficients OLML = (4.65, 70.85)7 and βML = (6.81, -0.94)'. The
BE is TB = 0.49 which corresponds to k = [fBn] = 90. The estimated trend
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Figure 5.1. Nile data with estimated mean and change point k — 28 (MLE).

Figure 5.2. Posterior distribution of r.
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function together with original data is shown in Figure 5.3. The posterior dis-
tribution for r is plotted in Figure 5.4. This analysis reveals that the mean level
of an unemployment rate increased to about 2% in 3rd quarter of 1970, while
the amplitude of long term cyclical trend stayed the same level throughout the
period.

International airline ticket sales data

This data have been investigated by fitting a seasonal ARIMA model (Box
et. al. (1994)). An alternative modeling is deterministic cyclical trend func-
tion modeling with a change point for once-differentiated data. The regression
function given by z't = (cos(iΊt), cosfat), cos^t)) is selected by examining
the periodogram. There are three frequencies which have comparably large
spectrum, namely uλ = 26τr/143,z/2 = 50π/143 and i/3 = 74π/143. The ML es-
timators give the άML = (-7.54,14.14,1.43)', βML = (-35.76,37.01, -19.66)'
and TML = 0.6319(fc = 91). While Bayes estimator is fB = 0.6216(£; = 89). As
shown in the posterior probability of r, the change might have occurred from
t = 80 to 100, which implies the possibility of multiple changes.

6 Proofs

Proof of Theorem 1. From (2.7), we have

\og Zn(a,β,τ) (6.1)

= -IΓΓ Σ /(λ*)~1/2 {dn(λk)A(\k)+d^j A(^)} -~J
l y J n fe=i Δ n k=\

First we evaluate the first term in (6.2). From (2.7) we have

{dn(λk)A(λk) + d

!n(λfc)Ai + dn(Xk)A2 + dn(Xk)A3 + dn(Xk)A1 + dn(λ fc)A2 + dn(λfc)A3}

= £7i + #2 + E3 + #4 + #5 + #6 (say).

Write the spectral density /(λ) in the form

1 °°

where i?/(j)' s satisfy X ^ L ^ l i | m |^/(i) l < °° for a n y S i v e n m e N T n e n >
from Theorem 3.8.3 of Brillinger (1975) we may write

τ- Σ
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Figure 5.3. U. S. quarterly unemployment rates (1948-1993) with estimated
trend and change point k = 90(MLE).

Figure 5.4. Posterior distribution of r.
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Figure 5.5. The international airline ticket sales, once -differentiated data
(dotted line) with estimated trend and change point k = 91 (black line).

6O 8O 1OO 12O

Figure 5.6. Posterior probabilities of r.
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where Γ(j)'s satisfy for any given m e N

bT|Γ(i)| < oo.

Then E1 can be written

1 n

* k—1

1 n

fc=l

1 n 1
= ~ Ϊ ^ Σ ^

fc=l

1 1 n

= - — — Σ

j = -oo

as

\ -V2 d λ ^U ) ^ ( A f c ^

n [τn+p

*' Z^ Z^

]

t=l s=[rn] + l
oo

Σ Γ(j>" i i ;

j=-oo
oo n

Σ Γϋ)Σ

i f e Σ
[rn+p]

Σ
j= — oo t=l s=[τn] + l

a)'zβ;

[rn+p]

Σ
= [τn] + :

(β-t

(β - cx)/zsute
i

*V'zsute
i(t~s~j>)

It is well known that

^ e i( t-s-j)λ k = ί ^ i f t-s-j = O (mod n) , 6 ^ ,
' I 0 otherwise. ' )

k=i κ

Since -[rn + p] < t - s < [(1 - r)n] and Γ(j) satisfies ^ | j | m | Γ ( j ) | < oo for
any given m, we have

Hence we have only to evaluate E\ for / = 0 of t — s — j = In. Thus E\ is

-j -j oo n [τn+ρ] n

j= — oo t=l s=[τn] + l fc=l

n oo [τn+p]

Σ v-—> . ~

1 w/ Z^ IP ~ α J z s\^s+j/= ^ i (.sayj.
j=-oo s=[rn]+l

Then

^ 1
W (6.3)

j=-oo s=[τn] + l /

π [τn+p]
1

-(/3-α) ;Wi (say),
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where ZU(X) is the spectral measure ofut defined by (2.7). Let Σ^=\tn]+i zs^ίsX =

Λ(λ; h, p). we observe

^ 2 Γ A(X;h,p)A*(X;h,p)f(X)-1d\ as n -> oo.

Recalling that {ut} is Gaussian, we have

A(λ;h,p)A*(λ;h,p)f(λr1dλή (6.4)

Similarly we obtain

Next we calculate the second term E2 that is

ΓΓ ΣΣ

4nπtί ^ έ ΐ ί=ί

1 n oo

(6.5)

Here note that n — 1 > ί — s > —[τή\. Because of (6.2) we have only to evaluate

E2 for / = 0,1 of t - s - j = In. Then

1 oo ,

— — V Γ(j)4= Σ (^+j+^+i+n)^ = ̂ 2 (say).
j = —oo v s = l



276 Asymptotic estimation theory

Similarly as in £Ί,

Λ , oo , [τn+p]

\ ^ T(j) Y^ / eisXeίjλ(l + einλ)dZu(\)zs (6.6)
V™ ~l J-π

Σ
j = —oo

/ [™+p

= i ^ Σ

= ^Y-Wi (say),

where

W2 —> N (o, ± Γ 2f(X)-1dM(λ) ) , (6.7)

which follows from the Riemann-Lebesgue theorem and Grenander's conditions
(G.I) - (G.4). Similarly we obtain.

E5 * ̂ fw2. (6.8)

Next

k=l
n n

fe=l V ί = l s=[τn+p] + l

, ) e -«λ*J_^ J2 b'utzse^-s^k

.. n n _j

0-7= > / outzs-
Λ /γi ( J ( J γη .

oi\k{t-s-j)

Since [(1 — r)n] >t — s > 1 — n, we have only to evaluate E3 for / = 0, — 1 of
t — s — j = In. Hence

1 1 °° b'

j=-oo
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Similarly as in E2 we have

1 1 °°

—— y4π2π ^
j=-oo s=[τn+p] + l

= Γ ^ Σ *« Γ
4 7 Γ V n

 S =[rn + ( 0 ] + l / —

+ e'

6; Γ / 1
4π e-inX)f{λ)-ιdZu{\)

s=[τn+p] + l

= v y / x
 Σ

(6.9)

+ e-inX)f{\)-ιdZu{\)

where

, i- ^ 2f{\)-ιdM{X

Similarly we obtain.

(6.10)

(6.11)

Hence from (6.4), (6.5), (6.7), (6.8), (6.10) and (6.11), we have

{dn(λk)A(λk) + dj (6.12)

Next we evaluate the second term in (6.2), which is

fc=l

\A3\
2 Λ3A1
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We have

(6.13)

/ [rn+p]

h( Σ (
[τn+p]

n 1 oo

Σ Σ

[rn+p] [τn+p]Λ Σ Σ (
t=[rn] + l s=[τn] + l

[τn+p]

j = —oo ί=[τn] + l s=[τn]

oo [τn-\-p]

j = —oo s=[τn]

Next we have

n oo / [rn+p]

-, -,

.? = — oo

oo [τn+p] [τn+p]

[rn+p]

-^ Σ

j=-oo t=l s=l k=l

Note that [rn] >t — s > —[rn]. Similarly we have

(6.14)

-. -. [rnj-p] [τn+p]

«' Σ ̂ i*'.« = - έ έ Σ rω«'^ Σ
r 1

j = — oo
oo

s=l
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Also we obtain

(6.15)

fc=l

' - - Σ
s=[τn+p] + l

1 1 oo n n
1 1 x—> „ / .x / x—> x~~^»' Σ4 n π 2 π . ^ KJ/ *-", r ^ ^ . . .

J = —oo ί=[rn+p] + l s=[τn+p] + l \ κ = l
oo n

i- ^ X — > ^ / . x . / X~~^ / ,

4π 2τr ̂  w y n ( l - r )

1 — r /*π 1 °°

= -^Tb> ^ Σ
π j = —o

The fourth term becomes

n Λ oo / [rn+ρ] \ / [τn+p]
X > / x / Λ+ \ 1 I -I- X—"> i Λ « \

^ I \ \/n ̂  s

k=l " j=-oo \t=[τn] + l / \ s = 1

oi(t-s-j)\k

t=/ι+l s=l k=l

From 1 — p <t — s < [rn] + p — 1, t — s — j = 0, it is seen that

1 1 1 °° [τn+p

Σrω Σϊ ^ ^ Σ
k=l v j = -oo t=[rn] + l
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Similarly we observe

(6.17)
k=l

and l-

k=l

fc=i

Now we evaluate

n - oo
- — V — V ΓίίV-«λ* I V n'zpitχ\ V h'-
— ] κ 7̂  κ J- V / J ci I T^1 κ O> Zt^- I I / = κ O x

4nπ ^—' 2π ^ ^ I . /n ^̂—̂  I I \fn *-^

o-isλk

4 π 2 π n

Since — n + 1 <t — s < — 1, we have only to evaluate for t — s — j = 0, — n.

oo 1 [τn+p]

y r(, )- ' ^ X

(6.18)

,i(t-s-j)λfc

Similarly we have

4 7 Γ ^ " ^

(6.19)

Prom the equations from (6.14) to (6.19) together with (6.4), (6.7), (6.10) and
(6.13) complete the proof of Theorem 1.

Proof of Lemma 1. Prom Hannan (1970) and Anderson (1977) the joint
density of d n(λi), , dn(λn) is given by

p(dn(λi), , dn(λn)) = Cnf[ (6.20)

fe=l
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where Cn = π " n Π L i /(λfc)"1- Using this,

EZιJ2{a,b,p)

= Eexp exp

fc=i

• J Cn

{dn(λk)A(\k

x exp ( - - L f^ |A(λfc)|2 ] d(d,,(Ai) • • dn(λn))
n

fe=l
]
/

Recalling the definition of likelihood process in (2.7), we have

/ o n \ ί Q
 n

\—^
1 f\r) / J '

eχP| - ^ i Σ
k=l

From the proof of Theorem 1 and Assumption (G.I), the first term in (6.21) is
bounded by

(6.22)

[τn+p] [τn+ρ]

^ Σ Σ {β-CL)'ztT{t-s)zs{β-cx)
t=[τn] + l s=[τn] + l

[τn+p]

t=[rn] + l

for p > 0. We have already shown in (6.17) and (6.18) that

fc=l

=O(»-/>) (6.23)

a n d

k=l
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Furthermore, from the proof of Theorem 1 we can find a positive definite matrix
K so that

16n
A3)(A2 ~ (α', b')K

k=i

(6.24)

Hence (6.23)-(6.24) implies the required result.

Proof of Lemma 2. Let 0'x = (α'1? β[, τι)r and 02 = (α2> β^Y a r e some given
values in Θ, and are the forms of OL\ — α + n~ 1 / 2 αχ,/3 1 = /3 + n~1/262,τi =
r + n ~ 1 p i , α 2 = ex + n ~ 1 / 2 α 2 , / 3 2 = /3 + n~ 1/ 26i and r 2 = T + n~1p2. Denoting

under 0; as A(cii,bi, pi;λk) we set

Δ 2 n =

and

Yn = exp

The process Yn is written as

* n

Then we observe

1 n 1 n 1

TΓJ^ Σ /(λfc)"1/2K(λfc)Δln + djλk) S ^ - - V Δ J .

1/4

(6.25)

1/4

We have

-4EYn

( 1 n

[-^rYJf{\k)-1/2{dn{\k)Aln

exp

V " v " f c = l

v ^ j dn(λk) Δ ^ l ίdn(Λfc) Δ l n

Δ ln} - i - ̂  Δ2n

fell /,1 / 2

x exp Δ l nΔ l n - i- £ Δ2n|
fcl J

= —4 exp

Similarly, we obtain

6£F n

2 = 6exp(47y + 2 7 ) , -

and

say

n

3 = -4exp(9ry + 3 7)
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Hence

}4- Yn}
4 = 1 - 4 e r ? + 7 + β e 4 r ? + 2 7 - 4 e 9 r ? + 3 7 + e

1 6 7 > + 4 r > . (6.26)

Using t h e following expansion for small y

ey ~ 1 -h y

we have

E[l - Yn}
4 = 1 - 4(1 + η + 7) + 6(1 + 4τy + 2-γ) - 4(1 + 9η + 37) + (1 + I677 + 4 7 )

+ 0 ( 7 7 7 )

which implies t h a t t h e Taylor expansion of (6.26) s t a r t s wi th t h e linear com-

binat ions of second order t e r m s of τ? 2 ,7 2 a n d 777. Here we need t o evaluate

t h e asymptot ics of 77 a n d 7 in (6.26). Assume t h a t wi thout loss of generality

Pi ί> Pi-, t h e n

(6i - a2)'zse~isXk

Using the similar argument in proof of Lemma 1, we observe

η = 0 [(Pl - P2)} + O [((θ! - a2)', (&! - b2)')K ^~_\

which is written as

η = O[(p2 — pi)] + O(| |αi — α-21|) + O(||bχ — &2||)

Analogously we have

η = O[(p2 — pi)] + O ( | | Λ I — α-2 II) + O(||bi — 62!!)?

which completes the proof.

Proof of Theorem 2. The proof follows from Theorem 1, Lemmas 1 and 2 of

this paper and Theorem 1.10.1 of Ibragimov and Has'minski (1981).

Proof of Theorem 3. The properties of the likelihood ratio Z n (α, 6, p) estab-

lished in Theorem 1, Lemmas 1 and 2 allow us to refer to Theorem 1.10.2 of

Ibragimov and Has'minski (1981).
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