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Abstract

Consider a one-way layout with one directional observation per factor
level. Each observed direction is a unit vector in Rp measured with ran-
dom error. Information accompanying the measurements suggests that
the mean directions, normalized to unit length, follow a trend: the factor
levels are ordinal and mean directions at nearby factor levels may be close.
Measured positions of the paleomagnetic north pole in time illustrate this
design. The directional trend estimators studied in this paper stem from
penalized least squares (PLS) fits in which the penalty function is the
squared norm of first-order or second-order differences of mean vectors at
adjacent factor levels. Expressed in spectral form, such PLS estimators
suggest a much larger class of monotone shrinkage estimators that use
the orthogonal basis implicit in PLS. Penalty weights and, more gener-
ally, monotone shrinkage factors are selected to minimize estimated risk.
The possibly large risk reduction achieved by such adaptive monotone
shrinkage estimators reflects the economy of the PLS orthogonal basis in
representing the actual trend and the flexibility of unconstrained mono-
tone shrinkage.
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1 Introduction

Consider n independent measurements taken successively in time on the varying
position of the earth's north magnetic pole. Each measured position may be
represented as a unit vector in R3 that gives direction from the center of the
earth to the north magnetic pole. Because of measurement errors, it is plausible
to model the data as a realization of independent random unit vectors {yι: 1 <
i < n} whose mean vectors are 77̂  = E(^). The subscript i labels time. The
mean direction of yι is defined to be the unit vector μι = ηι/\ηi \. In this example,
the mean directions {μι} follow a trend, by which we mean that the subscript
order matters and that the distance between μι and μj may be relatively small
when i is close to j.

The naive estimator of μι is μN,i = Vi- It can be derived as the maximum
likelihood estimator of μι when the distribution of yι is Fisher-Langevin with
mean direction μι and precision parameter K. Unless measurement error is very
small, {μN,i} is not a satisfactory estimator of the directional trend {μi}. If we
foresee that the trend in the means {^} may possess some degree of smoothness,
not known to us, it is natural to look for more efficient estimators within classes
of smoothers. In an instructive data analysis, Irving (1977) suggested forming
local symmetric weighted averages of the {yi}, normalizing these to unit length
so as to obtain a more revealing estimator of directional trend.

1This research was supported in part by National Science Foundation Grant DMS99-70266.
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16 Adaptive Estimation of Directional Trend

A symmetric weighted average is a particular symmetric linear smoother in
the sense of Buja, Hastie, and Tibshirani (1989). We may consider any large
class of symmetric linear smoothers as candidate estimators for the mean vectors
{ηi} and then proceed as follows: (a) estimate the quadratic risk of each such
estimator without assuming any smoothness in the sequence of unknown mean
vectors; (b) choose the candidate estimator that minimizes estimated risk; (c)
normalize the estimated mean vectors to unit length so as to estimate the di-
rectional trend {μi}. The candidate symmetric linear smoothers treated in this
paper generalize certain penalized least squares (PLS) trend estimators. Details
of the methodology are presented in Sections 2 and 3. Computational experi-
ments reported in Sections 2 and 4 bring out how the proposed estimators reduce
risk through constructive interplay between basis economy and unconstrained
monotone shrinkage. Asymptotic theory developed in Section 5 supports key
details of the methodology and quantifies how basis economy reduces risk.

Other directional trend estimators proposed by Watson (1985), Fisher and
Lewis (1985), and Jupp and Kent (1987) rely on analogs of cubic-spline or kernel
methods for curve smoothing in Euclidean spaces. Tacit in these treatments
are assumptions on the smoothness of the unknown trend. The methods of
this paper assume no smoothness in the unknown directional trend but take
advantage of any smoothness present to reduce estimation risk.

2 Construction of Estimators

As in the north magnetic pole example, choose subscripts so that yι is the direc-
tional observation associated with the i-th smallest factor level. The directional
trend estimators in this paper stem from penalized least squares (PLS) estima-
tors for the mean vectors {ηι: 1 < i < n} in which the penalty function is the
squared norm of first-order or second-order differences of the {r^}. It will be
convenient in the exposition to suppose that the measured directions are unit
vectors in Rp. The practically important spherical and circular cases correspond
to p = 3 and p = 2, respectively.

2.1 Candidate Estimator Classes

The n x p data matrix formed from the observed unit vectors {yι: 1 < i < n}
in Rp is

=\ : =(ί/(1),.. y(p)) (1)

I
Here y^ denotes the j-th column of Y. The analogously organized matrix of
mean vectors is then

(2)
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First-order Penalized Least Squares. Let | | denote Euclidean matrix norm,
so that \A\2 = tr(AA') = tτ(A'A). For any r x n matrix B, where r < n, define

d(H,B,Ί) = \Y-H\2+ Ί\BH\2. (3)

Let D be the (n — 1) x n first-difference matrix

- 1 1 0 ... 0 0
0 - 1 1 ... 0 0

•-. ( 4 )
0 0 0 . . . - 1 1

The first-order PLS candidate estimators for H are the one-parameter family of
symmetric linear smoothers {#0(7): 7 > 0}, where

HD{n) = nτgmm d{H,D,Ί) = (I+ <γD'D)-1Y. (5)
H

For positive 7, the estimated means in HD(Ί) are more nearly constant in i
than the measured directions y{.

A spectral decomposition of Ό'Ό is UD^DU'D, where UD is an orthogonal
matrix, AD = diag{λ£>?n_i+i}, and XD,I > ... > \D,Π = 0. The eigenvectors
that form the columns of UD a r e ordered so that the successive diagonal elements
of AD are nondecreasing. It follows from (5) that

HD{Ί) = UDFD{Ί)U'DY with FD(Ί) = (I + ΊAD)-1. (6)

Let /D(T) = {ID,id)'- 1 ^ i ^ ^} denote the diagonal vector of the diago-
nal matrix FD(Ί)\ Evidently 1 > JDΛΊ) > IDΛΊ) > ••• > IDΛΊ) > 0.
Formula (6) plus modern algorithms for spectral decomposition provide a nu-
merically stable method for computing the first-order PLS candidate estimators
{HD(Ί)' 7 > 0} Other computational methods for HD(Ί)

 a r e discussed in
Press, Teukolsky, Vetterling and Flannery (1992), section 18.5.

Second-order Penalized Least Squares. Let E be the (n — 2) x n second-
difference matrix

E =

- 1
0

2
- 1

- 1
2

0
- 1

. . . 0

. . . 0
0
0

0
0

0 0 0 0 ... - 1 2 - 1

The second-order PLS candidate estimators for H are the one-parameter family
of symmetric linear smoothers { ^ ( 7 ) : 7 > 0}, where

HE{π) = argmind(#,£,7) = (/ + ηEΈ)-χY. (8)
H

For positive 7, the estimated means in HE{Ί) a r e more nearly linear in i than
the measured directions yι. Replacing D in (6) with E yields a computationally
useful alternative formula for HE{^)- Here too, the diagonal elements of the
m a t r i x FE(Ί) = d i a g { / £ ( 7 ) } sa t i s fy 1 > fE,i{i) > I E A Ί ) >>•>> Ϊ E Λ Ί ) > °
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Monotone Shrinkage Smoothers. Abstracting the structure in formula (6)
suggests larger families of candidate symmetric linear estimators for H. Let

TMon = {/ € [0, 1]": h > h > • • • > fn} (9)

and let F = diag{/}. The class of monotone shrinkage candidate estimators for
H associated with a specified orthogonal matrix U is

CMon(U) = {H(f,U):fefMon} with H(f,U) = UFU'Y. (10)

Evidently, the first-order PLS candidate estimators are a proper subset of CM OΠ{UD)

in which the shrinkage vectors are restricted to {foil)'- 7 > 0}. Similarly,
the second-order PLS candidate estimators are a proper subset of CMOΠ(UE)

in which the shrinkage vectors are restricted to {/#(7): 7 > 0}. The devel-
opment in this paper emphasizes super efficient estimators of directional trend
constructed from the candidate estimators CMOΠ{UD) and CMOΠ(UE) rather than
from their PLS subsets. Enlarging the class of candidates can only decrease the
risk of the best candidate and proves to be advantageous computationally.

2.2 Choice of Candidate Estimator and Normalization

If the risk function were known, it would be reasonable to choose the candidate
monotone shrinkage estimator of H that minimizes risk, using a quadratic loss
function for algebraic tractability. Because risk is not known, this oracle estima-
tor is not realizable. Instead, we will select the candidate monotone shrinkage
estimator that minimizes estimated risk and verify that the asymptotic perfor-
mance of this estimator matches that of the oracle estimator.

For the risk calculations, we will assume that the measured directions {yι: 1 <
i < n} are independent column vectors in Rp, each having unit length. The dis-
tribution of yi is Fisher-Langevin with mean direction /^, a unit vector, and
precision K > 0. Properties of this probability model are developed in Watson
(1983) or Mardia and Jupp (2000) and are summarized in Fisher, Lewis and
Embleton (1987).

Let Z — U'Y and write, in analogy to (1),

Z={ : =(zw,...,z{p)). (11)

For any vector /ι, let ave(/ι) denote the average of the components of h. Section
3 develops an estimator for the quadratic risk of H(f, U) that is uniformly
consistent over all / G TM a s ^ and n tend to infinity:

β(LU)=zve[k-1qf2 + (z2-k-1q)(l-f)2} with * 2 = 5">£ r (12)
3 = 1

Here q = p — 1 while k~λ is a suitably consistent estimator for the dispersion
κ~1. Section 3.2 offers one possible construction of k~x.

For specified orthogonal matrix U, define the adaptive monotone shrinkage
estimator of H to be

HMon(U)=H(fMon(U),U) with fMθn(U) = ciigmmp(f,U). (13)
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The first and second-order monotone shrinkage estimators HMon(l) and HMOΠ(2)

are specific instances of (13) with U = UD and UE respectively. In the notation
that follows (6), the adaptive first-order PLS estimator of H is defined to be

HpLS(l) = H(fD{jD),UD) with 7 D = argminp(/jD(7),/7D). (14)

Replacing the first-difference matrix D in (14) with the second-difference matrix
E defines the second-order PLS estimator HpLS(2) of H. Normalizing to unit
length the rows of these respective estimators of H yields the monotone shrink-
age estimators MMon(/c) and the PLS estimators MPLs(k) of the directional
trend {μι: 1 < i < n}.

First-order PLS Fit First-order Monotone Fit

Second-order PLS Fit Second-order Monotone Fit

Figure la. Competing fits to time-ordered measured positions of the paleo-
magnetic north pole. Linear interpolation in the top subplot shows the time-
sequence of the observed directions.

A Pαleomαgnetic Example. The directional data fitted in Figure 1A consists
of n = 26 measured positions of the paleomagnetic north pole taken from rock
specimens at various sites in Antarctica of various ages. Kent and Jupp (1987,
pp. 42-45) give the data and its provenance. Each subplot uses the Schmidt
net, an area-preserving projection of the northern hemisphere onto the plane
(cf. Section 4.2). The perimeter of each circle represents the equator while the
center corresponds to the geographical north pole. Linear interpolation between
successive mean directions or estimated mean directions is used to indicate the
time sequence.

The subplot in the first row exhibits the measured directions, which coincide
with the naive trend estimator. Even with linear interpolation between succes-
sive observations, it is difficult to see a pattern, especially in the most recent
observations near the geographic north pole. Cells (2,1) and (2,2) display the
first-order estimates Mpz,s(l) and MMOΠ(1) while cells (3,1) and (3,2) exhibit
the second-order estimates MPLS{2) and MMOΠ(2). Both monotone shrinkage
fits and the second-order PLS fit are similar in appearance. Which should we
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use? On the basis of estimated risks and diagnostic plots, we will argue in
Section 4.1 that the best of the competing estimates for this data is MMOΠ(1)
Next best, though with substantially larger estimated risks, are MMOΠ(2) and
Mp£s(2), in that order.

In their analysis of the data, Kent and Jupp (1987, Figs. 1 and 2) unwrapped
the sphere and data onto a plane, used a cubic spline fit to the planar data, then
wrapped this fit back onto the sphere. Their spline fit on the sphere is similar to
MPLS but has a surprising kink in the tail near the left edge of the Schmidt net
plot. They noted that this kink lacks physical significance and is an artifact of
the spline-fitting technique. That the three estimates MMOΠ(1), M P L S ( 2 ) and
^Mon(2) agree in broad visual features with the Kent-Jupp spline estimate but
lack its suspect kink is a point in favor of the shrinkage estimates.

Section 3 treats estimation of dispersion κ~λ, risk estimation, and computa-
tional algorithms. Diagnostic plots for competing PLS or monotone shrinkage
estimators and computational experiments are the subject of Section 4. Asymp-
totic theory in Section 5 brings out three important properties. First, adaptation
works for the PLS and monotone shrinkage candidate estimators in the sense
that minimizing estimated risk also minimizes risk asymptotically. Second, the
asymptotic risk of the estimators MMOΠ{^) and MpLs{k) never exceeds that
of the naive estimator and can be much smaller. Third, for greatest super-
efficiency of these estimators, the projection of the mean vectors {ηi} on the
first few columns of U should yield an accurate approximation to the {77̂ }. A
diagnostic plot is available for identifying this favorable situation.

3 Estimated Risks and Algorithms

This section motivates the risk estimator p(f,U) defined in (12) and discusses
methods for computing the directional trend estimators MMon(k) and
defined above.

3.1 Estimating Risks

We suppose in our analysis that the directions {yι: 1 < i < n} are independent
unit random vectors in Rp. The distribution of yι is Fisher-Langevin (/^,κ).
As K tends to infinity, it is known that, for q — p — 1,

i = E(Vi) = [1 - {2κ)-1q]μi + o^" 1)

=κ-1(I-μiμ'i)+o(κ-1) (15)

and that

/ί-^G/i-r/^Λ/^O,/-/ )̂ (16)

(see Watson (1983), chapter 4). The limiting normal distribution on the right
side of (16) is singular, supported on the q dimensional subspace orthogonal to
μι. From (15) and independence of the rows in Y,

E(VU)) = % ) ' Cov(j/ω) - diag{σ? : 1 < i < n}, (17)
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where σ^ = K X ( 1 — μ^ ) + o(ft x) and μ^ denotes the j-th component of the
unit vector μ̂ . Hence,

p p
E Σ Wω = Σ Wω H-^V + O^-1) (is)

3 = 1 3 = 1

as ft tends to infinity.
The performance of any directional trend estimator {μι = ήi/\ήi\} will be

measured indirectly through the normalized quadratic loss

n p

Ln(H, H) = n-ι\H - H\2 = n" 1 ^ |τ), - m\2 = n" 1 J ) |T}0) - τ/ω |2, (19)

which compares the {ήi} with the means {r]i}. This loss function leads to
tractable formulae for risk. Tacit in our use of this loss is the supposition that
a good estimator of the trend in means {77̂ } will map, by normalizations to
unit length, into a good estimator of the directional trend {μi}. Experiments
reported in Section 4 offer empirical support for this assumption.

For specified orthogonal matrix U, let Z = U'Y as in (11), Ξ = Έ(Z) = U'H
and Ξ(/, 17) = U'H(f, U) = FZ. By analogy with equation (11),

! =«(!),•--^(p)), (20)

I &
From (18),

p P

3 = 1 3 = 1

as n tends to infinity because z^ = U'y^ and ξ^ = U'η^y
Under loss (19) and the Fisher-Langevin model, the risk of candidate esti-

mator H(f, U) is

Rn(H(f, U), H, K) = n-ιΈ\H(f, U)-H\2 = n^ElFZ-Ξ]2 = Λn(Ξ(/, U), Ξ, K).
(22)

Let

2,/,) = ave[κ-V 2 +ί 2 ( l-/) 2 ] with ξ2 =
3=1

Here all operations on vectors are performed componentwise as in the S language
(cf. Becker and Chambers (1984)). Applying (21) to (22) yields

3=1

p

n" 1 Σ tτ[F2Cov(z{j)) + (I - F)%^'u)]

2,κ)+o(«- 1) (24)
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as n tends to infinity.
We argue in Section 5 that, for any choice of the orthogonal matrix [/,

lim^lim sup κ\Rn(HMon(U), H, K) - τMθn(ξ2, κ)\ = 0, (25)

where

τMon(ξ2,κ)= min p(f,ξ2,κ). (26)

This entails that the asymptotic risk of HMOΠ(U) matches that of the oracle
estimator, which is the monotone shrinkage estimator that minimizes actual
risk. In particular, this asymptotic risk cannot exceed κ~λq^ the asymptotic
risk of the naive trend estimator, and is often much smaller.

To estimate the risk function in (22), it suffices for large n to estimate the
function p(/, ξ2, K). It follows from (21) and the definition of z2 in (12) that

Eave[*2(l-/)2] = n^Etφ - F)2

= n-hτ[(i - F)2{ΣtuAn + «~ V}]

m+oiK-1). (27)

This calculation, (23), and (24) motivate estimating the risk of H(f,U) by
the function p(f,U) defined in (12). Section 5 gives this risk estimator much
stronger theoretical support.

Scrutiny of formulae (23) and (24) throws light on ideal choice of the or-
thogonal basis matrix U. We say that the basis provided by the columns of U
is economical in representing Ξ if all but the first few components of ξ2 are very
nearly zero. In that case, setting the first few components of / equal to one
and the remaining components to zero yields a monotone shrinkage candidate
estimator of H whose risk, for large K, is much smaller than that of the naive
estimator Y.

3.2 Estimating Dispersion

A simple first-difference estimator of dispersion κ~λ may be constructed from
the norm of first-differences among the observed directions {yi}. The asymptotic
approximations below indicate that the bias of this estimator is modest if the
norm of first differences among the mean vectors {^} is relatively small. When
this is not the case, analogous estimators of dispersion can be constructed from
the norm of higher-order differences.

The first-difference dispersion estimator is

If

^ | y i - 2 / i _ 1 | 2 . (28)
i=2

lim lim «n" i y^ | r7 i- r/ ί _i | 2 = O, (29)
i=2
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then k~ι is a consistent estimator in the sense that

l i m l i m κE\k~λ -κ~λ\= 0. (30)

To verify this, let Γ = Y™=2 \y%-yi-i\2, et = κ1/2(yi-ηi) and di = κ1/2{ηi~
ηi-ι). Evidently

κT = n-Ly K - e ^ ^ + n - 1 ) Ir f^+n" 1 ) d fe - e;_i). (31)
2 = 2 2 = 2 2 = 2

Because of (16), Skorokhod's theorem and Vitali's theorem, there exist versions
of the {e }̂ and independent random column vectors {wi} such that the distri-
bution of Wi is 7V(0, / — μiμ'i) and Γim^oo E|ez- — Wi\2 = 0. These facts and (29)
imply

n

lim lim E|ACΓ - n " 1 V \w{ - ^ _ i | 2 | = 0. (32)
n—> oo K,—KX) * ^

i=2

On the other hand,

n

lim lim Eln" 1 V" \w{ - Wi-X\
2 - 2q\ = 0. (33)

> oo

Limits (32) and (33) imply the consistency property (30) for the original random
variables.

3.3 Computational Aspects

The following remarks concern computation of the directional trend estimators
MMon{k) and MPLs(k). Let g = (z2 — k~1q)/z2. Because the estimated risk
function (12) satisfies

β(f, U) = ave[(/ - g)}2z2} + z.ve{κ-ιqg), (34)

definition (13) of fMon(U) is equivalent to the constrained isotonic weighted
least squares evaluation

fMon(U) = argminave[(/ - g)]2z2]. (35)

This expression reveals that JMon{U) is a regularization of the raw shrinkage

vector g G (—00, l ] n

Let H = {h e Rn: h\ > h2 > .. > /ιn}, a superset of TM An argument in
Beran and Dύmbgen (1998) shows that

fMon(U) = U with / = argminave[(/-£)]V]. (36)
fen

The pool-adjacent-violators algorithm for isotonic regression (see Robertson,

Wright and Dykstra (1988)) finds / expeditiously in a finite number of steps.

The positive-part clipping in (36) arises because g is restricted to (-00, l ] n

rather than to [0, l ] n .
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Similarly, definition (14) of JD for first-order PLS is equivalent to the con-
strained nonlinear weighted least squares evaluation

ηD = argminave[(/D(7) - g)]2z\ (37)
7>0

where /D(T) is given in the discussion that follows (6). The S-Plus function
n l s ( ) may be summoned to solve this problem iteratively, in the manner de-
scribed on p. 244 of Venables and Ripley (1999). Simple grid search provides
the necessary starting approximation to 7^. With minor changes in the code,
the R function n l s ( ) also iterates to 7^. Computation of JE for second-order
PLS is entirely analogous.

In numerical experiments, computation of the monotone shrinkage estima-
tor MMon(k) was considerably faster than computation of the motivating PLS
estimator MpLs(k)- This finding together with the theoretical superiority in
risk of MMon(k) over MpLs(k) provides strong grounds for considering only the
former.

4 Experiments and Diagnostics

Section 4.1 discusses estimated risks and diagnostic plots for the competing fits
to the paleomagnetic data presented in Section 2.2. Further experiments with
artificial data, described in Sections 4.2 and 4.3, suggest that the orthogonal
matrices UD and UE implicit in the PLS fits provide economical bases for a
range of directional trends. Consequently, the PLS estimators described in
Section 2 have much smaller estimated risk than the naive trend estimator; and
the associated monotone shrinkage fits reduce risk further. The experimental
results support theoretical conclusions developed in Section 5 about the benefits
of basis economy while revealing aspects of estimator performance not covered
by the asymptotics.

4.1 Paleomagnetic Data

For this data, k — 19.7 and the rescαled risk estimates &p(/, U) for the competing
fits displayed in Figure 1A are:

MMon(l) MpLS(2) MMon(2) Naiv
.477 .203 .351 .292 2.000

The estimate MMOΠ(1) is the clear winner in having smallest estimated risk, far
smaller than that of the naive estimator. It is noteworthy that the relatively
small estimated risk of MMOΠ{^) is coupled with a pleasing visual appearance.
The estimate gives a clear picture of the time-trend in the position of paleomag-
netic north pole as measured from Antarctica.

The diagnostic plots in Figure IB provide further insight into the behavior
of these directional trend estimates. Let v = ά 1 / 2 ^ . In cells (1,1) and (1,2),
the plots of υi versus i suggest that UD provides a more economical basis for
the unknown trend than UE' the {vi} for the first basis tend to zero faster than
for the second basis. The square root transformation enhances visibility of the
smaller components. Greater basis economy explains why M M o n ( l ) has smaller
estimated risk than MMOΠ(2).



Rudolf Beran 25

Cell (2,1) displays, with linear interpolation, the successive components of
the shrinkage vectors fMoniUn) (dashed line) and /D(7D) (solid line) that en-
ter into the constructions of MMon(l) and MPLS{1) respectively. We see that
/D(7D) provides only a rough approximation to the better fMoniUo) and gives
more weight to higher "frequencies." This observation explains both the ragged
visual appearance of MPLS(^-) and the substantially smaller estimated risk of
MMOΠ(1) The free-floating points in cell (2,1) are the components of the raw
shrinkage vector g plotted against i without interpolation. It is these highly
irregular values that monotone and PLS shrinkage vectors approximate in con-
strained fashion through (35) and (37) respectively. In cell (2,2), the analogous
plots of the shrinkage vectors / M O Π ^ S ) (dashed line) and JE^E) (solid line)
reveal that the latter is a good approximation to the former. This explains why
the estimated risk of MMOΠ(2) is not much smaller than that of MPLS(^)

Both the economy of the orthogonal basis and the quality of the shrinkage
strategy affect the risk of the directional trend estimate. In this example, first
and second-order PLS generate orthogonal bases that are plausibly economical.
However, the strongly constrained one-parameter shrinkage strategy implicit in
PLS can fail to exploit basis economy. Adaptive monotone shrinkage takes full
advantage of basis economy and is computationally faster than adaptive PLS.
There seems little reason to use PLS trend estimators except as a source of
potentially economical orthogonal bases.

v for First-order Basis v for Second-order Basis

Component

First-order Shrinkage Vectors

Component

Second-order Shrinkage Vectors

Figure lb. Diagnostic plots for fits to the paleomagnetic north pole data. Top
row displays the components of υ — k1/2^ for each orthogonal basis. Bottom
row displays the shrinkage vectors defining MPLs(k) (solid line) and MMOΠ(^)

(dashed line).

4.2 Generating and Plotting Trend Data

This subsection summarizes ideas used to generate and plot pseudo-random di-
rectional trend data in three dimensions. All calculations and plots were done in
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Windows S-Plus 3.2 with set .seed (2). As a software check, the computations
were repeated in Unix S-PΓus 3.4. Very similar results were obtained, after small
changes in the code, in Unix R 1.00.

Cartesian and Polar Representations. A direction in R3 is a unit vector
u = (α, 6, c)' that has an equivalent polar coordinate representation (0, φ), where
0 G [0, π] and φ G [0, 2τr). Direction (0, 0,1)' is the north pole of the coordinate
system. On the one hand,

a = sin(0) cosO), b = sin(0) sin(0), c = cos(0). (38)

On the other hand,

0 = cos-\c) E [0,π], φ = tan-^δ/α) G [0,2π). (39)

These values may be computed by using S-Plus functions acos () and atan( , ).

Generating a Fisher-Langevin (μ, K) random direction. Let Vi, V2 be inde-
pendent random variables, each uniformly distributed on [0,1]. Define

θ = cos'1 (K^S- 1) with £ = log[l + (exp(2«) - l)Vi]

φ = 2πV2. (40)

The random unit vector u with polar coordinates (0, φ) has a Fisher-Langevin
distribution with mean direction v$ — (0, 0? 1)' a n d precision K (e.g. Mardia and
Jupp (2000)). For any unit vector μ, the orthogonal matrix

O(/i) - (1 + v>Qμ)-\vQ + μ){v0 + μ)'- I (41)

rotates VQ into μ (Watson (1983, p. 28). Thus, the random unit vector O(μ)u
has a Fisher-Langevin distribution with mean vector μ and precision K.

Generating and Plotting Trend Data. Let / and g be functions that map
[0,1] into, respectively, [0, π] and [0, 2π). The pairs

θμil = f[i/(n + 1)], φμ,τ = g[i/(n + 1)], 1 < i < n (42)

determine in polar coordinates a trend of n successive mean direction vectors
{μ^}. Let {ui: 1 < i < n) be independent unit random vectors, each constructed
using (40) and (38) to have a Fisher-Langevin (vo,κ) distribution. Then the

yi = O(μi)ui, l<i<n (43)

are independent and yι has a Fisher-Langevin (μ i? K) distribution. This method,
applied to pseudo-random Uniform (0,1) variates, generated the data for the
experiments in the next subsection.

The figures in this paper use the Schmidt net to plot directions in three
dimensions. In this area-preserving projection of the sphere into the plane, the
three-dimensional direction (0, φ) is plotted as the planar point having polar
coordinates (r, φ), where

r = 2sin(0/2) if 0 < 0 < τr/2

r = 2 sin[(π - 0)/2] if π/2 < 0 < π. (44)

The north pole u0 maps into the point (0, 0) and the equator of the sphere
maps into a circle of radius Λ/2 about that point. Watson (1983), pp. 21-22,
gives further details.
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4.3 Artificial Data

To probe how the nature of the trend might affect what we discovered in ana-
lyzing the paleomagnetic data, we will consider three sets of pseudo-random di-
rectional trend data. Each is generated as described in Section 4.2 with n = 300
observed directions and precision K = 40. The functions / and g that determine
the actual trend in mean direction are:

Wobble: g(t) = 4πί; f(t) = .3π[ί + .2 + .15sin(36π)ί].

Bat: g(t) = .4τrsin(6πt); f(t) = .8π(t - .5).

Jumps: g(t) = 2τr£; f(t) = .2π if 0 < t < .15, = Λπ if .15 < t < .3, = Λπ
if .3 < t < .45, = .2τr if .45 < t < .65, = .3π if .65 < t < .8, and = Λπ if
.8 <t < 1.

The following display reports, for each set of data, the rescaled risk estimate
κβ(f, J7), where U is the orthogonal matrix and / is the shrinkage vector that
define the superefficient estimator.

Wobble
Bat

Jump

MpLsil) -
.209
.143
.196

^Mon(l)
.109
.051
.164

MPLS(2)
.208
.051
.194

MMon{2)
.107
.035
.165

Naive
2.000
2.000
2.000

The artificial Wobble data was constructed to resemble observations on
the Chandler-wobble of the geographic north pole, blown up to wander over
a larger portion of the northern hemisphere and given greater measurement er-
rors. Brillinger (1973) analyzed actual Chandler-wobble data using time series
techniques in the tangent plane to the north pole.

In Figure 2, cells (1,1) and (1,2) present, with linear interpolation, the true
Wobble mean directions and the observed directions. Cells (2,1) and (2,2) dis-
play the superefficient first-order estimates M P L S ( 1 ) and MMOΠ(1) Cells (3,1)
and (3,2) give the second-order estimates MPLS(2) and MMOΠ(2). The inter-
polated true mean directions are superposed as a dotted curve on top of each
estimate. Visually, each monotone fit improves on the respective PLS fit that
provided the orthogonal basis used; the first-order and second-order monotone
fits are similar; and each smoothed estimate improves greatly upon the naive
estimate of directional trend.

Estimated risks for the fits to the Wobble data, reported above, support these
assessments. For this data, using orthogonal matrix UE m place of UE scarcely
affects estimated risk. However, using monotone shrinkage in place of PLS
halves the estimated risks for both choices of basis. Diagnostic plots (not given)
akin to Figure IB suggest that UD and UE provide comparably economical bases
here. For this data, the shrinkage vector / D ( 7 D ) only roughly approximates the
better fMoniUo) and gives more weight to higher "frequencies". This explains
both the ragged visual appearance of MPLSQ) and the substantially smaller
estimated risk of MMOΠ{X) The shrinkage vector defining MPLs(2) is likewise
a rough approximation to that for MMon(2), though it gives less weight to higher
"frequencies."
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Trend Data and Naive Fit

First-order PLS Fit First-order Monotone Fit

Second-order PLS Fit Second-order Monotone Fit

Figure 2. Competing fits to the Wobble directional trend. Linear interpolation
in cell (1,2) shows the time-sequence of the observed directions.
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Trend Data and Naive Fit

First-order PLS Fit First-order Monotone Fit

Second-order PLS Fit Second-order Monotone Fit

Figure 3. Competing fits to the Bat directional trend. Linear interpolation in
cell (1,2) shows the time-sequence of the observed directions.
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Trend Data and Naive Fit

First-order PLS Fit First-order Monotone Fit

Second-order PLS Fit Second-order Monotone Fit

Figure 4. Competing fits to the Jumps directional trend. Linear interpolation
in cell (1,2) shows the time-sequence of the observed directions.

The graphics and estimated risks for the Bat data behave differently. In
the diagnostic plots (not given), the basis UE appears to be more economical
that UD- Consequently, MMOΠ(2) has smaller estimated risk than MM O 7 1 (1) .

The clear winner, visually in Figure 3 as well as in estimated risk, is MMOΠ(2).

In this example, as for Wobble, the PLS shrinkage vector JD{ΊD) has difficulty
approximating the better /MOΠ(^£>) Second-order PLS is closer in performance
to the second-order monotone fit, but is still inferior.

In diagnostic plots (not given) for the Jumps data, the {vi} damp down to
zero more slowly than in the preceding examples and at comparable rates for
both orthogonal bases. Neither basis seems more economical than the other,
a circumstance reflected in the estimated risks of the monotone shrinkage esti-
mates. In this example, /D^D) approximates JMoniUo) fairly well and fE(lE)
approximates /MOH(^£;) fairly well. Consequently, the differences among the
monotone shrinkage and PLS estimates are not visually impressive in Figure 4.

5 Some Asymptotics

The following theorem shows that the loss and risk are asymptotically equal in
this estimation problem and that the estimated risk converges to their common
asymptotic value p(/, £2,ft). These findings reflect the ill-posed character of
estimating directional trend and suggest an extended analysis that formally
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justifies selecting candidate estimator to minimize estimated risk and quantifies
the effect of basis economy.

Theorem. Suppose that for r > 0,

lim lim sup κE\k~λ — κ~1\ = 0. (45)
n^ooκ^oo

Kn-ί\H\^<r

For W equal to Ln{H, H), Rn(H, H, K) or p(f, U),

lim lim sup κE\W - ρ(f,ξ2, κ)\ = 0. (46)

Proof. Fix n. Let S(r) = {Ξ: KTΓ1^2 < r}. Note that Ξ G S(r) if and
only if κ,n~1\H\2 < r. Applying (45) to definitions (12) and (23) yields

= V + o(l) say. (47)

The remainder term tends to zero uniformly over Ξ G S(r) as K tends to infinity.
Let A = UFU1 and B = (I — A)2. Using notation from Section 2 and Section
3.2 and the identity ave(/ι2) = n~1tr(/ι/ι/) = n~1tr(/ι//ι),

V = Kn-^Σy'^By^-n^qtτ^-Ση'^Bη^
3 = 1 3=1

P P

g' j^β, x πtΐ(B} -\- 2 7 K ΐi Be( \ I

(48)

The last step uses the calculation

On the one hand,

i = l

Let 2+ stand for 2 + o(l) as « tends to infinity. For increasing /ς, the first term
in (50) is bounded above by

2i / 2 n" 1 / 2 . (51)
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For K tending to infinity, the second term in (50) is bounded above by

fc=l i^fc fc=l i^fc

< n ^ t r ^ 2 ) ] 1 / 2 ^ " 1 / 2 . (52)

Thus, for every n and every r > 0,

Jdm^sup n^El 5>'(i) S eU) - E(e'ωBeω)]| = Ofa"1/2). (53)

On the other hand, because the largest eigenvalue of B2 lies between 0 and

1,

Thus,
p

lim sup n^El J ^ / y ^ e o ) ! = O(n-1/2). (55)
κ~*°°ΞeS(r) ^ = 1

Combining (47), (48), (53) and (55) yields Theorem assertion (46) for W =
p(/, £/). Because of (24), the result also holds for W = Rn(H, H, K).

From definitions (19) and (23), κE\Ln(H,H) - p ( / , ξ 2 , κ ) | can be expressed
as

e 0 ) ) 2 - /,-χg/2 + 2/(1 - f)ξω(zω - ξω)]\

^ C e ^ ) - gtr(C) + 2κ1/2η[j)Geωl (56)

where C — A2 and G = A(/ — A). Analysis of the the right-side of (56) by the
method used for (48) establishes assertion (46) when W = Ln(H,H).

Extensions. A more elaborate empirical process argument, akin to the anal-
ysis in Section 6 of Beran and Dύmbgen (1998), shows that

lim lim sup KE sup \W - p(/,ξ2, κ))\ = 0 (57)
n ^ o o K ^ O O i | | 2 fT

for the three values of W in the Theorem above . This strengthening of (46)

clarifies the performance of the adaptive estimator HMOΠ(U). It follows from

(57) that p^JMon, U) is a consistent estimator for the risk of HMOΠ{U) and that

Jim^Jirr^ sup κ\Rn(HMon{U), H, k) - τMθn(ξ2, κ)\ = 0, (58)

where
£2,/<c)= min p(f,ξ2,κ)<κΓιq. (59)
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To quantify the affect of basis economy on the risk of the adaptive estimator
HMon{U), let

S(r, 6) = {Ξ: rΓ1^2 < r, & = 0 if i > bn} (60)

for b G [0,1] and r > 0. The basis U is highly economical for the mean matrix
H if Ξ G 5(r, 6) for a small value of 6. By specialization of a theorem in Pinsker
(1980),

sup min p(f, ξ2, K) = min sup p(f, ξ2, K) = qrb/(r + b). (61)
S ( ) ft^ fe^ ()

For details, see Theorems 1 and 4 in Beran (2000), noting that the result depends
only on the function p(f, ξ2, n), not on the model in the background. Combining
(58), (59) with (61) establishes

lim lim sup κRn(HMθn(U), H, K) = qrb/(r + b) < qb. (62)
n-^oo K^OO ΞeS(r,b)

Thus, the maximum asymptotic risk of the directional trend estimator MMOΠ(U)
is small if the basis U is highly economical in the formal sense that b is small.
Though this formulation of basis economy is overly simplified for the sake of
mathematical analysis, result (62) supports the experimental finding in Section
4 that a quick decrease in the higher order components of ξ2 reduces the risk of

Rudolf Beran
Department of Statistics
University of California, Davis
Davis, CA 95616, USA
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