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Abstract

Accurate classification of tissue samples is an essential tool in disease diagno-
sis and treatment. The DNA microarray technology enables disease classification
based only on gene expression analysis, without prior biological insights. We
present a classification method based on modeling the distribution of the gene
expression profile of a test sample as a mixture of distributions, each of which
characterizes the levels of gene expression within a class. Class assignment for
a test sample is based on the predictive probabilities of class memberships. We
believe that this general modeling framework is a flexible scheme for multi-type
classification. Since most of the thousands of genes whose expression levels are
measured do not contribute to the separation between types of tissue samples, we
also explore several measures for gene selection, including T, NPT, BW, NPBW,
and a mixture modeling approach based on Markov chain Monte Carlo (MCMC)
estimation of parameters. For a classifier based on a gene selection measure, such
as the T classifier, the number of genes selected is achieved by cross-validation.
The methods are applied to a leukemia dataset; our results are comparable with
the best results achieved in a comparative study done by Professor Terry Speed
and colleagues.
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1 Introduction

DNA microarrays are biotech chips that enable researchers to measure the expression
levels of thousands of genes simultaneously; see Schena [15] and The Chipping Fore-
cast [5]. These measurements are obtained by quantifying the hybridization of the
mRNA extracted from tissue samples to an array of spotted cDNA (cDNA arrays) or
oligonucleotide probes (oligonucleotide arrays) immobilized on the surface of the chip.
Details can be found in Schena et al [16] for cDNA arrays and Lockhart et al [9] for
oligonucleotide arrays.

After proper image analysis, data processing and normalization (which entails non-
trivial efforts, see for example, Dudoit et al [4], Schadt et al [14], Newton et al [11],
and Yang et al [17]), a single number, referred to as the level of expression, is obtained
for each gene on a microarray.
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Statistical methods are needed to address many of the questions for which re-
searchers seek answers from microarray gene expression data, such as (1) identifying
genes differentially expressed under two or more conditions, (2) grouping genes with
similar expression patterns, (3) finding genes that differentiate one tissue from another,
and (4) molecular classification of tissue samples, including class discovery and class
prediction. We focus on statistical methods for addressing this last issue.

Accurate classification of tissue samples is an essential tool in disease diagnosis
and treatment. DNA microarray technologies enable classification based only on gene
expression analysis, without requiring prior biological insight; successful cancer clas-
sification by Golub et al. [6] provides an excellent example. The idea is to classify
a tissue sample into one of K known classes/types, where a sample, also called gene
expression profile, is a vector whose components are the levels of gene expressions in
a given tissue. Therefore, the problem of classification can be defined as follows: given
a set of training samples, i.e., samples whose class memberships are known, and a set
of test samples, predict the class assignments of the test samples.

Most of the thousands of genes that make up the gene expression profile of a tissue
sample do not contribute to the distinction between classes. Considering such irrele-
vant genes introduces noise to the classification process, and increases computational
hurdles due to the extremely large dimensionality of the data. The combined contri-
bution of many nonsignificant genes could downplay or even cancel the effects of the
significant ones [8]. In addition, with a large number of genes whose expression levels
are used for classification purposes, the interpretability of the results becomes an issue.
When only a few genes are found helpful for separating classes, insight might be gained
into the biological significance of these genes, as shown in Golub et al. [6].

For binary classification problems, Ben-Dor et al. [2] suggest a gene selection al-
gorithm with a single threshold value chosen by cross-validation. Golub et al. [6] select
the genes that provide best distinction between the "standardized" means of two classes
(although their standardization is not the typical kind of standardization in statistics).
Dudoit et al. [3] propose to select genes that display the largest ratios of between-group
to within-group sums of squares, which is applicable to gene selection for multi-type
classification problems.

Numerous methods have been proposed to classify tissue samples based on gene
expression data. Some are restricted to binary classification, such as the weighted vot-
ing scheme of Golub et al. [6], while others are applicable to multi-type classifications.
Techniques of machine learning, such as nearest neighbor classifiers [3], and cluster
analysis methods, including hierarchical clustering [1,12], have been entertained. Clas-
sification trees or aggregation of classifiers built from perturbed versions of the training
set using boosting, bagging or convex pseudo-data methods of perturbing the training
set [3], are some other examples.

There are yet other classification techniques that are applicable to multi-type clas-
sification problems; these are based on modeling the class densities, such as the linear
and quadratic discriminant analysis of Dudoit et al [3], or the naive Bayes methods of
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Keller et al. [8]. For a comprehensive review of the methods, see Keller et al [8] and

Dudoit et al [3].

In this article, we propose a classification method based on modeling the gene ex-

pression profile of a test sample as arising from a mixture of distributions, each of

which characterizes the expression profiles within a class. We believe that this general

modeling framework is a flexible scheme for multi-type classification. It could also be

extended to accommodate class discovery in addition to classification to known classes.

We also explore several measures for gene selection, including a mixture modeling ap-

proach based on Markov chain Monte Carlo (MCMC) estimation of parameters.

2 A Multi-type Classification Method

Mixture modeling of test samples

Let K denote the number of known classes (or sub-types, e.g., leukemia sub-types)

for which training samples exist. We use Y^ = (Ykn ? '" > YkiβY to denote the column

vector of gene expressions of the zth sample from class k, where G is the number of

genes. Hence {Yfai = 1, , 7*} is the collection of data from class k, where 7* is the

sample size, k = 1, ,K. For each / = 1, , 7*, we assume 7& ~ /*(• I ®k), where θ*

is the vector of parameters of the component density function, which can be estimated,

for example, from the training samples.

Let {Xi = (Xfi, • ,XiG)f, i = 1, , T} denote the gene expression data from T test

samples, whose class membership assignments are unknown and the subject of interest.

We model Xt as i.i.d. observations from a mixture distribution with component density

functions fk but unknown component weights π*, k = 1, ,£", χf= 1 π^ = 1. That is,

k=\

where θ is the vector of unknown parameters including the π^.

Two likelihood formulations are considered. If we assume that the parameters of

each component density are to be estimated from the corresponding training samples,

then the likelihood formulation is based on known component densities. The parame-

ter vector is thus θ = {n^k = 1, ,K}, with the constraint J$=ι π* = 1, and will be

estimated using the test samples only. The likelihood function is

(1)
k=l

Alternatively, we can estimate the parameters θ* in each component density to-

gether with the component weight π* using data from training samples and test samples

jointly. The parameter vector is thus θ = {π*, θ*, k = 1, ,K}, again with the constraint
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Lj π* = 1. The likelihood function is then

Jfc=li=l

Under the latter formulation, data from the test samples also contribute to the es-

timation of the parameters in each component density. In the next section, we focus

on estimation of the parameters under this formulation. Parameter estimations under

formulation (1) can be carried out similarly.

EM estimation of parameters

We .assume that each component density is multivariate normal with mean vector

μk = (μia, ,μκ?) and variance-covariance matrix Σ*, that is, θ* = {μ^Σ*}. We fur-

ther assume that the expression levels among different genes are independent, therefore

Σ* = diag(σ^, , a2

kG) is a diagonal matrix of the variances. To find the maximum

likelihood estimates (MLEs) of the parameters in (2) with normal component densities,

the EM algorithm is highly suited [10].

Let Z, , which takes a value from the set {1,2, ,ΛΓ}, denote the unobserved class

assignment for test sample i = 1,---,Γ. Then {(Λ^Z,-),/ = I,--,T}l){{Yki,k),k =

\,-,K,i= 1, , Tk\ can be regarded as a representation of the complete data. The

corresponding complete data likelihood is

ί = l * = 1

where /(Z, = k) is the indicator function that takes the value 1 if Z, = k and 0 otherwise.

The EM iterates for the parameters are easily obtained and are given by:

T

ί = l

k=l,---,K,g=l,- -,G,

where
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From a starting parameter configuration Q(°\ we compute the sequence of estimates

θ ^ iteratively using equations (3)-(5) until convergence. The resulting parameter con-

figuration is the estimated MLEs and is denoted by θ. Note that the estimates of the

component density parameters involve data from the test samples as well as those from

the training samples, as pointed out earlier.

A Classification Scheme

For each sample to be classified, we compute the predictive probabilities that it be-

longs to each of the known classes given the observed expression data and the param-

eter estimates. Then the sample is assigned to the class that has the largest predictive

probability. That is, we compute

i = k I xj) - πkfk(Xi i Θ*U = l, ,*. (6)

Then

For a test set with T samples with known underlying class assignments z,-,/ =

1, , T, the quantities r = Σ,Li I{Zi = Zi)/T and e = jj=\ I{Ά Φ z, ) give the prediction

accuracy rate and the number of samples that are misclassified, respectively.

3 Methods for Building Classifier

Gene selection measures and cross-validation

Gene selection measures are summary statistics used to order or select genes ac-

cording to the perceived importance in discriminating among known classes. Four

measures are described below and their performances are evaluated. Other gene se-

lection measures are also considered; see the Discussion section for details.

T: This measure is applicable to two-class discriminant problems only. The measure

Tg is simply the two sample /-statistic for each gene g = 1, , G. That is,

where ΫLg = ΣjLi Y\ig/Ά and S2

lg = Σj=ι {Y\ig ~ Ϋ\.g)2/{Ά - 1) are the sample mean

and sample variance of class 1, respectively, and similarly for ?2.g and S\g. Then the N

genes with the largest absolute Tg values are selected to form the T classifier of size N.

We discuss how to select N through cross-validation below.

NPT: This is the non-parametric counterpart of T, and thus is also applicable only

to two-class problems. LetRg= rank{7i/ g,/= 1, — , 7Ί,l2^,j:= 1, — , T }̂ denote the

vector of the ranks of all the samples, among both classes, of gene g. The NPT measure

is defined as the difference of the average rank of the samples in class one (R\.g) and

that in class two CR2.g), that is, NPTg = R\.g- Ri.g,g = 1, -, G. The N genes with the
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largest absolute NPTg values are selected to form the NPT classifier of size N. This

classifier is more robust than T to outlying expression levels.

BW: This is a classifier based on the ratio of between-class sum of squares to within-

class sum of squares, as proposed by Dudoit et ah [3]. This classifier is applicable to

multi-type classification problems. The BW classifier is equivalent to the T classifier

for two-class problems when the sample sizes in the two classes are equal, and hence,

it may be viewed as a generalization of the T classifier. Specifically, define

nw τ
* τL\Σlλ{γkig-γk.s)

2

where Ϋk.g is the sample mean of class k, and ?. g is the overall mean of all samples

across all classes. Then the N genes with the largest BWg values are selected to form

the BW classifier of size N.

NPBW: This is the non-parametric counterpart of the BW classifier, which is also

applicable to multi-type problems. The gene selection measure NPBWg is similarly

defined as in BWg but with the individual expression levels or the means replaced by

their corresponding ranks (across all samples) and the corresponding average ranks.

Like NPT, this classifier is robust to outlying expression levels.

For each type of classifier, after the genes are ordered according to their relative

importance in discriminating among known classes, the number of genes N to use for

classifying new samples must be selected. This task is accomplished by Leave-One-Out

Cross-Validation (LOOCV). For each competing classifier, we estimate the parameters

of the mixture model using data from the training samples, but leaving one out as a

test sample. Since the true class assignment of the test sample is known, we can score

whether correct assignment is made. After cycling through all the training samples

one at a time, the prediction accuracy rate may be computed. A classifier with high

prediction accuracy rate from LOOCV will be used as a candidate for classification of

new samples.

An MCMC classifier

An alternative approach to gene selection for a two-class classifier is through mix-

ture modeling and MCMC estimation and model selection. Suppose {Ϋk.g^l ) are the

sample mean and variance of gene g in class k = 1,2;g = 1, , G. If the sample size Tk

is reasonably large, then Ϋ^g ~ N{μkg,S\ jTk) approximately. Hence,

follows a normal distribution with mean μ\g — μιgi approximately. For a gene that is

not differentially expressed in the two classes, μ\g — μig = 0. Thus, one may model Yg

as from a mixture of (univariate) normal distributions (N(μχ, Gχ), λ = 1, , Λ) with an

unknown number (Λ > 1) of components, with one of the components having mean zero
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(referred to as the null component), representing those genes that are not differentially

expressed.

The MCMC reversible jump method of Green [7] and Richardson and Green [13]

is used to estimate the parameters of the model, including the number of components of

the mixture. Then for each gene g, we compute the predictive probability that it belongs

to each component of the mixture given Yg and the estimated model, using a formula

similar to (6). The gene is assigned to a component other than the null component if the

predictive probability for that component is the largest and also larger than the weight

of the null component. The collection of genes assigned to components other than the

null component forms the MCMC classifier.

Following Richardson and Green [13], weak informative priors, chosen for com-

putational convenience, are used for the model parameters. The priors for the means

and variances of the component densities are assumed to be independent normals {μχ ~

7V(ξ,κ2)) and inverse gammas (σ£ ~ 7G(α,β)), respectively. The hyperparameters ξ

and K are chosen to be the midpoint and half of the range (R) of the data interval, re-

spectively, to make the prior for μχ to be rather flat. For Oχ, we let α = 2 and allow β

to further follow a gamma distribution G(/, h) with / = 0.2, and h = 10/7?2, to make σ^

similar but without being informative in their absolute size. The prior for the number

of components (Λ) is assumed to be uniform between 1 and the pre-specified maxi-

mum number of components, taken to be 10 in our application. For the component

weights, the prior is taken to be Dirichlet D( 1,1, , 1). Further details can be found in

Richardson and Green [13].

4 Leukemia dataset

The Leukemia dataset of Golub et al [6] is the result of monitoring the expression

levels of 7129 genes in two types of acute leukemia using Afϊymetrix high-density

oligonucleotide array technology. The dataset consists of a training set which con-

tains 27 samples of acute lymphoblastic leukemia (ALL), and 11 samples of acute

myeloblastic leukemia (AML), and a test set comprising 20 ALL and 14 AML sam-

ples. The ALL samples could be further classified as ALL-B or ALL-T, depending on

whether they arise from a B or T cell lineage. The 27 ALL training samples contain 19

ALL-B, and 8 ALL-T samples, while the 20 ALL test samples contain 19 ALL-B and

one ALL-T sample. We refer to the problem of discriminating between ALL and AML

as the two-class problem. Discriminating among ALL-B, ALL-T, and AML is referred

to as the three-class problem.

5 Results

Checking the normality assumptions

In our mixture modeling of test samples, we assume that each component density
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of the mixture follows a normal distribution. Therefore, we first checked whether this

assumption is reasonable for the leukemia dataset. We assigned the test samples to the

appropriate classes, because the true underlying class assignments for these samples

are in fact known. Then, for the samples in each class, we computed the standardize

expression levels (by subtracting the sample mean and dividing by the sample standard

deviation within each class) for each gene, and they are plotted against normal scores.

For the three-class problem, the results are shown in Figure 1. There are some obvious

departures from normality, although they do not seem to be sufficiently bad to cast

serious doubt on the validity of the assumption. The normality plots for the two-class

problem are similar.

2 *"

<
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- 4 - 2 0 2 4

Quantiles of Standard Normal

-2 0 2
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- 4 - 2 0 2 4

Quantiles of Standard Normal

Figure 1: Normal probability plots for the samples in three classes, ALL-B, ALL-T, and
AML.

Predictions for the two-class problem

For each of the four types of classifiers (Γ, NPT, BW, and NPBW) and a range of

classifier sizes (1-200 genes), predictions of class assignments were carried out both for

the training samples (through LOOCV) and the test samples using the mixture modeling

approach. Figure 2(a) plots the prediction accuracy rates for the LOOCV of the training

samples. The mixture modeling approach with the two types of non-parametric classi-

fiers (NPT and NPBW) perform similarly; prediction accuracy rates of 1 are achieved

in most of the range when the numbers of genes in the classifiers are more than 30. The

mixture procedure does not perform as well with the parametric classifiers (T and BW),

but the accuracy rates are still about 95% in most of the range. In summary, the results

from LOOCV indicate that the prediction accuracy rates using the mixture modeling

approach is not very sensitive to the type of classifier (among the four types that are

considered here) nor the number of genes in a classifier, as long as the number is not

very small.

Figure 2(b) plots the prediction accuracy rates for the test samples. Prediction accu-

racy rates of 1 are achieved only for the T classifiers with 19, 20, and 22 genes. Similar

to the results in LOOCV, the performances of the procedures are not very sensitive to
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the number of genes in the classifier as long as the number is not too small. Apart from
BW, the results are not very sensitive to the types of classifiers in a wide range. The
BW classifiers have not performed as well as the others.

A simulation study similar to that of Dudoit et al. [3] was carried out to further eval-
uate the performance of the mixture modeling procedure and to compare the four types
of classifiers, including the effect of the size of a classifier. A total of 200 simulations
(replications) were performed. For each simulation, 2/3 of the samples in each class (31
out of 47 ALL and 17 out of 25 AML) were randomly selected as the training samples,
while the remaining served as the test samples. Each of the four types of classifiers with
the sizes ranging from 1-200 was considered. The prediction results from the mixture
procedures with all four types of classifiers are given in Figures 2(c) and 2(d). Specif-
ically, the summary statistics for the number of test samples misclassified among the
200 replications for the T classifiers are plotted in Figure 2(c). For classifiers that are
not very small, the results show that (1) there are no prediction errors in more than 25%
of the replications, and (2) there are at most one prediction error in more than 75% of
the replications. The performances for the three other types of classifiers are similar;
full results are available from our web site (URL provided at the end of the article). The
medians of the numbers of genes classified incorrectly (among 200 replications) for all
four types of classifiers are plotted in Figure 2(d). We observe consistent results in all
four classifier types for a wide range of classifier sizes.

We further examine the results from the simulation study by looking at each replica-
tion separately, instead of looking at the summary statistics, hoping to gain more insight
into the relative performances of the four types of classifiers. Four pairs of classifiers
are examined: T and NPT, BW and NPBW, T and BW, NPT and NPBW. One could
examine other pairs, or higher number of classifiers jointly, but these four pairs seem
the most appropriate ones to consider. For each pair and each replication, we classify
the outcome into one of three categories: classifier 1 is better (the same, or worse) than
classifier 2, depending on whether the number of samples incorrectly assigned under
classifier 1 is smaller (the same, or larger) than that under classifier 2. The results are
given in Table 1. Classifier T is slightly better than classifier NPT, while classifier
NPBW is slightly better than classifier BW, consistently for the three sizes of the classi-
fiers examined. Furthermore, T seems to be better than BW, while their nonparametric
counterparts perform almost exactly the same.

The results shown thus far are obtained under the mixture modeling formulation
(2); that is, data in both the training samples and the test samples contribute to the
estimation of mixture component density parameters as well as the mixing proportions.
Results using formulation (1) are similar, especially for LOOCV as expected, although
not quite as good in predicting the original test samples, which is not surprising either
since there are almost as many test samples as there are training samples. The full
results can be obtained from our web site.

MCMC classifier. A total of 100,000 iterations were performed. The first 50,000 it-
erations were discarded to allow for convergence; the remaining realizations were then



428 S. Lin and R. Alexandridis

1

8
<

1
S

Q_

g
d
oo
d 1

J i—

T
NPT
BW
NPBW

LIT

(a)

1

o
=5
Φ

d

o
CO

d

0 50 100 150 200

Number of Genes in Classifier

50 100 150 200

Number of Genes in Classifier

1 °I
i

CO

1
1
1
\
1

Maximum
3rdQuartile
Mean
Median
istQuartile
Minimum

(c)

0 50 100 150 200

Number of Genes in Classifier

50 100 150 200

Number of Genes in Classifier

Figure 2: Prediction accuracy rates, or equivalently, the number of samples misclassified, for
the training samples (through LOOCV) (a), the original test samples (b), and the simulated
test samples (c and d), of the leukemia two-class problem. Figure 2(c) gives the summary
statistics for classifiers based on T, and figure 2(d) plots the medians for Γ, NPT, BW, and
NPBW.

used for inference. About 95% of the iterations picked three as the number of com-

ponents for the mixture, with the second component corresponding to the distribution

for genes that do not exhibit differential expressions (the null component), i.e., with

mean=0 for the component density. By applying our gene selection criterion, 23 genes

were selected for the MCMC classifier. Class predictions for the test samples (using

mixture formulation (2)) were then performed using the MCMC classifier. Out of the

34 samples in total, only one is classified incorrectly, giving a prediction accuracy rate
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Table 1: Comparisons of classifiers for the two-class problem using the simulated data based
on the leukemia dataset

#Genes

25

50

100

Cl

T
BW
T
NPT
T
BW
T
NPT
T
BW
T
NPT

Cl
NPT
NPBW

BW
NPBW

NPT
NPBW

BW
NPBW

NPT
NPBW

BW
NPBW

Cl>C2α

59
7

76
0

64
15
72
4

58
7
87
2

Cl=C2b

96
143
95

200

102
161
99
196
100
149
86
197

CKC2 C

45
50
29
0

34
24
29
0

32
44
27
1

αThis column gives the number of replications that result in smaller number

of misclassified samples under classifier 1 than classifier 2.
όThis column gives the number of replications that result in the same number

of misclassified samples under both classifiers.
cThis column gives the number of replications that result in larger number

of misclassified samples under classifier 1 than classifier 2.

of 97%. On the other hand, under mixture formulation (1), in which only the training

samples are used to estimate the component densities, five test samples are classified

incorrectly.

Predictions for the three-class problem

Since T and NPT are applicable only to binary classification problems, they are

not considered for further discriminating between ALL-B and ALL-T. For each multi-

type feasible classifier {BW and NPBW) and a wide range of sizes (1-200 genes), the

mixture modeling approach under formulation (2) were applied to classify the training

samples (through LOOCV) as well as the test samples. Figure 3(a) and 3(b) plot the

prediction accuracy rates for the LOOCV of the training samples and the test samples,

respectively. Behavior similar to that observed in Figures 2(a) and 2(b) (for the two-

class problem) is apparent in these figures. Namely, the prediction accuracy rates are

not very sensitive to the type of classifier, nor the size of the classifier, and the class

assignments of the samples are predicted quite accurately. NPBW performs better in

smaller classifiers, especially in predicting the test samples, while BW does slightly

better in LOOCV of the training samples. Overall, though, the performances of the two

types of classifiers are similar.

A similar simulation study to that for the two-class problem was carried out. For
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Figure 3: Prediction accuracy rates for the training samples (through LOOCV) (a), the orig-
inal test samples (b), and the simulated test samples (c and d), of the leukemia three-class
problem. Summary statistics for classifiers based on BW and NPBW are shown in (c) and
(d), respectively.

each of the 200 replications, 2/3 of the samples in each class were randomly selected

to form the training samples, and the remaining were assigned as test samples. For

each classifier, the mixture approach under formulation (2) was applied to predict the

class assignments of test samples. Summary statistics for the number of test samples

classified incorrectly are plotted in Figure 3(c) for the BW classifiers, and 3(d) for

the NPBW classifiers. Again, the mixture modeling approach yields good results for

classifiers that are not too small, and NPBW performs slightly better for very small

classifiers.
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Table 2: Comparisons of classifier Cl {BW) and classifier C2 (NPBW) for the three-class
problem using the simulated data based on the leukemia dataset

#Genes

10
25
50
100
150
200

C l > C 2 a

36
91
103
90
63
49

C H C 2 "

25
69
79
99
118
133

C K C 2 C

139
40
18
11
19
18

a>b>c See the footnotes of Table 1.

We further compare the performances of the two types of classifiers by examining

each replication individually, in addition to the summary statistics across replications.

For each replication, the outcome is classified into one of three categories: BW yielding

smaller (same, larger) number of misclassified samples than NPBW. The results are

shown in Table 2. We observe that, for smaller classifiers, there is a larger discrepancy

between the two classifiers. Since NPBW is more robust to outlying expression levels, it

is not surprising to see that it outperforms BW for the smallest classifier considered. As

the number of genes in the classifiers increases, the two types of classifier become more

similar, although BW continued to slightly outperform NPBW for larger classifiers.

The results shown thus far for the three-class problem are obtained using the mix-

ture modeling formulation (2). Results using formulation (1) are similar, although not

quite as good in predicting the original test samples, as what was observed for the two-

class problem (full results available from our web site).

6 Discussion

In this article, we propose a method for classification of tissue samples by modeling

the (multivariate) distribution of gene expression levels in a test sample as a mixture

of distributions, each characterizing the distribution of the levels of gene expressions

in a known class. This method can be paired with many gene selection methods {i.e.,

methods for building classifiers) to reduce the dimensionality of the problem. Several

classifiers are studied; results on T, NPT, BW, NPBW, and the MCMC classifier are

presented in the current article, while results on several other binary classifiers can be

found at our web site. Among the classifiers that are applicable to two-class problems,

T performs well compared to the others in terms of prediction accuracy rates for the test

samples (Γ achieving 100% accuracy rates for three classifier sizes) and the simulated

samples in the leukemia dataset using the mixture modelling approach for classification.

The MCMC classifier also performs well, with one prediction error out of a total of 34
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test samples. Although the work on the MCMC classifier is still very preliminary,
we are encouraged by these promising results, and effort is underway to extend it to
handle multi-type classification problems. For multi-type feasible classifiers, BW is
generally better than NPBW for predicting the training samples (through LOOCV) and
the simulated samples, although NPBW is better in predicting the test samples, and
NPBW classifiers were usually better than BW classifiers for smaller classifiers, again
for the leukemia dataset. Note that the sizes of the classifiers that perform well are
usually larger for the three-class problem than for the two-class problem, although they
are all quite small (< 200) compared to the original number of genes. For predictions
using the mixture modeling approach without first doing gene selection, three and four
test samples are misclassified for the two-class and three-class problem, respectively,
confirming the importance of gene selection.

Due to the lack of true test samples in the leukemia dataset, we were able to explore
prediction accuracy rates for the test samples for a range of classifier sizes. In a real
data analysis situation, however, we would proceed with the classification procedure
proposed in this article in the following fashion. First, one would perform LOOCV
with the training samples for a wide range of classifiers and sizes. Then a small set of
classifiers that had performed well would be selected for classifying the test samples.
We strongly recommend using more than one classifier so that consistency of predic-
tion results can be checked. If several classifiers that had performed equally well in
cross-validation had also produced consistent results in classifying the test samples, it
would be an indication of satisfactory results, although there is no guaranteer that all
assignments were correct. On the other hand, if discrepancies occur, then the biologists
might be able to study the samples that caused the discrepancies more closely using
other information.

Mixture modeling of test samples is a flexible means for multi-type classification
of tissue samples. We have investigated two alternative formulations of the likelihood.
It is not surprising to see that the one utilizing both the training samples and the test
samples for parameter estimations (formula (2)) outperforms the one based on training
samples only to estimate the parameters of the component densities, in many cases.
Compared to other methods that have also been proposed for multi-type classifications,
our approach performs at least as well with the leukemia dataset. For example, for
predicting class membership of test samples, our approach yielded results with no pre-
diction errors with medium-size classifiers (both BW and NPBW). The naive Bayes
approach of Keller et al. [8] also yielded no misclassifications, for a small number of
classifiers. Among the approaches discussed in Dudoit et al. [3], the best results had
one misclassification of the simulated test samples, for both the median and the third-
quartile, out of a total of 200 replications. Our simulation study using BW (for most of
the classifiers ranging from 40 to 160 genes) resulted in zero and one misclassifications
for the median and third-quartile, respectively, also out of 200 replications. Although
one dataset and a limited simulation study do not warrant general conclusions, the re-
suits that we have obtained thus far show that the mixture modeling approach, coupled
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with a gene selection measure such as BW (or its non-parametric counterpart if extreme
observations are present), is promising. We plan to further evaluate its performance,
especially its ability for classifying with larger numbers of classes.

The mixture formulation is also flexible in that it can be extended to handle situa-
tions where there are no training samples (class discovery problems) or when there are
training samples but some of the test samples do not belong to any of the known classes
(joint analysis of classification and class discovery). The key is to modify the mixture
likelihood so that it allows for components that do not correspond to any known classes.

In our demonstration of the usage of the mixture modeling approach, each com-
ponent density is assumed to be multivariate normal. This assumption was made for
convenience. This assumption was also made in other methods, such as the methods
based on maximum likelihood discriminant analysis [3]. Although good results were
obtained from our analyses of the leukemia dataset, we could have used other distri-
butions that fit the data better, as our figures show that there are obvious departures
from normality. If the EM procedure for obtaining maximum likelihood estimates is no
longer feasible, other methods for obtaining the MLEs may be used, including MCMC
methods. Furthermore, we assume that the genes in a classifier are independent. Again,
this assumption can be lifted, as the likelihood formulation is completely general; the
component densities can be true multivariate distributions.
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