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Probability theory has a strength that extends beyond probabilistic results. The pre-
cise formulation of probabilistic models may lead to intuitive arguments that reach further
than even sophisticated mathematical analysis of deterministic models. This is well known
from the use of Brownian motion in exhibiting solutions of partial differential equations.
Another illustration is provided by population dynamics. Branching processes focus on
probabilistic problems, and rely on probabilistic methods. But the expected evolution of
general branching populations is an interesting topic in its own right, that has much in
common with structured deterministic population dynamics. Arguments based on Markov
renewal theory demonstrate a remarkable strength as compared to traditional, differential
equations based approaches in establishing exponential growth and the ensuing stabiliza-
tion of population composition of expected populations. This is described in this article,
aimed at a broad mathematical readership.
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1 From Galton and Watson to Markov Population Processes

Recall Galton's famous formulation, more than a century ago, of the pop-
ulation extinction problem: "A large nation, of whom we will only concern
ourselves with the adult males, N in number, and who each bear separate
surnames, colonize a district. Their law of population is such that, in each
generation, αo per cent of the adult males have no male children who reach
adult life; α\ have one such male child, α2 have two; and so on up to α§
who have five. Find (1) what proportion of the surnames will have become
extinct after r generations; ..."

Already this historical and pre-exact wording has much of the flavour
typical of modern mathematical population dynamics: its starting point is a
description of individual behaviour, in this case a probabilistic description of
reproduction, and the properties asked for concern the population as a whole
- in this case an extinction probability. The latter is typical. In the biologi-
cally - not mathematically! - simple Galton-Watson processes that were born
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out of the surname extinction problem, the investigated population proper-
ties always have this probabilistic character. Indeed, the deterministic part
of evolution is so simplistic, that it does not warrant any attention.

Not so if the processes evolve in real time, and have a minimal amount
of generality: consider the one-type general branching process, i.e. a popu-
lation whose reproduction (in deterministic terms) is determined by a re-
production function μ{u), giving the expected number of children up to
(mother's) age u. In demographic and related theory μ{u) is often given
as an integrated product of a survival probability and an age-dependent
birth rate, JQ

Wp(a)b(a)da.
Then, if the population is started at time 0 from a new-born individual,

at time t the total (expected) number of individuals born into the population
can be written

n=0

Here
) if* < 0

\ 1 otherwise,

and

= ί
Jo

In this μ*n(t) clearly stands for the size of the ra:th generation of the total
population, i.e. born by time t.

Prom an analytic viewpoint, the analysis of the (expected) dynamics of
this type of populations is therefore little but the study of sums of convolu-
tion powers, a topic well investigated within the framework of renewal theory
and integrated into the theory of branching processes since long (cf. Harris,
1963).

However, even though these processes are "general" as compared to
Galton-Watson processes and much demographic theory, they remain sim-
plistic in assuming all individuals to be of the same type - even though
allowing for them to meet with very different fates in life, by chance. During
the past decade a general Markov renewal theory has developed - cf. the se-
ries of papers by Nummelin and coauthors and by Shurenkov - which allows
analysis of populations where individuals may not only beget children at any
age, and have positions in some state space, but where child-bearing, and
individual life evolution in general, may be influenced by some (geno)type
inherited from the mother. These are the Markov population processes, or
equivalently general branching processes with abstract type spaces, surveyed
by Jagers (1991). For a more technical presentation cf. Jagers and Nerman
(1996).
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In this case the reproduction function is replaced by a reproduction ker-
nel, describing the (expected) child-bearing of an individual, given her type.
Thus, let (£, S) be a measurable space, the type space, about which we only
assume that the σ-algebra S is generated by some countable class of sets.
Let B denote the Borel algebra on R + . The reproduction kernel is denoted
μ(s, A x ΰ ) , the (expected) number of B-type children of an s-type mother,
while she is in age-interval A, s £ S,B G S. Note that it is the type at
birth that determines the kernel; we shall return to the question of individ-
uals possibly moving in some state space during life. At this junction, let
us only note that even though such movement may influence reproduction,
the movement itself can be included in the reproduction kernel, which thus
remains the entity determining the population dynamics.

It does so much in the same manner as in the case of one-type popula-
tions, only convolution has to be replaced by a combination of convolution in
age and Markov transition in type: Start the population from one, new-born
s-individual at time 0. Her generation, the O:th, will have a trivial size and
type distribution at time t that can be written

μΌ(s,[0,t]xB):=lB(s)lκ+(t).

(As before, we consider the total population, disregarding death for the time
being. One with a suffix stands for indicator function.) The next generation,
consisting of the ancestor's daughters has the size and type distribution

μι{s,[0,t]xB):=μ{s,[0,t}xB),

and so it continues:

μ2(s,[0,ί] xB):= f μι(r, [0,t - u] x B)μ{s,du x dr),...
JR+XS

μn+1(β,[M X £ ) : = ί μ

n(r,[0,t-u] x
JR+xS

the total population size and time distribution at time t thus being

oo

U.faB) := Ua([0,t] x B) := J]μΛ(β,[0,ί] x B).
71=0

We shall allow ourselves to identify non-decreasing functions with measures
on R + , even if the measure is actually defined on B x <S, as above or in

μ(M,B) :=μ(M0,t ]x f l ) .
Consider now some property D of an individual, that has a well defined

probability, given the individual's type r (at birth) and age a (now). Denote
it by p£)(r,α). The property D could be 'being in some specified subset of
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a geographical or general state space'; it could simply mean 'being alive'
so that if Lr denotes the distribution function of the life span of an r-type
individual, then po(r^a) = 1 — Lτ(a). Actually D might also refer to the
progeny of an individual, like the number of granddaughters. Here we shall
assume that it can not refer backwards to progenitors. However, if a property
refers only finitely many generations backward that can be remedied by the
simple trick of moving the property backwards to the last common ancestor
of those concerned, cf. Jagers and Nerman (1984) where also other cases are
discussed. In the present paper we assume throughout that p/}(r, a) = 0 for
α < 0 .

A simple classical example of this kind is

PDu(r,a) = l[Ojti](α)(l -L r (α)) ,

Du meaning that the individual has been born (α > 0), is not above age u,
and is still alive at age a. Other examples would be the probability of being
in mitosis, or having a specified DNA-content or size. A particularly popular
model is to let the individual be born at some starting position (note that
this need not at all be the type of the individual, even though information
about birthplace may be included in the latter) and then let it diffuse to
other positions.

The important matter, in our context, is that once D has been fixed,
and PD is measurable, then the (expected) number of individuals having the
property D at time t will be given by

(1) Ms(t,D)~ f pD{r,t-u)Us(duxdr).
JR+xS

The study of (the deterministic part of) population evolution can thus be
described as the analysis of the functions MS( ,D) of time, for s £ S and
various D.

The results that follow have the form

(2) Ms(t,D)~h(s)eatpD(a)/aβ,

as t -» oo - with a slight modification in the so called lattice case, where the

population dynamics display some inherent periodicities. Here, h : S —» R+

is a reproductive value function: it decribes the fitness of the types. Math-

ematically it arises as an eigenfunction. The a is the famous Malthusian

growth parameter and β a time sealer, meaning the average age at child-

bearing, in a certain sense. As indicated by the notation, PD{&) is a Laplace

transform evaluated at the Malthusian parameter:

PD(<*):= / pD{r,t)ae-atdtπ(dr),
7 5
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where π is a stable type distribution, mathematically appearing as an eigen-
measure, as we shall see in the next section.

Actually, by making the possible choices of sets D precise (Jagers and
Nerman 1984 and 1996), one can see that the class of all PD{OL) defines a
measure on a grand, doubly infinite pedigree space, centered around a typ-
ical individual. This measure determines the stable population composition,
aspects of which - like the stable age distribution - have played such an im-
portant role in the development of population dynamics. It gives not only
the probabilities of properties of the typical individual's own life, like her
type or state at various ages but also the probability distribution of her
progeny, and of her past ancestry and their history.

2 Some Markov Renewal Theory

Once the basic Relation (1) has been established, the mathematical analysis
leading to (2), is a straightforward application of Markov renewal theory.
We shall use the terminology and results by Shurenkov (1984 and later).
With slight changes we could instead have relied upon Niemi and Nummelin
(1986).

First some terminology: Let K(s,A),s E S, A E S be any non-negative
kernel on (5,5), i.e. such that for any s,K(s, •) is a non-negative measure
and for any A,K( ,A) is a measurable function. By integration K defines
two linear maps:

Kf(s):= f f(r)K(s,dr),
Js

of non-negative measurable functions, and

mK{A) ~ f K(s,A)m(ds),
Js

of non-negative measures, into themselves. Defining the product of kernels
the obvious way,

KL{s,A):= [ L(r,A)K(s,dr),
Js

we may consider iterated kernels Kn. Here K°(s,A) and Kι are given the
conventional meanings of 1A{S) and K, respectively, and Kn+1 = KKn. The
Perron root p of K is defined by

oo

1/p := sup{ί E R+; ^ tnKn(s, •) is σ-finite for each s E S}.
71=0

If the Perron root is finite and positive and if the kernel satisfies some fur-
ther communication conditions (c/. Nummelin, 1984, or Shurenkov, 1989),
then an abstract Perron-Probenius theorem holds: There exist a unique (up
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to multiplication by constants) σ-finite measure π on (£, S) and a unique (in
the same sense and a.e. π) positive and finite (π-a.e.) function h such that

πK = pπ and Kh = ph.

The communication conditions mentioned are two:

1. positivity: There should exist a non-trivial σ-finite measure m on (S, S)
such that Σ κn(s,A) > 0 for all s G S, as soon as m(A) > 0.

2. recurrence: For m as above and any measurable / > 0,

, ds)m(dr)/pn = oo.

Returning now to population dynamics, we define the Laplace transform
μ\ of the reproduction kernel by

poo

βχ(s,B) := / e~xtμ(s,dt x B),
Jo

Under broad conditions it is possible to choose a so as to render the Perron
root of μa one, cf. Jagers (1983), Ney and Nummelin (1987), and Shurenkov
(1992). By definition, this a is the Malthusian parameter. For the inter-
pretation it is nice if eigenfunction h and eigenmeasure π from the Perron-
Frobenius theorem are such that they can be chosen to satisfy

π(5) = f h(s)π(ds) = 1.
Js

With this specification they are unique and referred to as the reproductive
value and stable type distribution, respectively. Actually, for the treatment
of the stochastic evolution this assumption, and that inf h > 0, and further
that

supμ(s, [0, e] x S) < 1

for some e > 0 are needed. Since we restrain ourselves to the expected
evolution, we can refrain from these requirements. Only so called strong or
positive α-recurrence,

0 < β = / te~ath(s)μ(r, dt x ds)π(dr) < oo,
JSxSxR+

is needed. (This entity might be interpreted as the stable age at childbearing,
though some care has to be exercised about this in the multi-type case, cf.
Jagers (1991).)
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The periodicity problems, already hinted at, are made precise in the

following manner: the reproduction kernel (or the whole population) is said

to be d-lαttice, d > 0, if for some c : S -> [0,d), and Ldc{s) := {(ί, r ) ; ί G

R + , r GS, ί = c(r) — c(s) + nd, for some n = 0,1,...}

τr({s; /i(s, R + x 5) > μ(s, Ldc(e))}) = 0,

d being the maximal such number. This has the meaning that there is
a stepping time unit for reproduction, independent of both mother's and
child's type, but a shift which may depend on both. We call c the shift. If
the kernel is d-lattice for some d, it is called lattice, and otherwise non-lattice.

Finally, we need the notion of direct Riemann integrability, which is
due to Shurenkov (1989) pp. 80 jff., in this general context. A measurable
function g : S x R+ —> R is directly Riemann integrable (π) if for any
e > 0 we can find δ > 0 and functions g~ and g+ both in Lι[π x dt] such
that for π-almost all r, <7~(r, •) < #(r, •) < <7+(r, •), g±(r, t) = g±(r^nδ) for
nδ < t < (n + 1)5, and the Lι[π x d£]-distance between g+ and #~ is less
than e. We also need the concept of being spread-out: For fixed r £ S and a
Borel set S, the reproduction kernel μ(r, B x •) is absolutely continuous with
respect to /i(r, •). It is possible to choose a regular version of the Radon-
Nikodym derivative, F(r, dί, s), which is a measure on R+ in its middle
coordinate. Spread-outness means that, for almost all r, s with respect to
π(dr)μ(r, ds), this measure is non-singular with respect to Lebesgue measure.

Theorem 2.1 Consider a non-lattice reproduction kernel μ such that the
Malthusian parameter a exists, β < oo, μa satisfies the two communication
conditions, and such that sup t e~atUs(t, S) < oo. Let D be a property such
that the function e~atpD(r,t) is directly Riemann integrable (π). Then, for
π-almost all s,

lim e-atMs(t,D) = h{s)pD(a)/aβ.
t—ϊoo

If the population is as above and some μn is, further, spread-out, then for

π-almost all s 6 S the convergence holds uniformly in all D with PD(&) <! 1

(without any requirement of Riemann integrability or finite sup t e~α<C/s(ί, S)).

Note that in the supercritical case (α > 0), the direct Riemann integrabil-
ity requirement disappears and PD{OL) < 1 trivially. The sup t e~atUs(t, S) <
oo condition is stronger than needed, presumably it can be discarded al-
together, cf Shurenkov (1989), p. 122. The already mentioned condition
sup s μ(s, [0, e] x S) =: m < 1, for some e > 0 suffices to establish it:

1= f (l-μ{r,t-u,S)Us{duxds)>
Jκ+χs

>(l-m)(U.{t,S)-Ua(t-e,S)).
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Since the same inequality holds also when t is replaced by t — fee, k =

so that ί/5(ί, 5) can grow at most linearly in t.

Like the spread-out case, the lattice form of the theorem can do without
any boundedness condition on Us:

Theorem 2.2 Consider a d-lattice reproduction kernel μ such that the Mal-
thusian parameter a exists, β < oo, and μa satisfies the two communication
conditions. Denote the shift by c, and consider a property D, such that for
any u > 0

/
OO

π(dr) J2 e~a{kd+c{r))pD(r, kd + c(r) +u)<oo,

(obviously the case if a > 0 and π(S) = 1). Then, for π-almost all s,

lim e-^nd+c^Ms(nd + c(s) +u,D) =
TO—>OO

= dh(s) / τr((dr) V e-a(kd+c(-Γ»pD(r, kd + c(r) + u)/aβ.

These two results (cf. Jagers, 1989) establish exponential growth, and
also the stable asymptotic composition in quite broad generality. Thus, they
are the expected branching process form of what is recently being called
asynchronous exponential growth within structured population dynamics,
Gyllenberg and Webb (1992), adapting to cell kinetical terminology. (But,
of course, our results concern only the "linear" case.) To get hold of the
stable composition, define E just to be the property of being born and no
further restriction, so that PE(^ t) = 1 if and if only t > 0. Then, PE{OL) = 1
and hence

Ms(t,D)/Ms{t,E) ->βD(a), ast->oo

(in the non-lattice formulation). In order to catch the composition within

the live population, replace E by the property A of being alive, and obtain

PA(<*) = ί cce-a\l - Lr(t))π(dr)dt = 1 - L(α),
JΈL+xS

if L(t) := JsLs(t)π(ds) denotes the life span distribution of an individual

whose type follows the stable type distribution. Ultimately,

M s(ί, D Π A)/M8{t, A) -> PDΠA{<*)/(1 - £(α)), as t -> oo,
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again in the non-lattice case.
As already pointed out, this discussion has been very imprecise about

the possible choices of properties D. For technical treatment we refer to
Jagers and Nerman (1996). The point is that D may refer not only to a
typical individual and its progeny but also backwards, say n generations. In
this way we obtain convergence theorems, and in the spread-out case even
uniform convergence theorems, for the approach of the (expected) compo-
sition towards a stable asymptotic composition, which gives not only the
probability that a typical individual has some property of her own but also
describes her history and future, i.e. her progenitors and progeny.

3 Branching Processes and Structured Population Dynamics

Branching processes have developed towards generality, starting from the
simple schemes of independent and identically distributed random variables
that constitute (the reproduction of) Galton-Watson processes. In a paral-
lel way, structured population dynamics has evolved out of crude classical
differential equations for population growth. The pride and glory of branch-
ing processes are not the deterministic results surveyed here, but rather the
corresponding stochastic results: in the supercritical case not only expec-
tations display 'asynchronous exponential growth' but so do the underlying
stochastic population processes themselves, under natural supplementary
conditions. Structured population dynamics also arrives at results like our
Theorems 1 and 2, but similarly its thrust nowadays is elsewhere, into the
evasive feedback from the population as a whole onto individual behaviour,
generally and in detailed special models.

This is an area that has been very difficult even to formulate in branch-
ing processes, since the very concept of population dynamics as it were indi-
cates an individual reproduction initiative, and as a consequence naturally
leads to individuals being thought of as acting independently. In a full-
fledged stochastic model you would like the feedback to come from the ac-
tual, stochastic population size and not from its expectation, which is hard
to feel for the individual. In deterministic models such difficulties can be
surpassed — or concealed.

However, in a sequence of papers Klebaner (1989, 1991, 1994, and others)
has demonstrated exponential growth of population-size dependent simple
branching processes, of the Galton-Watson or Markov branching kind. By
use of a coupling device ("imaginary abortions") these results were partly
extended to general branching processes (Jagers, 1997b) and quite recently
a complete generalization has been obtained for age-dependent, population
size influenced branching processes (Jagers and Klebaner, 1998). A simpli-
fied formulation runs as follows: Let mn > m > 1 be the expected number of
children if the population has size n. Then ^2(mn — m)/n < oo is essentially
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necessary and sufficient for the process to grow as if reproduction were inde-
pendent of population size, always with expectation m. It is interesting to
note that the mentioned coupling approach leads to the sufficient condition
Σmn -m < oo.

But here we treat the common ground of classical theory, independent
individuals from a stochastic viewpoint, the "linear" case in differential equa-
tions jargon. (Note, however that "linearity" may harbour quite complicated
dependencies, locally in the pedigree, cf. Jagers, 1997a). The similarity on
that common ground has become more evident by recent developments in
structured population dynamics, shifting focus from differential equations to
expected offspring operators and using generation representations, cf. Diek-
mann, Gyllenberg, Metz, and Thieme (1993), Diekmann (1993) and Thieme
(1992).

Indeed, Diekmann (1993) even takes as his starting point the expected
number B(τ,ξ,η) of offspring with state ξ at birth, produced per unit of
time by an individual of age r, which was born in state η. This defines a
next generation operator K by

{Kφ)(ξ):= t {Γ B{τ,ξ,η)dτ)φ{η)dη,
Jn Jo

and more generally for λ > 0

(Kχφ)(ζ) := ({ΓB{τ,ξ,η)e-Xτdτ)φ{η)dη.
Jvt Jo

The only difference, besides notation, is that the state (in this case = type)
space Ω(= S) is taken as Euclidean and that the reproduction kernel here
is assumed to be absolutly continuous with respect to Lebesgue measure.
The continued analysis of ϋf, viewed firsthand as an operator on ^ ( Ω ) ,
is in terms of the spectral radius Ro := lim^^co || Kn \\ι/n. How does
this compare to the Perron root, playing the corresponding role in Markov
renewal theory?

By Cauchy-Hadamard clearly p < RQ. A simple example where the in-
equality is strict is provided by the random walk on the integers, Wφ(x) :=
pφ(x + ί) + (1 -p)φ(x -1), x G Z+, 0 < p < 1. This operator on the bounded
functions has spectral radius Ro = 1, whereas a check of the binomial ex-
pression that describes Wn yields convergence of ΣtnWn(x, {y}) precisely
when t < l/2y/p(l-p) so that p = 2y/p(l-p) <l = Ro,ifp^ 1/2. How-
ever, if S is a compact metric space equipped with its Borel σ-algebra, K an
operator that maps continuous functions into themeselves, and is topologi-
cally irreducible in the sense that for each s £ S and open G C S there is
an n such that Kn{s, G) > 0, then p = Ro (Shurenkov, 1992).

Diekmann, Gyllenberg, Metz and Thieme (1993) translate the abstract
p.d.e. problems that constitute classical structured population dynamics
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into abstract convolution equations. It would be tempting to translate those
further into our terminology, but on the general level only notational matters
remain after the translation already performed in op. cit Therefore it may
be more instructive to have a glance at how Markov renewal theory in the
form of Theorems 1 and 2 would work in a precise model, which has been
thoroughly analyzed within the structured populations framework. We take
a look at cells with size-dependent (as opposed to age-dependent) individual
behaviour, the Bell-Anderson model, cf. Diekmann, Heijmans, and Thieme
(1984) or Diekmann's paper in Metz and Diekmann (1986). Cf. also Arino
and Kimmel (1993).

The basic assumption is that there is a splitting intensity b(x) > 0,
x standing for the individual cell size. Similarly there is a death inten-
sity δ(x) > 0, death meaning the cell disappearing without giving birth to
daughter cells. When a cell splits, its mass is assumed to be equally divided
between the daughters. Individual cell growth is deterministic i. e. the
same for all cells with given birth size, x' = g(x),x(0) = size at birth, g > 0.
Assume that there is a minimal and a maximal cell size α and 4α so that
0 < α < x(0) < 2α, and no cell, smaller than 2α, can divide. (The following
argument is not correct without some such condition, absent from a first
version of this paper, as noted by Alexandersson (1998).)

The growth equation yields dt = dx/g(x) and the distribution function
for the size y at death or division of a cell with birth size x is

To obtain y-sized daughter cells the mother must herself attain size 2y and
the expected number of y-sized daughters becomes

2b(2y)exp(- f *\b(ξ)
J X

Once y has been fixed, the age u at division is determined by

& dξs: 5(0

In the notation

= u.

we can thus write the reproduction kernel

μ(x,du x dy) = 4^e-VW-ttχ»l{c{2y)_c{x)](du)dy,α <x,y< 2α.
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It follows that

μx(x,dy) =

Iterating this, we see that

/•oo

μl(x,dy)= μλ(ξ,dy)μλ(x,dξ)
Jo

f a

 e-(Π2y)-f(ξ))-λ(c(2y)-c(ξ))4H^O_e~(f(2ς)-f(x))-λ(c(2ζ)-c(.x))d,
Ja g(2ξ) ς

= 42μχ(x,dy)I(λ),

where J(λ) denotes the integral. Generally

μn

x{x,dy) = ±nμx{x,dy)In~ι{X).

Since / is a non increasing function, easily stated conditions yield a unique
a such that I (a) = 1/4 (which will be > 0 if 7(0) > 1/4). Returning to the
definition of the Perron root we see that

71=0

converges/diverges for t < or > 1. Thus a is the Malthusian parameter, and
the kernel is recurrent. It is easy to formulate conditions for the kernel to
be positive with respect to Lebesgue measure (on some interval) and for the
strong recurrence condition 0 < β < oo. The condition that sups μ(s, [0, e] x
S) < 1 for some e > 0 is clearly satisfied. Moreover, for x, y given, μ(x, dt x
dy) gives mass only to the age point c(2y) — c(x). Prom the definition of
d-lattices, we know that we are in the lattice case if and only if all splits
occur at ages c(y) — c(x) + nd,n G Z + , i.e. iff c(2y) = c(y) + d - by the
continuity of c, d can only appear once. Since

ry

= /

Ja

it is direct to check that this is the case precisely when g(2y) = 2g(y), as
shown in Metz and Diekmann (1986). We see that we have asynchronous
exponential growth if this is not the case, and a periodic behaviour otherwise,
by applying Theorems 1 and 2, respectively. It is also easy to guess how slight
changes in the model, e.g. the introduction of a quiescent period will destroy
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the lattice properties, and thus salvage the pure asynchronous exponential

growth.
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