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1 Introduction

Markov point processes [75, 76] axe a rich class of stochastic models for spa-
tial patterns, with the virtue of being relatively tractable. They are defined
to satisfy one of several spatial counterparts of the Markov conditional inde-
pendence property. The likelihood takes a simple explicit form, apart from
a difficult normalising factor. Indeed typically the likelihood is an exponen-
tial family, and the canonical sufficient statistic is often closely related to
nonparametric spatial statistics. Typically each process is the equilibrium
measure of an associated space-time Markov process; thus it is amenable
to Markov Chain Monte Carlo simulation and bootstrap inference. Accord-
ingly there is much current interest in exploring the potential applications
of Markov point processes, which include spatial statistics, digital image
analysis, and geostatistics.

The first half of this article is a condensed introduction to Markov point
processes. The second half describes recent work by the author and collab-
orators (N.A. Cressie, N.I. Fisher, J. M0ller, G. Nair, A. Sarkka and T.R.
Turner) on finding new Markov models for different types of patterns, elab-
orating properties of these models, and performing statistical inference for
spatial datasets using bootstrap, likelihood or pseudolikelihood methods.

2 Background

This section covers basic background about point process densities, Gibbs
and Markov point processes, and conditional intensities.
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2.1 Point process densities

See [18, 21] for definitions and background on point processes. In order
that likelihoods may exist, we shall restrict attention to finite simple point
processes whose distributions are absolutely continuous with respect to the
distribution of the Poisson process.

Such a process may be visualised very easily as a random finite number
of points at random locations in a space 5. A realisation of the point process
X is a finite unordered set of points,

x = {zi,...,zn}, XitS, n>0

The space 5 in which the points lie is typically a subset of Rd, but may be
any Polish space. Let X be the space of all such realisations.

All the point process models X in this paper will be absolutely continuous
with respect to the distribution of the Poisson point process [18, 43] with
intensity measure v on S where v is a fixed, nonatomic, finite Borel measure.
Then X has a probability density f : X -> [0, oo] such that

(1) F{XeA} = e-^
71=0

for each AeT, where Jo(/, A) = 1 {0 E A} /(0) and for n > 1

In(f,A) = - [... [ l{{x1,...,xn}eA}f({xu...,xn})dv(xι)...dv{xn).
n- Js Js

In the simple case where S is a bounded subset of W1 and v is the restriction
to S of Lebesgue measure,

/({xi,...,a;n})dxi... dxn

(for distinct xi,... ,xn E S) is the probability that the process consists of a
point near each of the locations # i , . . . , xn and no other points.

Example 2.1 (Poisson process) Let n(x) denote the number of points in
a realisation x E X. If α, β > 0 are constants,

/(x) = aβn{^

is recognised from (1) as the density of the Poisson process with intensity
measure βv( ), and the normalising constant a equals exp{—(β — l)ι/(

Example 2.2 For a function β : S -+ [0, oo),

n(x)

(2) /(x) = a Π β{*i)
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is the density of the "inhomogeneous" Poisson process with intensity measure
κ(B) = fB β(u) du(u) on 5 and the normalising constant is

2.2 Interpoint interactions

Definition 2.1 A finite Gibbs point process is α finite simple point process
with α density f(x) satisfying the positivity condition

(3) /(x) > 0 => /(y) > 0 for all y C x.

See [68, 81] and the excellent surveys by Ripley [74, 75]. By an applica-
tion of the Mδbius inversion formula or "inclusion-exclusion" [14, chap. 5,12]
the density of any finite Gibbs point process can be written in the form

n(x)

(4)

where VQ is constant and Vk : Sk —>MU {—oo} are symmetric functions.
Thus the log likelihood of a particular configuration x is a sum of penal-

ties incurred for the presence of each point Xi G x, for the interaction be-
tween each pair of points x^ Xj E x, for the interaction between each triple of
points Xi,Xj,Xk E x, and so on. The sum can be interpreted as the physical
"potential energy" of the configuration. This interpretation is familiar in
statistical physics [77, 69]; the individual functions Vk are called "interaction
potentials".

Example 2.3 (Pairwise interaction) A pairwise interaction process on
S has a density of the form

n(x)

(5) /(x) = α

where 6 : 5 ->• M+ is the 'activity' and h : S x S -> M+ the 'interaction'
function, and a > 0 is the normalising constant.

The terms b(x{) in (5) influence the intensity and location of points, while
the terms h(xi,Xj) introduce dependence ('interaction') between different
points of the process X. Note that conditions must be imposed on 6, h to
ensure (5) is integrable. Typically a is not known explicitly; this is the
'partition function'.
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Example 2.4 (Strauss process [82, 38]) This is a pairwise interaction
process with constant activity b(u) = β and a 'threshold' interaction function

— vll < r
h(u,υ) = < ' ' .v ' ' \ 1 otherwise

where r > 0 is a fixed interaction distance and 0 < 7 < 1 is the interaction
parameter. Hence the probability density is

(6) /(x) = α

(taking 0° = 1) where

β ( x ) = #{{i,j) :i<j, 0<\\xi- Xj\\ < r}

is the number of unordered pairs of close points in x. The Strauss process
is well-defined for all 7 G [0,1]; the density is not integrable for 7 > 1. If
7 = 1, this reduces to the Poisson process with intensity βv. If 7 < 1 the
process exhibits "repulsion" or "inhibition" between points, since s(x) tends
to be smaller than under the Poisson model.

Example 2.5 (Hard core process) If 7 = 0 the Strauss density (6) re-
duces to

(7) /(x) ί
[ί) / W ~ \ 0 i fβ(x)>0
called a classical hard core process with hard core diameter r. It is equivalent
to a Poisson process with intensity βv( ) conditioned on the event that there
are no points closer than r units apart.

Interpoint interactions of higher order also arise naturally.

Example 2.6 (Widom-Rowlinson process) Let 5 be a compact sub-
set of R2. The Widom-Rowlinson penetrable sphere model [85], or 'area-
interaction' process [7], has density

(8) f{x) = α/f»(*)7-*M

where β,j > 0 are parameters, a > 0 is the normalizing constant, and A(x)
is the area of

c/ r (x)= I JJ

where B{xι\r) is the disc of radius r centred at X{. The density (8) is
integrable for all values of 7 > 0. The process produces clustered patterns



Likelihoods and Pseudolikelihoods 25

when 7 > 1, ordered patterns when 0 < 7 < 1, and reduces to a Poisson
process when 7 = 1.

The Gibbs decomposition (4) of the density (8) can be computed explic-
itly by applying the inclusion-exclusion formula to the area of the union of
the discs B{xi\r). Interaction terms of all orders are non-vanishing, i.e. the
Widom-Rowlinson model has interactions of infinite order.

A simple but important relationship holds between a finite Gibbs point
process and its conditional distributions.

Lemma 2.1 Let X be α finite Gibbs point process on S with density f. Let
Ad S be α compact subset Then the conditional distribution ofXΠA given
X Π Ac is a finite Gibbs point process on A, with conditional density

(9) / Λ ( z | y ) = α ( y ) / ( z U y )

(with respect to the Poisson process on A whose intensity measure is the re-
striction ofv to A) for finite sets z C A, y C Ac, where α(y) is a normalising
constant.

If / is expressed in terms of interaction potentials Vk as in (4), then the
corresponding expression for /A has interaction potentials

wk{z') = υk(z') + ] Γ un(y/uz')(y' u z ')
y'cy

which is to say that interactions occur not only amongst the points of the
configuration z but also between these random points and the 'fixed' points
y. (Note that the marginal distribution of XΓ) A does not satisfy a statement
similar to Lemma 2.1.)

2.3 Conditional intensities

The (Papangelou) conditional intensity of a point process is the continuous
space analogue of a certain conditional probability for discrete random fields.

The conditional intensity λ(u; x) of X at a location u £ S may be loosely
interpreted as giving the conditional probability that X has a point at u given
that the rest of the process coincides with x:

\(u; x) = hm y \
Aui{u} I/(Δu)

where the limit is taken over decreasing open neighbourhoods Δu of u E S.
Formally the conditional intensity is a Radon-Nikodym derivative defined

to satisfy

(10) E
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(the "Nguyen-Zessin formula") for all nonnegative bounded measurable func-
tions g : S x X -> R+. See [37] for an informal introduction, or [28, 29, 36, 44]
for details.

For any Gibbs process on W (see section 2.2) with density /, the condi-
tional intensity at a point u G W equals

(11) λ(w x) =
/(x)

if ix 0 x, while for X{ G x we have λ ( ^ x) = /(x)//(x \ {xi}). In the
statistical physics interpretation, logλ(ΐx x) = log/(x U {u}) — log/(x) is
the energy required to add a new point u to an existing configuration x.

For example, the inhomogeneous Poisson process with intensity function
λ( ) has conditional intensity λ(u x) = X(u) at all points u. The general
pairwise interaction process (5) has conditional intensity

(12)
(x)

λ(τx x) = b(u) JJ h(u,Xi).

Note that the intractable normalising constant in (5) has been eliminated in
the conditional intensity. For this reason, inference based on the conditional
intensity is typically easier than maximum likelihood.

2.4 Markov point processes

A Markov point process [76, 74, 75] is one in which interpoint interactions
occur only between those points which are deemed to be 'neighbours'.

Example 2.7 Consider the pairwise interaction process (5) in R2. Assume
the interaction function h has finite range r > 0, in the sense that /ι(u, v) = 1
whenever ||τx — υ\\ > r. Declare two points u,v G S to be neighbours, written
u ~ v, if they are closer than r units apart:

(13) u~υ iff | | tx-υ | | < r.

Then interactions occur only between neighbours, i.e. (5) becomes

(14) /(x) = a
n(x)

Π'
2 = 1

where the second product is over all unordered pairs of neighbouring points.
The conditional intensity (12) becomes

(15) λ(tx x) = b(u)
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where the product is over all neighbours of u in x.

Note that in this example the conditional intensity (15) depends only on
u and on the neighbours of u in x. This important property signifies that
interaction is "local".

Definition 2.2 (Ripley &; Kelly [76]) Let ~ be a symmetric, reflexive

relation on S. A Markov point process on S with respect to ~ is a finite

Gibbs point process whose conditional intensity \(u; x) depends only on u

and {xi £ x : x% ~ u}.

For example, the inhomogeneous Poisson process (2) is a Markov point
process with respect to any relation ~ since λ(w; x) = β(u) depends only on
u.

Example 2.8 For the Strauss process (Example 2.4)

(16) λ(u,x)

where ί(w,x) = s(x U {u}) — s(x) = #{#i G x : 0 < \\xι — u\\ < r} is
the number of points Xj E x which are close to u, other than u itself. See
Figure 1. Hence the Strauss process is Markov with respect to the relation
- of (13).

Figure 1. Illustration of conditional intensities. Left: Strauss process; Right: Widom-

Rowlinson process. The conditional intensity of the Strauss process at a point u (o)

depends on the number of existing points (•) of the configuration x which are closer than

r units distant from u. In this illustration t(u, x) = 2. The conditional intensity of the

Widom-Rowlinson process at a point u (o) depends on the shaded area.

Example 2.9 For the Widom-Rowlinson process (Example 2.6)

(17) λ(u;x)
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where T(u, x) = A(xU{u})-A(x) is the area of the region B(u; r)\Ur(x). See
Figure 1. Clearly T(w,x) depends only on ^ and {x{ E x : ||u — a?<|| < 2r}.
Thus, the Widom-Rowlinson process is Markov with respect to the relation
(13) with r replaced by 2r.

Definition 2.3 Let ~ be α symmetric relation on S. The neighbourhood of

a set A C S is

λί (A) = {u E S : u ~ v for some υ E A}.

Definition 2.2 then states that a finite Gibbs point process is Markov if
\(u; x) depends only on u and on λί (u) Π x.

The epithet 'Markov' for these processes is justified by the following
conditional independence property.

Lemma 2.2 (Spatial Markov Property) Let X be a Markov point pro-
cess on S. Then the conditional distribution of XΓ\A given X Γ\AC depends
only on X in the neighbourhood λί {A) Π Ac:

P{X n A\x n Ac) = P{x n A\x n {λί (A) n Ac)).

In (4) we saw that a Gibbs density can be decomposed into interaction
terms Vk of each order k = 0,1,2,... For the case of a Markov point process,
the interaction term for a particular A -tuple of points is nontrivial only if all
these points are neighbours. Grimmett [30] introduced the term "clique":

Definition 2.4 Let ~ be a symmetric, reflexive relation on S. A config-

uration x E X is a clique if all points of x are neighbours (u ~ v for all

u,υ E xj. A set containing 0 or 1 points is a clique.

The following is analogous to the Hammersley-Clifford theorem for dis-
crete Markov random fields [30, 16].

Theorem 2.1 (Ripley-Kelly [76]) A finite simple point process with den-
sity f is a Markov point process iff its interaction potentials Vk satisfy Vfc(z) =
0 whenever z is not a clique.

Equivalently, the density / is Markov iff

(18) /(x) = Π ^ z )
zCx

where φ(z) = exp{υn(z)(z)} is equal to 1 unless z is a clique.
For example, for the pairwise interaction density (5) the interaction

potentials are VQ = logα, υι({u}) — logδ(u) for singletons, V2({u,v}) =
logh(u,v) for two-point cliques, and ψ(y) = 0 for cliques y containing 3 or
more points. The process is Markov iff h(u,υ) = 1 for pairs of points u,v
with \\u — v\\ > r.
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2.5 Markov Chain Monte Carlo

Stochastic simulation of a finite Gibbs point process cannot in practice be
performed by generic Monte Carlo techniques for sampling from a density-
such as the rejection method [32, 73]. For example, although the hard core
process (Example 2.5) is the conditional distribution of a Poisson process
given that no pair of points is closer than r units apart, the probability of
this event for interesting cases is prohibitively small.

Instead, finite Gibbs point processes can be simulated using Markov
Chain Monte Carlo (MCMC) techniques. Early examples are [55, 69, 72];
see the excellent reviews [26, 27]. In brief, these techniques involve running
a Markov Chain (Fj), in discrete or continuous time, with state space X (the
space of all finite point patterns). The chain is designed to converge in dis-
tribution to the distribution of the point process X of interest, so that after
a long run time the state of Yt can be taken as a realisation of X. The chain
must also be simple and quick to run. Typically the transitions or 'updates'
of (Yt) are simple operations such as the "birth" of a new point, x H* XU{U},

where x G ί , w G S ; the "death" of an existing point, x H> X \ {xi} where
Xi G x; or the shifting of an existing point X{ G x to a new location u.

To ensure that the stationary distribution of (Yt) is the distribution π
of X, it is sufficient and convenient to require that the transition kernel
P*(x, A) = ¥{Yt G A I Yo = x} be in 'detailed balance' with π,

(19) f P\x, B) dπ(x) = f P\y, A) dπ(y)
JA JB

for all t > 0. If, for example, the only possible transitions are instantaneous
births x H> x u {u} at rate b(x,u) du(u) and instantaneous deaths x *-+
x\{xi} at rate D(x,Xi), then detailed balance is equivalent to 6(x,w)/D(xU
{u},u) = X(u;x) whenever /(xU {u}) > 0. This can be achieved by various
schemes of Gibbs and Metropolis-Hastings type. If such a process (Yt) exists
(if the backwards equations have a unique solution) then it is irreducible and
time reversible, and π is its unique equilibrium distribution [69].

The convergence of (Yt) can be extremely slow, and is difficult to mea-
sure. This limitation was lifted recently following the work of Propp and
Wilson [70] who developed a coupling algorithm for drawing exact simu-
lations from the equilibrium distribution of a discrete state Markov chain.
This idea has been adapted to some spatial birth-and-death processes to
obtain exact simulation algorithms for certain finite Gibbs point processes
[27, 40, 41, 31]. The virtues of exact simulation algorithms are that the
output is guaranteed to have the correct distribution, and that the compu-
tation time is usually orders of magnitude smaller than that required for the
convergence of Metropolis-Hastings algorithms.
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3 Pseudolikelihood inference

This section describes Besag's concept of pseudolikelihood for point pro-
cesses, and reports on recent work by the author and Rolf Turner [3] on
fitting Gibbs/Markov point process models using pseudolikelihood.

3.1 Pseudolikelihood

Suppose we have data consisting of a spatial point pattern x observed in a
bounded region W of Rd. Thus x = {xi,..., xn} where the number of points
n > 0 is not fixed, and each x\ is a point in W. There may also be spatial
covariates.

The aim is to fit to the data a finite Gibbs point process model with
density /^(x) governed by a parameter θ ranging over Θ C F .

It is generally difficult to evaluate and maximise the likelihoods of point
processes. The loglikelihood of the inhomogeneous Poisson process (2) in-
cludes an integral requiring iterative optimization methods. Even simple
exponential family models such as the pairwise interaction processes (5) in-
clude a normalising constant which is an intractable function of θ. Methods
for approximating α( ) and maximising likelihood include functional expan-
sions of α( ), Monte Carlo integration, and analogues of E-M and stochastic
approximation [27, 56, 57, 58, 59, 60, 63].

An alternative to the likelihood function is the pseudolikelihood [10, 11,
12, 35] which we describe here. See [22, 23, 24, 74, 75, 78, 83] for other
applications.

Originally Besag [10, 11] defined the pseudolikelihood of a finite set of
random variables Xi,... ,Xn as the product of the conditional likelihoods
of each individual X{ given the other variables {Xj : j φ i}. This was
extended [11, 12] to point processes, for which it can be viewed as an infinite
product of infinitesimal conditional probabilities.

Besag [11] defined the pseudolikelihood of a point process with conditional
intensity λ^(ϋ x) to be

(20) PL(0;x) =
n(x)

exp< - / λθ(u;x)du >
I Js )

Further theory was developed in [12, 34, 35].
If the process is Poisson the pseudolikelihood coincides with the likelihood

(2) up to the factor exp(|5|). For a pairwise interaction process (5), the
pseudolikelihood is

(21) =

PL (0 x)
n(x)

Π
t = l

exp < - / b$(u) TT hβ(u,Xi)du
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in which the intractable normalising constant α(θ) appearing in the likeli-
hood (5) has been replaced by an exponential integral in (21) as if the process
were Poisson.

For processes with 'weak interaction' in the sense that λ̂ (w x) can be
approximated well by a function of u only, the process is approximately Pois-
son and the pseudolikelihood is an approximation to the likelihood. Hence
the maximum pseudolikelihood estimator should be efficient if interaction is
weak. Folklore holds that it is inefficient for strong interactions.

For an exponential family model, the maximum pseudolikelihood normal
equations d/dθ log PL (0; x) = 0 can be shown to be unbiased estimating
equations using the Nguyen-Zessin formula (10). Diggle et αl [22] showed
in the stationary case that maximum pseudolikelihood is a special case of
the Takacs-Fiksel method, itself an application of the method of moments
[23, 24, 83]. These estimating equations can also be derived naturally from
properties of the Markov chains used in MCMC methods [4].

Jensen and M0ller [35] proved that for Gibbs point processes with expo-
nential family likelihoods, the pseudolikelihood is log-concave and the max-
imum pseudolikelihood estimator is consistent as 5 / Md, under suitable
conditions. Jensen and Kϋnsch [34] proved the MPLE is asymptotically nor-
mal for stationary pairwise interaction processes, under suitable conditions
(see (Cl) and (C2) of [34]). There may be room for considerable generali-
sation, since the latter results impose strong constraints on the interaction
potential which are not needed for the case of discrete random fields [17].

The pseudolikelihood of a point process is analogous to the pseudolikeli-
hood of a discrete (Markov) random field as defined in [10]. Indeed [11, 12]
certain classes of point processes can be obtained as the a.s. limit of a se-
quence of Markov random fields defined on discrete lattices whose spacing
tends to zero; the pseudolikelihood function of the Markov random field
converges pointwise to the pseudolikelihood of the point process. Recent
applications include [78].

3.2 Computational device for maximum pseudolikelihood

In [3] we proposed a computational device for obtaining approximate max-
imum pseudolikelihood estimates. The method is an adaptation of a tech-
nique of Berman and Turner [9]. Related ideas have been explored by Lind-
sey [48, 49, 50, 51].

Approximating the integral in (20) by a finite sum using any quadrature
rule, we may approximate the log pseudolikelihood

n(x) m

(22) log PL (0 x) « ] Γ log Xθ{xi x) - ^ λθ(uj x) Wj
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where Uj, j = 1,..., m are points in W and Wj > 0 are quadrature weights.
Note that if the list of points {uj,j — 1,... , ra} includes all the data points
{xi, i = 1,..., n}, then we can rewrite (22) as

(23) log PL (θ x) » £ ( w log λ, - λj) t ^

where λj = λθ(uj) a n d yj = ZJ/WJ, where

•9 ,v _ ί 1 if Wj is a data point, Uj E {#i,..., a;n}
J \ 0 if Wj is a dummy point, Uj 0 {xi,..., xn}.

The right side of (23), for fixed x, is formally equivalent to the log likelihood
of independent Poisson variables Yk ~ Poisson(λfc) taken with weights Wk

The expression (23) can therefore be maximised using standard software
for fitting Generalised Linear Models [53]. This makes it possible to fit
rapidly a wide variety of Gibbs point process models incorporating effects
such as spatial trend, dependence on covariates, interpoint interaction, and
mark information.

4 Identifiability

It is relatively straightforward to construct Markov point process models
since there is an explicit characterisation of their densities (Theorem 2.1).
The interaction potentials may be chosen virtually at will, subject to the
requirement that the density be integrable. However, the behaviour of the
resulting process is difficult to determine. In particular it is not clear whether
the resulting process will be distinguishable from the Poisson process and
whether the parameters will be identifiable.

This is important in the case of the Widom-Rowlinson process. Simulated
realizations of both the repulsive and attractive cases displayed in [7] and
[40] do not seem to differ markedly from Poisson patterns. This has been
further investigated by A. Sarkka and the author [79].

Recall that the Widom-Rowlinson density (8) involves the area A(x)
of the union of discs of radius r centred at the points X{ G x, intersected
with 5. If r is small, then under the reference Poisson process, there is a
high probability that these discs do not overlap, so that A(X) is equal to
n(X) πr2 with high probability. Thus

2

with high probability under the reference Poisson process, where δ = βη~ΈT .
Thus, when r is small, the Widom-Rowlinson process is approximately Pois-
son with intensity δ. The parameters β,η are not identifiable, only the
derived parameter δ.
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Alternatively, if r is large, then either x is empty or the discs cover the
whole domain 5, so that

i f n ( X ) > 0

0 if

with high probability under the Poisson process. Thus when r is large, the
Widom-Rowlinson process is approximately a mixture of a Poisson process
with intensity β and the process which is a.s. empty. The parameter 7 is
not identifiable.

This is an instance of the general fact that in a 2-parameter exponential
family

(z) + θ2T(x)),

if S and T are linearly dependent statistics under the reference distribution,
then the model degenerates to a 1-parameter or O-parameter family and the
parameters are not identifiable.

For a general exponential family fe(x) = cexp(θτB(x)), where θ and
B(x) are p-dimensional, θ is efficiently estimable iff μ lies in the convex hull
of the support of the distribution of B(X) under the reference distribution
(θ = 0). Geyer [27] has made very similar comments in relation to Monte
Carlo maximum likelihood methods for Gibbs point processes.

We have investigated this aspect of identifiability for the Widom-Rowlin-
son process by simulation. Figure 4 shows scatterplots of the empirical
distribution of (ra(JC), A(X)) under the Poisson process, for various values of
r. The first and last plots, for r = 0.02 and r = 0.12, confirm the predictions
that for small and large r values, respectively, the statistics n(X),A(X)
are linearly dependent. In the middle of the range, r « 0.08, the statistics
appear to be linearly independent.

Since the Widom-Rowlinson process degenerates to a Poisson process
or a Poisson/empty mixture in cases of linear dependence, the question is
whether for some values of r the process is distinguishable from a Poisson
process.

We investigated this by computing the total variation distance between
the Widom-Rowlinson process and a Poisson process with equal intensity.
Let P and Q be any probability distributions having densities / and g (re-
spectively) with respect to some reference measure μ. The total variation
distance [71, sections 1.3-1.4] is

(25) \\Q - P\\ = sup \Q(B) - P(B)\ = \
2

9(X)

f(X)

Now let Q be the distribution of the Widom-Rowlinson process with param-
eters β, 7 and P the distribution of the Poisson process with intensity λ.
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Figure 2. Scatterplots of the observed values of the sufficient statistics n(x) and A(x) of

the Widom-Rowlinson process, for various values of r, generated by the Poisson point

process with β = 100. All panels show (n(X),A(X)) on the same scale. The values of r

are (top row, left to right) 0.2, 0.4, 0.6, (bottom row, left to right) 0.8, 1.0 and 1.2.

Then

1

2

<x{β,Ί) fβ\
α(λ,l) \XJ

n(X)

which can be estimated by simulation as follows. First we generate an ade-
quate number of simulated realisations from Q to estimate the intensity of
the Widom-Rowlinson process. Setting λ equal to this estimated intensity,
we generate an adequate number of simulated realisations x^1),..., χ(m) of
P, the Poisson process with intensity λ. We estimate the ratio of normalising
constants α(/?,7)/α(λ, 1) following [27, 63] by

and estimate the total variation distance ||Q — P\\ by

Figure 3 shows estimates of total variation distance plotted against disc
radius r. They refer to the Widom-Rowlinson process in the unit square
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0.05 0.10
disc radius

0.05 0.10
disc radius

Figure 3. Total variation distance between some a) attractive and b) repulsive area-

interaction processes and the corresponding Poisson process with the same intensity;

β = 100 and the labels 20, 40, ... refer to the values of log 7.

with β = 100 and log 7 = -80, -60,.. . , 60,80 for various values of r, and
the Poisson process with equal intensity. The curves confirm the prediction
that for small r and for large r the Widom-Rowlinson process degenerates
to a Poisson process. However for moderate values of r they show that the
Widom-Rowlinson process is distinguishable from the Poisson process. We
also calculated the Hellinger and Kullback-Leibler distances which yield very
similar results. These distance curves can be used to determine reasonable
values for r for data analysis. For further details see [79].

It is common in statistical physics to construct 'phase diagrams' which
partition the parameter space into regions where the process exhibits differ-
ent 'regimes' of behaviour. The graphs in Figure 3 could be reinterpreted as
a three-dimensional surface of total variation values for each point in (7, r)
space; and a level set of this surface could be regarded as a phase diagram.
See also [54].

5 'Dynamic' Markov point processes

In spatial statistics there is considerable interest in developing new point
process models, because the existing repertoire is thought to be too narrow
and unrealistic for many applications. In particular, clustered point pattern
data are thought to be very difficult to model by Markov point processes.

An extension of Markov point processes was proposed in [6]. Recall that
the interpoint interactions in a Markov point process occur between all points
Xi, Xj of the configuration x that are 'close' in a predefined sense (x{ ~ Xj).
In [6] this is extended by allowing the definition of 'close' to depend on the
configuration x. This allows interactions to occur only between those points
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which are close in the context of the configuration - for example, nearest
neighbours — and for interaction to occur at any distance.

For example, consider a renewal process in one-dimensional time. The
intervals between successive points of the process are i.i.d. random variables.
The density of this process on [0, T] is of the form

n(x)

(26) / ( x ) =

where x\ < x^ < . . . < xn are the points of x. While the form of (26)
is very similar to a pairwise interaction density (5), this is not a Markov
point process with respect to any nontrivial fixed relation ^ o n i Inter-
point interactions occur only between consecutive pairs of points, and occur
regardless of the distance between them.

Again, Ord [62] suggested that for two-dimensional point pattern data in
geography, an improvement on the Strauss process would be a model taking
account of the size of the 'territory' of each point as expressed by its Dirichlet
cell:
(27) /(x) = αβn l[g( area of C(xi\x))

i

where C(xi\x) is the Dirichlet or Voronoi cell associated with point X{ in the
configuration x,

C(xi I x) = {u E M2 : | | u-Xi | | =min | | i i -X j | | }
3

see [61]. Sibson [80] and others have suggested using the areas of Dirichlet-
Voronoi cells and the associated neighbour distances as statistics for point
pattern data.

Processes such as (27) do not have the Markov property as in Defini-
tion 2.2 because C(xi\x) depends on Xi and its Dirichlet neighbours (those
Xj such that C(XJ | x) has a common edge with C(xi | x)) regardless of how
far away these neighbours are.

In [6] we defined a Markov property analogous to the Ripley-Kelly def-
inition 2.2, except that the concept of "neighbourhood" now depends on
context and is denoted ~.

X

Definition 5.1 Assume that for each x E X there is given a symmetric,

reflexive relation ~ defined on x. // points ix, v E x are related under ~ we

write u ~ v and say that u and v are x-neighbours. The x-neighbourhood

of a subset y C x is

λί (y|x) = {u : u ~ v for some υ E y}.
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The subset y C x is α clique in x if all members ofy are -^-neighbours (u ~ v

for all w, v G y). A set containing 0 or 1 members is a clique.

Example 5.1 (Renewal process) In one dimension, given the points x =
{xi,... ,xn} C R with x\ < #2 < ••• < Xn, define X{ ~ x +i for i =
1,..., n — 1 and let no other relations hold. That is, each point is a neighbour
of the next and the previous elements in the sequence.

Example 5.2 (Delaunay neighbours) In R2 define X{ ~ Xj iff x^Xj are

neighbors in the Delaunay tessellation generated by x. That is, x^Xj are
neighbours iff their Dirichlet cells C{xχ | x), C(XJ | x) have a common edge.

Example 5.3 (Connected components) In R2 let ~ be any fixed rela-

tion such as (13), and define ~ to be the transitive closure of ~ on x. Thus,

iff

Xi ~ V\ ~ 2/2 ~ ~ Um ~ Xj

for some y^ G x. Two points are ^-neighbours if they belong to the same

connected component of the graph induced by ~ on x.

Next we generalise Definition 2.2 of Markov point processes to the case
of non-constant relations ~. This should at least embrace functions of the

X

form

x J

However since ~ now depends on x,
X

the new terms arise because some pairs X{,Xj E x may be neighbours with
respect to ~ but not ~ , or vice versa. If f(xUu)/f(x) is to depend only on

x xUu

"local" information, then ~ must only differ from ~ in a "neighbourhood"
xUu ^ x

of u. Thus we need to impose conditions on ~.
X

Definition 5.2 For a dynamic relation ~ define the clique indicator func-

tion - J
0 if not.

Define the following conditions on ~. Let y C z G X and u,υ G S with

u, v # z and z U {w, v} G X.
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(Cl) χ(y|z) φ χ(y|z U {u}) implies y C M [u\τ U {u})

(C2) if u r/j v where x = z U {u,v}, then χ(y|z U {u}) + χ(y|z U {υ}) =

Note particularly the strength of the conclusion in (Cl), i.e. "all points
of y are neighbours of u". It is shown in [6] that Examples 5.1-5.3 and
several other examples satisfy (Cl) and (C2).

Definition 5.3 A finite Gibbs point process with density f is a dynamic

Markov point process with respect to ~ if the conditional intensity λ(u x)

depends only on u, λί (u\xΌu) and on the restrictions of the relations ~,
X

~ to λί (u\x U u).
xUu '

In words, the conditional intensity depends only on the added point u,
on the neighbours of u (after its addition), and on information whether
the addition of u has altered neighbourhood relations between any of these
points.

If the relation ~ does not depend on x, then this is equivalent to the

original Ripley-Kelly definition of a Markov point process, Definition 2.2.
Dynamic Markov point processes with respect to the connected compo-

nent relation (Example 5.3) are studied further in [5, 15, 84]. This class
includes many cluster processes, and is closed under superposition.

The following result generalises the Hammersley-Clifford theorem for
Markov point processes (Theorem 2.1).

Theorem 5.1 Let ~ be a system of neighbour relations satisfying (Cl)-
X

(C2). Then a finite Gibbs point process with density f is a dynamic Markov

point process with respect to ~ if and only if
X

(28) /(x) -

yCx

(taking 0° = 0) for all x G X, where φ : X -> [0, oo) satisfies

{II) if φ(x) > 0 then φ(y) > 0 for all y C x;

(72) if φ(x) > 0 and ψ (λί (u\x U {u})) > 0, then φ(x U {u}) > 0.

When /(x) > 0 the decomposition (28) reduces to

(29) f{χ) =
cliques

where the product is over all y C x with χ(y|x) = 1.
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This larger class of dynamic Markov point processes is amenable to
MCMC techniques, with some increase in complexity of the algorithms.
Kendall [39] proved an analogue of the spatial Markov property (Lemma 2.2).
Monte Carlo maximum likelihood or maximum pseudolikelihood techniques
can be applied. Baddeley and Turner [3] use pseudolikelihood to fit Ord's
process (27) to point pattern data.

6 Directed Markov point processes

The simulation of Markov point processes is still computationally expensive,
despite recent advances. This is a bottleneck for many applications, and
also retards the development of our mathematical understanding of such
processes. This is in contrast to Markov processes in one-dimensional time,
which are relatively easy to simulate using the natural ordering of the real
line.

One strategy for avoiding the bottleneck is to modify the interpoint in-
teractions in a spatial Markov point processes so that they respect a partial
order. This is explored in our recent papers [2, 20] for one special case.
Consider point processes in the unit square S = [0,1]2 in R2, and define a
partial order ^ on 5 by

(u,υ) •< (ur,vf) iff u < v! and v < v'.

Interpoint interactions will occur only between points that are related in this

partial order.

We might call such processes directed Markov point processes. They

axe analogous to the directed Markov random fields (Markov mesh models)

on a discrete lattice, studied by Abend et al. [1], Pickard [64, 65, 66, 67],

Lauritzen, Spiegelhalter et al. [46, 45], Cressie [19, 52, 47] and others [25,

42, 8]. Directed Markov random fields can be simulated exactly in a single

pass over the lattice, in close analogy with the simulation of Markov chains

in one-dimensional time.

Naively one could try to construct directed Markov point processes by

writing down probability densities /(x) which are products of terms associ-

ated with subsets y C x o f points that are related in the partial order, or by

similarly constraining the factorisation (18). However, this turns out to be

incorrect; such densities do not have the desired dependence properties.

Instead one should modify the spatial Markov property (Lemma 2.2) and

the conditional intensity (section 2.3) and derive the necessary form of /(x).

This approach is pursued in [2]. Another way to construct specific point

process models of this directed type is to take the limit of a sequence of

directed Markov fields defined on increasingly finer discrete lattices. This

approach is explored in a few special cases in [20].
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For the partial order considered here, general results are already known
from the theory of counting processes in multidimensional time [33]. A finite
point process X in S is equivalent to a counting process (Nz,z G S) where
Nz counts the number of points of X dominated by z. For z = {z\,z<ι) G S
let D(z) = [0, z\] x [0, Z2] = {u G 5 : u •< z) be the set of points dominated
by 2, and D*(z) = ([0, zλ] x [0,1]) U ([0,1] x [0, z2]) = {u G S : z £ u} the set
of points that do not dominate z. See Figure 4. Let TZ^T^ be the σ-fields
of events generated by X Π D(z) and X Π D*(z) respectively.

Figure 4. The regions D(z) (left) and D*(z) (right).

Then (Nz,z G S) has a directed conditional intensity λ+(ϊz,x) if

(30) N - f λ+{
JD(Z)

is a 'strong martingale' [33] with respect to the filtration T* = (̂ "*, z £ S).
Equivalently

(31) E g(u,X)\+(u,X)du

for all ^-predictable functions g(u,X). This is very similar in form to
the Nguyen-Zessin identity (10) which defines the "undirected" Papangelou
conditional intensity.

Our paper [2] proves equivalences between several different versions of
the spatial Markov property, one being the condition known as (F4) in [33],
and others being similar to the conclusion of Lemma 2.2 or to the one-
dimensional Markov property.

The following results are known from multiparameter counting process
theory [33, Theorems 1.3, 2.1] and [13]. Suppose λ+ exists and fs λ+ (u; x) du
is bounded above, uniformly in x. Then X has a probability density / which
satisfies the Mazziotto-Szpirglas exponential formula

(32) /(*) = J] λ+fo x) exp j^[l-λ+(ti;x)]
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Furthermore, a similar expression holds for the probability density fz of the
subprocess

XΠD(z) = {xi EX : Xidiz}

with respect to the Poisson process on D(z).
Conversely if λ+(u;X) is any positive, predictable process such that

fs\+(u;x)du is bounded above uniformly in x, then the function / con-
structed by (32) is a probability density for a point process absolutely con-
tinuous with respect to the unit Poisson process, satisfying the same mea-
surability properties [33, Theorem 1.3, p. 275].

Incidentally the undirected conditional intensity λ(u; x) is related to the
directed conditional intensity λ+(u;x) through (32),

λ(u x) = λ+(u,*υ{u})f[

(33) x exp (- ί [λ+(ϋ,xU {u}) - λ+(v,x)] dυ J

Note the similarity of (32) to the expressions for the likelihood of a
Poisson process (2) and the pseudolikelihood of a finite Gibbs process (20).
It differs from the likelihood of a general finite Gibbs process (4) in that (32)
contains an integral over S. The latter effectively replaces the intractable
normalising constant in (4).

For example if λ+ is a deterministic function, λ+(n, X) = g(u), we obtain
the inhomogeneous Poisson process with intensity function g.

Example 6.1 ('Directed Hard Core') By analogy with the Hard Core
process (Example 2.5), let

L if \\z — Xi\\ > r for all x\ •< z

) otherwise

where r > 0 is a fixed parameter, the interaction distance. The function
/(x) resulting via (32) is

where J(x) is the indicator function

^ r f°Γ all Xi,Xj G x such that X{ •< Xjjγ \ ί 1 if \\xj — χi\
' \ 0 otherwise

and \U(x)\ is the area of the region

C/(x) = {u E S : \\u - Xi\\ > r for all x ^ G x such that X{ -< u]

= S\\JCr(xi)
i

where Cr(z) = b(z,r) \ R*{z). See Figure 5.
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Figure 5. A typical realisation of the directed hard core process in Example 6.1. Filled

dots: points x» G x. Dotted circular sectors: forbidden regions Cr(xi). Shaded area:

permitted region U(x).

Example 6.2 ('Directed Strauss') By analogy with the Strauss process
set

where 0 < 7 < 1 and

s(s,x) = #{xi G x : Xi -< z and \\xι - z\\ < r}

is the number of points of x which are closer to z than a fixed distance r > 0
and which precede z in the partial order. The case 7 = 0 reduces to the
previous Example.

One of the chief advantages of directed Markov random fields in the
discrete case, as expounded by Pickard [64, 65, 66, 67] and others, is that
they can be simulated directly in a single sweep of the index set. Each value
Xυ is drawn from the conditional distribution given the already generated
values {Xu : u -< v}.

Similarly, Monte Carlo simulation of directed Markov point processes is
much simpler than for their undirected counterparts. Under mild conditions,
a directed Markov point process can be obtained from a Poisson process by
a random (i.e. data-dependent) multidimensional time change. This can be
interpreted to give a simple algorithm for generating a realisation of the
desired process in a single sweep of the spatial domain.

Because they are easy to simulate, directed Markov processes have nu-
merous potential uses. They might be used as reference distributions for
importance sampling, or as proposal distributions for simulating Markov
point processes (either by the rejection method or for Metropolis-Hastings
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algorithms). They might serve as approximations to (undirected) Markov
point processes in some cases.

It would also be of interest to generalise the partial order •< and in-
deed to allow dynamic directed graphs (partial orders which depend on the
configuration x).

Acknowledgements. I thank the referees for helpful advice.
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