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Abstract

Two novel problems of boundary crossing probabilities that arise in
genetic linkage analysis based on sib pairs are addressed by modifica-
tions of techniques developed to solve problems of sequential analysis.

1 Introduction.

Genome scans in linkage analysis lead to problems involving boundary cross-
ing probabilities (cf. Feingold, Brown and Siegmund, 1993), which can be
addressed using methods developed in sequential analysis during the 1970's.
In this paper we discuss two problems where genetically natural conditions
lead to novel variations.

The goal of linkage analysis is to identify regions of the genome harbor-
ing genes affecting particular traits. In humans these are often genes that
increase susceptibility to particular diseases, and it is convenient to speak
of "disease" genes, although other traits affected by an individual's genetic
makeup can be studied similarly.

A convenient unit for the linkage analysis of human diseases is an affected
sib pair. Given N > 1 unrelated sib pairs, we let X\ t denote the number of
pairs that share i alleles identical by descent (i = 2,1,0) at locus ί, and let
χ(N) = (X§p,χ[*p,χVp). (An allele is shared identical by descent by two
relatives if it is inherited from a common ancestor.) With probability 1/2
a sibling pair can inherit zero or one allele identical by descent from their
mother and similarly from their father. These events are independent, so
the probability that two siblings share i alleles identical by descent at locus
t is given by EX§ = 1/4, EX$ = 1/2, EX$ = 1/4.

For an affected sib pair, on a chromosome containing a disease locus at
τ the (conditional on being affected) distribution of alleles shared identical
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by descent at τ is of the form

EXξl = {l + a + 2δ)/4, EXξl = (1 - 5)/2, BXg = (1 - α)/4, (1)

where a and 5 can be expressed in terms of a genetic model for the trans-
mission of the disease and under reasonably general conditions satisfy the
constraint

0 < δ < a < 1 (2)

(cf. Risch, 1990a,b or the Appendix). The extreme δ « a corresponds to a
rare recessive disease, while the case δ « 0 occurs for a dominantly inherited
trait.

A null hypothesis of interest is that r is in fact unlinked to the disease,
i.e., that a = δ = 0. Holmans (1993) calls the likelihood ratio test of this
hypothesis based on X$ N) = (X$\x["\x$) the "possible triangle test"
because the constraints (2) force the vector consisting of the first two ele-
ments of (1), say, to lie in a triangular subregion of the unconstrained set of
values. See also Faraway (1993).

In experimental genetics, which may involve agriculturally important
species or animal models for human traits, one is usually concerned with
quantitative phenotypes, hence linkage analysis of so-called quantitative trait
loci (QTLs). In an intercross two inbred strains having differing genotypes
AA and aa at each locus are crossed to produce individuals who are uniformly
Aa. These are bred to one another to produce individuals with genotypes
AA, Aa and aa in the expected ratio 1:2:1. A simple regression model ex-
pressing the phenotype as a linear combination of the number of A alleles
at a QTL and a random error leads via a large sample approximation to a
similar problem to that described above, but without the constraints indi-
cated in (2) (e.g., Lander and Botstein, 1989, Dupuis and Siegmund, 1998).
Teng (1996) in her analysis of the Haseman-Elston (1972) method for de-
tecting linkage of QTL's in human genetics obtains a parameterization of
that problem that again contains the constraints (2).

For the unconstrained problem twice the log likelihood ratio statistic is
asymptotically distributed as χ2 with two degrees of freedom under the null
hypothesis of no linkage. For the problem constrained by (2) this asymptotic
distribution, by a classical result of Chernoff (1954) (see also Self and Liang,
1987), is a mixture of χ 2 and χ | distributions. Specifically, in a form that
will prove useful below, the probability that the square root of twice the log
likelihood ratio statistic exceeds a threshold b is approximately

1 - Φ(6) + (2π)"1(π/2 - tan" 1 21'2) exp(-62/2). (3)

In the preceding paragraph we have assumed that data are available on
a single marker, which is either a disease locus τ itself or is unlinked to the
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disease. Since r has an unknown position on the genome, one uses an array
of markers spread throughout the genome, hence makes many simultaneous
tests, which lead to a problem of multiple comparisons. In Section 2 of
this paper we give approximations to the significance level and power of the
likelihood ratio test constrained by (2) by adapting methods developed to
study sequential hypothesis tests (cf. Woodroofe, 1976, Lai and Siegmund,
1977, Siegmund, 1985 and for classical background material in sequential
analysis Ferguson, 1967).

It is also of interest to estimate the location r of a trait locus by a
confidence region. This problem is described in more detail in Section 3.

2 Approximations for significance level and power.

To obtain the joint distribution of X\ for different values of t, we assume

crossovers occur along each chromosome according to a Poisson process,

which by a change in the "time" scale (actually distance along the chromo-

some) can be assumed to be homogeneous. This is the "no interference"

model suggested by Haldane in 1919, which is known not to be correct, but

is still commonly used as a simple, reasonably robust model. It implies that

X\ is a three state Markov chain which changes its state at a constant

rate, say β/2. The parameter β depends on the units chosen for t to describe

genetic distance along the chromosome. If we use centimorgans (cM), which

are defined by the property that in one unit of genetic distance there is an

expectation of 0.01 crossovers per meiosis, then β = 0.04, and the human

chromosomes average about 140 cM in length. Prom the state (0,1,0) the

chain moves to each of the other states with probability 1/2. Prom (1,0,0)

or (0,0,1) it moves with certainty to (0,1,0). See Feingold (1993) for a more

detailed description of this basic model.

^Prom the model of the preceding paragraph together with (1), one can

show by conditioning on Xf and reasonably straightforward but tedious

calculations that at an arbitrary marker t the probability of sharing 2, 1, or

0 alleles identical by descent is [1 + (α + δ) exp(-β\t - τ\) + δexp(-2β\t -

r|)]/4, [l-5exp(-2/?|t-τ|)]/2, and [l-(α+δ)exp(-β\t-τ\)+δexp(-2β\t-

r|)]/4. If t is on a different chromosome from r, we set t = oo, to obtain the

null hypothesis probabilities.

To obtain a Gaussian process approximation to the likelihood ratio pro-

cess, we introduce the notation

Zltt = -2(X<? - N/2)/NV\ ZU =

Calculations based on the results stated above show that on unlinked chro-
mosomes (i.e., for α = δ = 0) these two processes have expectation 0, vari-
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ance 1, and are uncorrelated. Also

Cov[Zi,s, Zi | t] = exp[-/?i|t - s|], Cov[Z2)S, Z2ft] = exp[-/32|t - s|],

where β\ = 2/3 = 0.08, β2 = β — 0.04 (cf. Feingold, Brown and Siegmund,
1993, for details). Thus Z = (Zι,Z2) is approximately for large N a two-
dimensional Ornstein-Uhlenbeck process. On a linked chromosome having a
single trait locus at r,

EZlίt = μiexp[-/3i|t - r |], £Z 2 , t = μ2exp[-β2\t - r |], (4)

where μ\ — Nι/2δ,μ2 = (N/2)1/2(a + δ). The genetic constraint (2) is equiv-
alent to 0 < 2χ/2μi < μ2. Thus the triangular constraint noted by Holmans
becomes the constraint that μ — (μi, μ2) lie in a wedge in the first quadrant
of the xy plane, which is defined by the lines y = 2ιl2x and x = 0. The
log likelihood function for the limiting Gaussian process under contiguous
alternatives is

μiZ1 ) T + μ 2 Z 2 ) T - | |μ | | 2 /2 . (5)

Note that although we observe the entire process indexed by t, the likeli-
hood function depends only on the process at r, which is itself an unknown
parameter (Feingold, Brown and Siegmund, 1993).

The following two extreme cases are of interest. If we assume 5 = 0,
which defines an additive model (or approximately a dominant model) of
inheritance (Risch 1990b), then μ\ — 0, so the likelihood ratio test to detect
linkage is asymptotically equivalent to the maximum over all marker loci t
of

Z2,t. (6)

For a rare recessive trait, where δ ~ α, the appropriate test is based on the
maximum over t of

[ZU + 21/2Z2)t]/31/2 = 4[χW - N/A]/(3Nγ/\ (7)

The statistic (7) is the projection of the vector (Zi,t, Z2,t) along the line
y = 21/2x, making an angle tan" 1 21/2 with the positive x axis in the xy
plane. The statistic (6) is obviously the projection of (2Ί,t, Z2j) along the y
axis, which makes an angle of π/2 with the positive x axis.

If there were no constraints on μi,μ2, the likelihood ratio statistic at a
putative disease locus t would be obtained by maximizing (5) with respect
to μi,μ2. This yields

\\Zt\\ = [Zlt + Zlt}
1/2, (8)

which would in turn be maximized over all marker loci t to search the genome
for the disease gene. To incorporate the constraints we use (8) if the point
{Z\t, Z2j) lies in the wedge defined by the lines y = 21/2x and x = 0. If
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the point does not lie in this wedge, we use the larger of (6) and (7). Let
\\Zt\\ denote the statistic so obtained. In effect the likelihood ratio test in-
corporating the constraints is based on (8) unless the data tell us that the
mode of inheritance appears to be purely additive or purely recessive; in
these extreme cases we use the statistic appropriate for the apparent mode
of inheritance. (These geometric observations lead to a simple direct demon-
stration of (3), which is the marginal distribution of the statistic described
in this paragraph at each fixed t.)

The false positive rate of the likelihood ratio test is the probability, com-
puted under the assumption α = δ = 0, that the statistic described above
exceeds the detection threshold b at some locus t in the genome. This prob-
ability can be evaluated approximately by adapting arguments developed to
study sequential hypothesis tests (e.g., Woodroofe, 1976, Lai and Siegmund,
1977). Slightly more generally, we suppose that (fully informative) markers
are placed at constant intermarker distances Δ. Recall the special function
v defined by Siegmund (1985, p. 82). For numerical purposes, for 0 < x < 2,
u(x) « exp(—0.583x); for larger x the first four terms of the defining infi-
nite series provide a satisfactory numerical evaluation. Suppose b —> oo and
Δ —> 0 in such a way that 6Δ 1 ' 2 is bounded away from 0 and oo. Then for
a single chromosome of length £,

P{max| |Z i Δ | | > b} = £exp(-62/2){CΊ&2/(2τr) + C2b/{2π)^2 + o(b)}, (9)

where

Cγ = Γ i (#2 sin2ω + /?i cos2ω)i/{6[2Δ(/?! cos2 ω + β2 sin2ω)1/2]}dω,

and

C2 = a>-\βι + 2β2)u{b[2A(β1/3 + 2/V3]1/2} + 2-V2^[ί>(2Δ/?2)
1/2].

In (9) the term involving b2 accounts for the probability that | | ^ Δ | | exceeds
6 at a point where Z Δ lies inside the wedge, while the terms involving b
account for the probability that Z25ΪΔ or \Z\^ + 2ι/2Z2^]/Z1/2 exceeds
b for some value of iA where the two dimensional process is outside the
wedge. For a search involving the entire genome, we can use the independent
assortment of chromosomes to obtain from (9) the Poisson approximation

P{max H^ΔII > 6} « 1 - exp[-Lexp(-62/2){Ci62/(2π) + C2b/{2π)ι'\

(11)
where L is the total length of the genome (approximately 3400 cM).

A slightly better approximation is presumably obtained by adding (3) to

(9) as an edge correction to account for the initial marker on the chromosome.
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In the special case Δ = 0, the integral (10) equals (βι + β2)(π/2 ~"
tan" 1 21/2)/2 - (βλ - β2)/(3 x 21/2) = 0.0275 for βx = 0.08, β2 = 0.04. As
Δ —• oo, the asymptotic relation u(x) ~ 2/x2 shows that the exponent in
(11) is asymptotic to L/Δ times (3), so the Z^Δ for different i are treated as
independent, as they should be when Δ is large.

For a human genome of 23 chromosomes averaging 140 cM in length, the
edge corrected (11) yields 0.05 level thresholds of 4.30, 4.11, 3.91 and 3.78
for Δ = 0, 1, 5, and 10 cM, respectively. The threshold for Δ = 0 has been
cited by Lander and Schork (1995). An often recommended one degree of
freedom statistic is (6), which is the score statistic when δ is assumed equal
to 0. Corresponding thresholds are 4.08, 3.92, 3.73 and 3.6 (Feingold, Brown
and Siegmund, 1993).

The power of the likelihood ratio test is the probability under the alter-
native that II^ΪΔII exceeds the threshold b at some marker near to the true
disease locus. To approximate the power we let ξ = (μf + μ^)1^2 denote the
distance of the point μ = (μχ,μ2) from the origin. We assume for simplicity
that the disease locus is exactly at one of the markers, which is not near the
end of its chromosome. The point μ lies in the wedge defined by the angles
tan" 1 21/2 and π/2 measured from the positive x axis. A slightly different
approximation to the power is appropriate depending on whether the point
is strictly inside the wedge or on one of the edges. In the former case the
power is approximately

1 - Φ(6 - ξ) + φ(b - ξ){l/(2ξ) + {b/ξ)V2[2u/ξ - v2/(b + ξ)]}, (12)

while in the latter it is

1 - Φ(b - ξ) + φ(b - £){l/4£ + [(b/ξ)1'2 + l][u/ξ - v2/{2{b + 0)]}, (13)

where v = v\b\ΣΔ{β\μl{ + β2β\)l{μ\ + M!)]1^2}- These approximations are
based on decomposing the event in question according as | |Z T | | > 6, or the
contrary and | | ^ Δ | | > b at some nearby marker. The details can be obtained
by arguments similar to those used by Siegmund (1985) and Feingold et al.
(1993). In the case where the disease locus is between marker loci one must
condition on the value of (Zi, Z2) at the two flanking markers (cf. Dupuis,
1994).

Remarks, (i) It is a straightforward consequence of methods in the cited
literature to prove the leading term in (9). A rigorous proof of the result
stated would be substantially more difficult. If there were no constraints
on μi and μ2, the error in the leading term would be expected to be of
order exp(-62/2) (cf. Woodroofe and Takahashi, 1982, Siegmund, 1985),
so it is reasonable to conjecture that the term of order 6exp(—62/2) arising
from the constraints is the correct second order term for this problem, (ii)
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Several of our hypotheses can easily be weakened. For example, some simple

modifications are mathematically appropriate if the markers are not equally

spaced, but the approximations are not especially sensitive to this change, so

for practical purposes it usually suffices to treat markers as equally spaced

and use an average intermarker distance, (iii) For these approximations to

hold it is not necessary that the process Zt be exactly an Ornstein-Uhlenbeck

process, but only that its covariance function behave like that of an Ornstein-

Uhlenbeck process near 0. A consequence is that one can use other models

for the recombination process instead of the no interference model we have

assumed, since all lead to the same small time behavior for the covariance

function, (iv) To achieve the best numerical accuracy from (9), one should

apply it to the square root of twice the log likelihood ratio statistic. To

apply it directly to the score statistic one should correct for skewness, e.g.,

along the lines of Tu and Siegmund (1998).

3 Confidence regions.

From (4) we see that the expectation of Z{^ is increasing for t < r and
decreasing for t > r. Hence τ behaves like a change-point, and estimation of
r by a confidence region is closely related to the problem of a confidence re-
gion for a change-point (cf. Siegmund, 1989). For simplicity we consider the
case of mapping QTLs based on an intercross. As noted above, in this case
the nuisance parameters μ\ and μ<ι are unconstrained, hence are arbitrary
real numbers. The covariance parameters can be shown to be β\ = 0.04 and
β2 = 0.02. We also assume that the trait locus r is a marker locus. Since
one often types additional markers near a suspected locus, this hypothesis
is often approximately true.

It follows from the form of the likelihood function given in (5) that the
likelihood ratio statistic for testing that a true QTL is r against the alter-
native that it lies somewhere else on the chromosome has as its acceptance
region the event

Z i Δ | | 2 - | | £ τ | | 2 < z } . (14)

Moreover, for each r, we see from (5) that Zτ is sufficient for μ. Hence if
x = x(ZT) is chosen to satisfy P(AT\ZT) = 7, then the set of all r such
that the event Aτ occurs is a 7 level confidence region. To evaluate the
required probability we have the following approximation, which plays an
important role in the comparative analysis of different confidence regions
given by Dupuis and Siegmund (1998).

Proposition. Let Zt = (Zi,t, Z2,t) where Zu and Z2,t are independent
Gaussian processes with covariance functions satisfying

Ri(t) = 1 - βi\t\ + o(\t\) as ί->0.
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Assume b —> oo,Δ —> 0 and &Δ1/2 is bounded away from 0 and oo. Lei
0 < | |z | | 2 < 62 and de/me ί*, w* £o 6e ί/ie solution of

z2

bRi(t*) cosw*
bR2\t*) sinw*

Assume t* is contained in (0,1) and is bounded away from the upper endpoint
(I >0) . Γ/ien

Ri(t*)R2(t*) cos2 ^* + i2i(ί*)Λ2(t*) sin2

= dRi(t)/dt and β = βι cos2(w*) + β2 sin2(iί;*).
For our particular application, Ri(t) = exp(—β%\t\) with β\ — 2/?2, so the

equations defining t*jW* are quadratic and can be solved analytically. In this
case one can obtain a completely explicit approximation, albeit involving
some complicated expressions. For a maximum over markers on both sides
of r, as indicated in (14), one should double the approximation given in the
Proposition.
Derivation of the Proposition: We first condition on the position where
the process last exceeded the value 6, how far above b it reached at that
position and the angle between Z\^ and Z^^t-

Define D{ = {j : j > 1, (i + j)A < Z}, where / and Δ are fixed. Let
be the angle between Z\^ and -Ẑ ΐΔ Then, we can write

Zo = z}

ΐ=0-
= z]

π0

\fjeDi\\\ZiA\\ = b +y,ωiA=w,Z0 =

(15)

The fact that Z\it and Z2,t are independent and normally distributed for
fixed t yields

= z}

(b+y) cos w - x\R\ (ϊΔ) \ / (b+y) sin w - x2R2 (iΔ)

)φ{
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(b + y) dy dw

If we expand the above around t* and w* where ί* and w* are defined in the
statement of the Proposition, we get

P{\\ZiA\\(=b+dy,ωiAedw

(16)
where

ff t*) cos2 w* B%{t*) sin2 w*
+

sin2κ;* cos2w*
+

- Rj(t*)

Using an argument similar to Siegmund (1985), p. 202, we see that

w,Zo = z) -^ P_μ,ff{πwκ5j < -y},

(17)
where Sj is the sum of j independent normal random variables with mean
and variance —Δfr(/?i cos2 w + /?2 sin2 w) and 2Δ(/?i cos2 w + /?2 sin2 it;), re-
spectively.

Substituting (16) and (17) into (15) we obtain

ί/Δ }

* / e^Pμ.αfminSj >
J * °
/

Jo

R1(t*)R2(t*) cos2 ^ * + Λi(t*)Λ2(t*) sin2 w*

To obtain the last line we use Corollary 8.45 of Siegmund (1985) to evaluate
the inner integral. The summation on i, is approximately an integral in the
variable iΔ; and since b » 0 the bivariate normal density in iΔ and w
behaves like a delta function concentrating at t*,w*.
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4 Appendix.

For completeness we give in this appendix a simple derivation of (1) and (2)
for a disease having a single trait predisposing locus. The derivation follows
Risch (1990a,b).

Let K denote the probability that a random individual has the disease.
Let ψ be the indicator of an individual's phenotype, i.e., φ = 1 or 0 ac-
cording as the individual is affected or not, so K — Eφ. We consider only
a monogenic disease and let G = {α, b} denote an individual's genotype at
the disease locus. Assuming that the population is random mating, so geno-
type frequencies are in Hardy-Weinberg equilibrium, we can by an analysis
of variance decomposition write

where fa(fb) is the additive effect of allele a(b) and da,b is the interaction
(dominance deviation). Hence Σfapa = 0 and Σαdα^pα = Σbda}bPb = 0,
where pa is the frequency of allele a in the population.

A basic assumption is that the phenotypes of two individuals are condi-
tionally independent given their genotypes, i.e.,

= E(φ1\G1)E{φ2\G2).

Then the probability that two relatives are both affected is

E(φiφ2) = K2 + (-VA)e12 + VDu12,

where VA = 2Έpaf% is the additive variance of the penetrances, Vp =
ΣpaPbd^h is the dominance variance of the penetrances, eι2 is the expected
number of alleles shared identical-by-descent by individuals 1, 2 and u\2 is
the probability that both alleles are shared identical-by-descent. For siblings
ei2 = 1 and u\2 = 1/4. For the same calculation, conditional on the event
that the siblings share 2, 1, or 0 alleles identical by descent, we have eι2 =
2, 1, or 0 and u\2 = 1, 0 or 0, respectively.

Hence by Bayes' theorem the conditional probability that siblings inherit
two alleles identical by descent, given that both are affected, is

\[K2 + VA + VD}/[K2 + VA/2 + Vb/4].

Also the probability they inherit one or no allele identical by descent is

respectively

^[K2 + VA/2]/[K2 + VA/2 + VD/A}.
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and

By simple algebra, we see that these probabilities can be rewritten in the
form of display (1) with α = [VΛ/2 + VD/4]/[K2 + VΛ/2 + VDβ] and δ =
[VD/4]/[K2 + VA/2 + Vb/4], which satisfy the constraints (2).
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