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Abstract
A continously operating system consisting of N Ki-out-oϊ-Ni sub-

systems connected in parallel is considered. The components of all
subsystems are assumed identical with life times independent expo-
nentially distributed random variables and the system is maintained
by a single repaiman. Repair times are also assumed identical indepen-
dent exponentials. We are interested in characterizing the allocation
policy of the repairman which maximizes the system reliability at any
time instant t (if any). In the present paper, we give a partial charac-
terization of the optimal policy for systems consisting of highly reliable
components using dynamic programming techniques. We also compute
the leading term of a power series expansion of the reliability of the
system at an arbitrary time instant t under the optimal policy. Finally,
these results are extended to the problem of controlling the correspond-
ing network of parallel queues in a scheduling problem with long mean
arrival times and in its dual routing problem with long mean processing
times.
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1 Introduction

Consider a system consisting of N subsystems which functions when at least
1 out of its N component-subsystems are operational. Subsystem i consists
of Ni identical components and functions when at least K{ of them oper-
ate. This structure will be denoted by [ljiV;(lfi|iVi)i=i,...,N]. The status
of all subsystems is given by a state vector x(t) = (xι(t),X2(t), iχN(t))
with Xi(t) denoting the number of functioning components of subsystem i
at the time instant ί, 0 < Xχ{t) < Ni for i = 1,..., N. Components of the
subsystems may fail. Their lifetimes are exponentially distributed, indepen-
dent random variables. The rate of failure is common for all components
of all subsystems and is denoted by μ. Failures may occur even when the
system is not functioning. The system is maintained by a single repairman
who may be assigned to any failed component. The repairman may switch
from one failed component to another instantaneously, and the time it takes
him to complete the repair of any failed component is considered to be an
exponentially distributed random variable with parameter λ. Repair times
are assumed independent among themselves and with component lifetimes.
Repaired components are as good as new. We assume that preemptions are
allowed.

Obviously, a change in the state vector x means either that a previously
functioning component became non-functioning or that the non-functioning
component currently under repair became functioning. Hence, if we assume
that the pepairman is currently assigned to subsystem α(x), xα( x) < ^α(x)>
the possible transitions from state x are either to a state OjX for j such that
Xj > 0 or to lα(x)X The components of these states are given by

( l * \=J(0,x)4 := ( Xi ~ l * \=J.3 I Xi if * Φ 3

V Q ( x ) /* j ~,. \C A -J. n(^r\
I u^2 11 6 y— LLyΛ.J

The repairman is assigned to a non-functioning component whenever
a state transition occurs. The problem is to construct a dynamic repair
allocation policy that optimizes some performance criterion for the system
(if such a policy exists). There is a close relationship of such reliability
problems to problems of assigning arriving jobs to processors (each processor
corresponding to a queue, possibly with finite capacity) so that some total
performance criterion is optimized. For an introduction to this area see
Walrand (1988).

In this paper, we examine the problem of the maximization of the re-
liability of the sustem under consideration at any time instant t when the
system components are highly reliable (i.e. μ is sufficiently small). We give a
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partial characterization of any optimal policy that depends on the state and
structure of the system only (i.e. x, K{, and JVί, i = 1, N and not on the
failure and repair rates), which also enables us to compute the leading term
of the value (the optimal reliability) in a series expansion in terms of the fail-
ure rate μ. It is very unlikely that a complete characterization of the optimal
policy may be given except in particular cases (for two such interesting cases
we do it). However, if the discounted system operation time is considered
as the optimality criterion, then a complete and easy to compute, although
quite complicated, index type optimal policy exists for all discount rates
sufficiently small or sufficiently large (Dinopoulou and Melolidakis, 1998).
That policy is a refinement of the present policy and is unique. One then
may show that if a complete characterization of the optimal policy exists
under the reliability criterion, then it will coincide with the optimal policy
under the discounted operation time criterion.

Katehakis and Melolidakis (1994) examined this problem under the ad-
ditional assumption that all subsystems are identical (i.e. N{ and K{ are
constant, i = 1,..., N) and showed that for arbitrary μ the "inequalizing"
policy (the policy that tends to maximize the number of functioning compo-
nents of the subsystem that is "more" operational) is optimal. The policy we
construct here is a generalization of the inequalizing policy in the sense that
it coincides with the inequalizing policy when all subsystems are identical.
The approach used to deal with the problem takes the following steps. First
the continous-time problem is discretized via uniformization (see Lippman
S. A. (1975), Ross S. M. (1983)) and consideration of the embedded Markov
Decision Process. This approach has been used in a similar context in Kate-
hakis and Melolidakis (1988) and we will not repeat it in this paper. Then,
we use Dynamic Programming techniques to compare different stationary
policies.

D. R. Smith (1978) used a power series expansion technique to obtain the
policy that maximizes the long run probability that a K-ovX-oί-N system
consisting of single non-identical components functions, when the failure
rates or the repair rates of the components belong in a neighborhood of 0.
M. N. Katehakis and C. Derman (1989) formulated this problem along the
lines of Markov Decision Theory and obtained the discounted operation time
optimal policy.

There is extensive literature concerning dynamic repair allocation policies
in reliability systems. It seems however that most authors prefer coupling
and sample path arguments in dealing with them as well as with the corre-
sponding queueing network problems. We are of the opinion that dynamic
programming is a much more powerfull approach and framework in dealing
with asymptotic problems where bounds and estimates are involved. Also,
when the optimal policy is really complicated, as for example is the case in
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the present problem under the discounted system operation time criterion,
it is very doubtful whether sample path arguments could work. For a recent
review binding together related work in this area see R. Righter (1996).

The repair allocation model we examine has the following interpreta-
tion in queueing theory and scheduling. Take N parallel queues, the buffer
(capacity) of queue i being finite and equal to N^ i = 1,..., N. To each
queue a single processor is assigned which serves all customers (jobs) in the
queue simultaneously. Jobs arrive according to a Poisson process with rate
λ and the processing time of any job is exponentially distributed with rate
μ. The problem is to which queue to assign a newly arrived job so as to
optimize various performance criteria. Assumptions similar to those of the
maintenance problem are made (independence of processing and interarrival
times, customers that find all queues full are lost, etc). Dual to the rout-
ing problem described above is the following scheduling problem. N queues
with capacities N^ i = 1,..., TV, are all served by a single processor which
may process one job at a time. The time it takes for each empty position
in the buffer of any queue to be occupied is exponentially distributed with
rate μ and the processing time of any job is exponentially distributed with
rate λ. We control the assignment of the processor to a queue, preemptions
are allowed, and the usual independence assumptions for interarrival and
processing times are made. Problems similar to the above have been studied
extensively under various performance criteria and generalized in various
directions. For related work (the queueing and routing systems there are
not identical to our model) see A. Hordijk and E. Koole (1990, 1992), D.
Towsley, P. D. Sparaggis and Chr. Cassandras (1992, 1993).

In the present paper we introduce control levels K{ for each queue % with
1 < Ki < JVj, i = 1,..., JV. Then, we provide a partial characterization of
any policy which at any time instant t (a) For the routing problem and for
jobs with long mean processing time (i.e. sufficiently small μ) maximizes
(minimizes) the probability that all queues have size less than their control
level (b) For the scheduling problem and for long mean arrival times max-
imizes (minimizes) the probability that at least one queue has a number of
empty positions greater or equal to its control level.

2 The Dynamic Programming formulation of the
problem

Let J(x) denote the minimum number of components that must become
non-functioning, when the system is at state x, in order for the system to
become non-functioning (e.g. if at x the system is non-functioning, then
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J(x) = 0). Hence

J(x)= £ {xι-Kι + 1) (1)

Let c(x(ί)) be a random process taking values 1 or 0 according to whether
the system is functioning or not at x(ί). The distribution of this process
depends on the repair allocation policy π followed. To show that a policy
7Γ* maximizes the reliability of the system at any time instant £, we have to
show that Pπ*(c(x(t)) = 1) > Pπ(c(x(t)) = 1) for all policies π.

Now, consider the family PM, M = 0,1,2,... of discrete finite horizon
D. P. problems with optimality equations given by

v(x; m) = min (1 - λ - μ ] Γ a*)v(x; m - 1) + λv(lπ(x )x; m - 1)
π ( x ) L €

, ΠΛ ί 0 if /(x) > 1 ...
v ( x ; 0 > = ( l if J ( x ) = 0 ( 2 )

Let tί;π(x;m) denote the value function of a policy π; it is the solution
to the following recursive scheme

wπ(x; m) = ί 1 - λ - μ ^ xΛ wπ(x.; m - 1) + A^7r(l7r(x)x; m - 1)
V i J

^ 2 ' ) m — 1), m = 1,... ,M

0 if /(x) > 1
χ . f ^ ^ Q (3)

Using uniformization and a time rescaling so that the uniform rate is 1,

one gets the following equation

Pπ(c(x(ί)) = 0) = £ u;π(x; M ) e ~ i — (4)
M=0 ^ J *

Hence, to show that a policy π* is optimal in the original problem, it is
sufficient (but not necessary) for its discrete version to be optimal in the
family PM, Af = 0,1,2, We call this notion of optimality for π* "strong

optimality".
A necessary and sufficient condition for a stationary policy π(x) to be

strongly optimal is the following

ϊ%(l π ( x ) x;m)<w π ( l ix ;m), Vz € A{x) - {π(x)}, Vm > 0 (5)



88 Dinopoulou Sε Melolidakis

The recursive scheme of Equation 3 shows that t/;7Γ(x;m) is a polyno-
mial in μ. We will be interested in the behavior of this polynomial in a
neighborhood of 0 and hence in its leading coefficients. So, we will write

oo

wπ(x; m) = Σ wP (x; m)μv (6)

where of course the coefficients w^ (x ra) vanish for v > vofcm) for some
z/0(x;ra).

Then, for any state x at which a decision has to be made, substituting
(6) into (3) will result to the following recurcive equations for the polynomial
coefficients.

N

M (0,x; m) - w™ (x; m))

( 0 if J(x) > 1
1 if J(x) = 0 and ι/= 0 (7)

0 if J(x) = 0 and v > 0
For μ sufficiently close to 0, the optimal repair allocation policy will be
determined by the leading (i.e. the first in increasing order of v non-zero)
coefficient of this power series expansion, which, as we shall see, is acquired
at v = /(x). Hence, (5) implies that to show that assigning the repairman
to τr(x) is better than assigning him to i, it is sufficient to show that for all
m

where ι/* = min(/(l7Γ(x)x),/(lix)). In case the above relationship is an
equality, we will have to compare the next to the leading coefficients, etc.

To be able to describe the optimal policy, we will need some definitions
and notations. Let

P 2 ( x ) :={i:Ki-l<Xi< JV<},

P(x):=Fi(x)UF2(x),
Q(x) := {i:Xi<Ki-l},
β(x) := {i : Xi = Ni},
A(x) := P(x) U Q(x).

For i E Q(x)UPi(x), let Πj(x) := Ki-Xi and n(x) := minjgQ^up^x) {nj(x)}.
Let also

. v _ / 0 ifP(x)τ^0
~ I n ( x ) - l ifP(x) = 0
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and for m > J(x) let α(x; m) := min [s(x), m - J(x)] Whenever ambiguities
may not arise, we will write just n instead of n(x). Notice that if all subsys-
tems operate at full capacity (i.e., i G i?(x), i = 1,..., iV), then s(x) = +00
and α(x; m) = m — /(x).

For i G ^4(x), let δ{(x) := I . r>) \ > ^i(x) =

ί Xi

X-ΐκ]+2 i f ^ p ( x )
I n»(x) if iGQ(x)
Finally, define

So, -A(x) D Aχ(x) D ^2(x). Intuitevely, P(x) is the set of all subsystems
that are either functioning although they have non-functioning components
or they are non-functioning but would be functioning after the repair of one
more component. Q(x) is the set of non-functioning subsystems which need
at least two components repaired in order to start functioning. R(x) is the
set of subsystems with all of their components functioning. ^4(x) is the set
of available actions at state x, i.e. at state x we must assign the repairman
to a member of -A(x). A decision must be made if A(x) φ 0 and in this
case -Ai(x) φ 0 always. Notice also that -Aχ(x) and A2 (x) depend on the
structure of the system only.

In what follows, we show that there exists a neighborhood of 0, Λ/"(0),
such that for μ e λί(0) the first two steps of any optimal policy are described
as follows: When at state x, the optimal choice i$ G A(x) will be decided by

• Step 1: Restrict your attention to the subset Aι(x) of A(x). If this
is a unique member set, then assign the repairman to that subsystem;
otherwise

• Step 2: Restrict your attention to the subset ^ ( x ) of Aχ(x). If this
is a unique member set, then assign the repairman to that subsystem.

If there are two or more subsystems in A2(x), then we don't know which
action is optimal. However, a complete characterization of the optimal policy
is known in two interesting special cases for μ sufficiently small. So, let
T := {i: Ki = 1}, Γ(x) := T Π P(x). Then, we have: Case I: If Γ(x) φ 0,
then ^2(x) = T(x) and assigning the repairman to any one among the
subsystems which belong in ^2(x) is optimal. Case II: If the subsystems
which belong in ^2(x) have the same K > 1, then it is optimal to assign
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the repairman to io £ -A2W such that Nio = maxi€i42(x) Ni The proof of
the optimality of the pertinent policy beyond Step 1 and Step 2 in these two
cases is rather tedious (esp. for Case II) and will be omitted (for the proof
see Dinopoulou and Melolidakis (1998b)).

Throughout this article we follow the usual conventions (i) (£) = 0 if

n<k, (ii) Σi€0 Q>i = 0 (in particular Σ^h α* = ° i { i ι > ^ ) , (iϋ) Πie0 αi = *>
(iv) min 0 = +00

3 Establishing Steps 1 and 2

Proposition 1 For all policies π and for /(x) > 0, 0 < v < J(x),

u;M(x;m)=0, m = 0,1,... (8)

Proof: The proof is by double induction on v and m using relations (7). Let
P{y, m) denote relation (8). Then, one may easily check that, (i) P(0,0) is
true (from (7)), (ii) If P(0, m) is true, then P(0, m +1) is true, (iii) If P(i/, 0)
is true, then P(i/ + 1,0) is true (from (7)), (iv) If P(i/, m) and P(i/ + 1, m)
are true, then P{y + 1, m + 1) is true. •

Therefore, the first possible non zero coefficient in the polynomial ex-
pansion of w7r*(x;ra) is the /(x)-th coefficient. To examine if a policy π* is
optimal one then compares the /(lix) terms between iί;7Γ*(l7Γ*(x)X;m) and
tuπ (lίx;ra), i € -A(x), i Φ π*(x). If these terms are equal, then one com-
pares the /(l<x) + 1-th term, e.t.c.

Proposition 2 For all policies π and for J(x) > 0, 0 < m < J(x) < i/,

^ ) ( x ; m) = 0, 1/ = 7(x), J(x) + 1,... (9)

Proof: The proof is again by double induction on v and m using relations
(7) and Proposition 1. Let P(i/,m) denote relation (9) Then, one may easily
check that, (i) P(J(x),0) is true (from (7)), (ii) If P(/(x),m) is true, then
P(I(x),m + 1) is true, (iii) If P(^,0) is true, then P(u + 1,0) is true (from
(7)), (iv) If P(u, m) and P(v + 1, m) are true, then P(y + 1, m + 1) is true.
•

In the rest of this paper the product Y\Xi>Ki (K -1) a P P e a r s quite often.

For notational simplicity we let π(x) := ΠXi>Ki (κ^-i) We observe that

π(lix) = w(x)ίi(x) if i e P(x) (10)

The next Lemma provides the leading coefficient of wπ* (x; m) (it is ac-
tually the leading coefficient of any policy satisfying steps 1 and 2 of the
previous section).
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Lemma 1 For m > /(x),

TYxV /(x)+α(x;m) / \

Proof: We consider the following cases:
Case 1.1: P(x) φ 0. Then (11) is true and the proof is by double induc-

tion on J(x) and m. Let P(/(x),m) denote relation (11).

(a) P(0,0) is true, since w^J (x O) = 1 (boundary condition (7). Notice that
n(x) = 1).
(b) if P(0, m) is true, then P(0, m + 1) is true, since from (7), Proposition 1
and P(0, m)

w^* (x; 771 + 1) = (1 — λ)wπ* (x; m) -f- λtϋ7r* (lπ*/x)X; rri)

171 \f1 _ \\m-2\z — /i _ \\fn+l

(c) If P(/(x) = *Λ m) is true for m = v, then P(/(x) = z/ + 1, m + 1) is true,
since by relations (7) and (1), Propositions 1 and 2, and P(/(x) = i/, m)

tŷ .*+ (x; m + 1 = i/ + 1) = Y^ xtwζ* ΦiχΊm — y) — (u + l) ft^(x)

(d) If P(/(x) = ^, m) and P(/(x) = v + 1, m) are true, then P(/(x) = ^ +
l , m + 1) is true, since by relation (7), Propositions 1 and 2, P(/(x) = v,m)
and P(/(x) = i/ + l,m)

M(0,x; m)

The computational details are omitted.
Case 1.2: P(x) = Q(x) = 0. Then, all subsystems belong in fl(x).

Hence,

N

Induction on m will then prove (11). wj£ X (x; m) = 0 (by Proposition 1),
tί;^x^~1^(0^x; m) is given by case 1.1, and w^* (x; m) is given by induction
on m. The details are algebraic operations which are omitted.
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Case 2: P(x) = 0 and Q(x) ^ 0.
Case 2.1: 7(x) = 0. Then the proof is by induction on m.

(a) P(0,0) is true, since u^* (x O) = 1 (boundary condition 7. Notice that

n(x) > 1).

(b) if P(0, m) is true, then P(0, m + 1) is true. To see this notice that from

(7)

u>jr?(x; m + 1) = (1 - X)w^)(x; m) + λ^°»)(lπ«(x)x; m)

w^J(x; m) is given by P(0, m). If n(x) = 2 then tuĵ  (lπ»(x)X; m) is given by-

case 1.1, otherwise it is given by P(0,m). In both cases we have

(i) if m+1 < n, then w^.^x m+l) = (1 — λ)u4* (x.; m)+Xw^J(lπ.(x)X;m) =

(1 - λ) + λ = 1 (notice that Σ?=o C X 1 - λ)m-*λ2 = 1).

(ii) if m + 1 > n, then w{°)(x;m + 1) = (1 - λ) Σ ^ o Q ί 1 " χ)m~zχz +

AΣ"=o (TJί1 ~ λ)m- zλ* Simple algebra then gives

«,<°>(x;m + 1) = ί m + ' )

Therefore, from (i) and (ii), P(0, m + 1) is true.

Case 2.2: /(x) > 0.

(a) Since J(x) > 0, this means i?(x) ^ 0. Propositions 1 and 2 applied to

(7) show that

Equation (11) for Case 1.1 and for £ G i?(x) gives

wί^^HOflc; J(x) - 1) = (J(x) - l)

Hence

^ί ( x ) ) (x; m = J(x)) = Σ (x, - Kt

which establishes P(I(x),m = /(x))
(b) If P(J(x),ra) is true, then P(/(x),m + 1) is true. By eq.(7) we have

/- λx (J(x))/ x , λ (/(x))/i x

= (1 — \)Wπ* (x; m) + λw^ (l π *(x) χ ; m )
N

+ \ / V-* V-XJ — •*•/ ίΓ\ \ U l X I — 1) / \ \

7 Xp WL* (U/>X; Tίl) — tίλ^* ( X : Til)
X ŷ • ^ V v Γ \ <» ' / 7Γ /

(i) If n < m — /(x) + 1, then w^*x"(x; ra) is given by P(7(x),m) with

α(x m) = min(n —l,m —/(x)) = n —1. If n(x) = 2, then w^*x^(lπ*(x)x;ra)
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is given by eq. (11) (Case 1.1) with α(x m) = 0 = n — 2 and if n(x) > 2
then it is given by P(J(x),ra) with J(lπ*(x)x) = I(x) and α(lπ*(x)X;ra) =

min(n(lπ* ( x )x)-l,ra-J(x)) = n-2. lit : xe < Ke-1, then ̂ ^ " ^ ( O j x ra)

is 0 (Proposition 1), else it is given by eq. (11) (Case 1.1). Finally, w^*
(x ra) is 0 (Proposition 1). Hence,

v. J ( x ) + n - l

z=/(x)

Then it is a matter of operations to check that

; m 1 " λ'M

(ii) if n > m — J(x) + 1, then similar substitutions in (7) give

Σ
z=/(x)

2=/(x)-l

/(x)!r^(χ) Σ

So, P(/(x), m + 1) is true.

Proposition 3 For any state x such that P(x) 7̂  0, the repairman should
be allocated to a subsystem belonging to P(x).

Proof: The proof is by comparing the J(x)-th term of the power series
expansion of ^π*(lπ*(x)x;m) and u;π*(lix;ra), i G A(x) and i φ π*(x) So,
we compare the policy which at state x assigns the repairman to a subsystem
which belongs in -P(x) with any policy which at state x assigns the repairman
to a subsystem in Q(x). Then v}ζ} (lπ*(x)X;ra) = 0 Vi/ < /(x) and Vra > 0
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(Proposition 1), while w^* (lix m) = 0 Vι/ < J(x) and Vm > 0 (Proposition

1) and u^* '(lix m) is strictly positive (Lemma 1) Vm > /(x). Therefore

w{

π{
M)(lπ*(x)x;m) < ii# ( x ) )(l<x;m) Vm > /(x). •

Proposition 3 shows that the first step of π* is optimal, i.e. we should
first restrict our attention to Aχ(x). If this has a unique member, then we
stop and repairing that subsystem is optimal. Otherwise, we have two cases:
(A) P(x) = 0, (B) There are two or more members in P(x).

Proposition 4 //P(x) = 0, then it is optimal to assign the repairman to a
subsystem %Q with riio(x) = n(x)

Proof: If P(x) = 0, then A(x) = Q(x). We will prove that there exists an
m! > 0 such that

wJί ( x ) )(lπ ( x )x;m) = ^ ( x ) ) ( l < X ; m ) Vm < m'

^ ( x ) ) ( l π * ( x ) x ; m) < ^iί ( x ) )(lix; m) Vm > m'

Suppose that n = n(x) = nπ*(x)(x) < rii(x). Then n(lπ*(x)x) = n(x) — 1
and n(l^x) = n(x).
(I) If i?(x) = 0, then I(x) = 0. Then, Lemma 1 leads to the following re-
sults:
(a) If m < n — 1, then u^* (lπ*(x)x;m) = 1 = w^J (liX.] m). (b) If m =

n - 1, then w${lπ.{x)x;m) = Σz=o O ^ ί 1 ~ λ ) m " Z = X " ^^ w h i l e

ίi ̂  (lix m) = 1. Hence, w^J(lπ*(x)X;m) < ^ * (lix m) for m = n — 1.

(c) If m > n - 1, then ^ ( l ^ x m) = Σ"=o (T)(! " A)m"^λ^ and

Σz=o (T)(l " λ)m"^λ^ is true. Therefore, ^ ( l ^ ^ j x m) < ^ ( l ^ x m)
Vm > n — 1. (a), (b) and (c) lead to the following conclusion: If at state x
no subsystem is functioning and no subsystem would start functioning after
a single repair, then assign the repairman to the subsystem that needs the
least number of repairs to become operational.
(II) R(x) φ 0. Then we have the following cases:

(a) If m < J(x), then ^ί ( x ) ) ( l π *( x )x;m) = ^ ί ( x ) ) ( l ix ;m) = 0 (Proposition

2)

(b) If m = /(x), then Lemma 1 leads to

/(x)+min(n-2,0)

Γ (1 -
*=/(χ) x Z

and for i : n^(x) > n(x),

iY~\f /(x)+min(n-l,0)/
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Therefore, for m — /(x) wΈ* ' ( l ^ ^ x m) = it ̂  ^(lix m).

(c) If m > /(x), then Lemma 1 leads to

γ/ \ /(x)+min(π-2,ra-/(x)) / \

4ί()) i ^ Γ
*=J(x)

and for i : ni(x) > n(x),

r/ x. /(x)-fmin(n-l,ra-/(x))

λfl3)

If m — 7(x) < n — 1, then min(n — 2, m — /(x)) = min(n — 1, m — /(x)) =

m - J(x) and ^ i ί ( x ) ) ( l π * ( x ) x ; m ) = ^ ί ( x ) ) ( l i x ; m ) . If m - /(x) > n - 1,

then min(n — 2, m — /(x)) = n — 2 < min(n — l , m — /(x)) = n — 1 and

4ί(x) )(lπ.(x)x;m) < 4i(x))(l,x;m).
Hence, ιι;2 ( x ) )(lπ . ( x )x; m) < ^iί ( x ) )(lix; m), Vm > /(x) + n - 1 •

Proposition 4 establishes step 2 of the optimal policy when P(x) is the

empty set.

Proposition 5 // there are two or more subsystems in P(x), then the opti-

mal policy assigns the repairman to a subsystem %Q with ίiQ (x) = mini

Proof: Consider the power series expansion of w(lπ*(x)x; m) and it;(lix; m)

i G P(x), i φ τr*(x). Then, for all m and v < /(x) w^l(lπ*(x)X;ra) =

voζ* (lix; m) = 0 (Proposition 1) So, we compare the (I(x) + l)-th term. We

will prove that there exists an m! > 0 such that

4 ( ) ) ; x ; m ) Vm < w!

i^m) Vm > m'

For m < /(x) + 1 we have ^ ( x ) + 1 ) ( l 7 Γ * ( x ) x ; m ) = w^^ili^m) = 0

(Proposition 2). For m > /(x) + 1, Lemma 1 leads to

π.(x)x;m)= L ™+ ^(/(x) + l)Ml,, M x)(l - λ ^ W - 1 (14)

Vj(x) + l)Ml,x)(l - A)™"^)"1 (15)
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Therefore, using (10), if ^τr*(χ)(x) < ^i(x), then t*4* + (lπ*(x)X;ra) <
( ( ) )

Propositions 4 and 5 establish step 2 of the optimal policy, i.e., the
consideration of the minimum of ^(x) for all subsystems ί such that δi(x)
is minimum. Hence, if Ai(x) has more than one members, and if ^ ( x )
is nonempty and has a unique member, then, it is optimal to repair that
subsystem.

Theorem 1 If a repair allocation policy, say π°, satisfying steps 1 and 2 is
followed, and if x(0) = x, then, the probability that the system is down at
any time instant t is given by

Pπo(c(x(t))=0)

tJ(χ)e-λtτσ(x)μJ(x)

 + 0(μJ(χ)) i f p( x ) φ 0

λ-/(x) j ( x ) t^( x ) Σ ^ J j W " 1

 e - λ t ^ V < χ ) + o(μJW) if P(x) = 0

z=0 Zm \ Z /

Proof:

Pπo(c(x(ί))=0)= Σ ^ o ( x ; m ) e - t — = e"
m=/(x) m i/=/(x) lm=/(x)

Hence for ^ = I(x) the coefficient of /z" will be

7T7' ^ \ ? 1
I TYl^l \Xj Z=:l \X ) ^ '

(16)

_1 P(x) ^ 0. Then, α(x; m) = 0 and eq. (16) gives
J.TΠ ° O

/ 7Γ° V ' / rm t ^ ^ Z-/

m=/(x)

That is, if π° is followed, the propability that the system is down at the time
instant t is

+ o(μJ(χ)) and the difference with the optimal policy is
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se2 P(x) = 0. Then, Subcase 2.1: If Q(x) φ 0.

oo ,m /(x)+α(x;m) / \

Σ — V I \\z(λ λV
m? 2^ U j ^ Λ^

m=/(x) 2=/(x) V /
•* (Xj"1-72—1 ,^j2 77J, / \

- v — V ι m i λ z π \\m-<
' ^ 772ί ^ \ Z I

m=/(x) ' z=/(x) \ /

oo ,rn J(x)+τi—1 / \

+ Σ ^ Σ Γ*'(i-
m=J(x)+n ' 2f=/(x) \ /

m=/(x) V z=Q

oo / m /(x)+n-l

m=/(x)+n 2=0

- Σ ^ Σ
m=/(x)+nm 2=0

Now,

: )
m=/(x)+n z=0

~ ((1 - \)t)m

ί z! ^ f m!
z=0 m=/()+

" - 2 " 1 ((i - λ)t)™

z! ί̂ z\ \ m!
z=0 m=0

— J

to z] to
where the last equality uses the fact that a convolution of two Poisson is

Poisson. Hence,

oo ,m /(x)+α(x;m) / \

Σ s Σ Γ)A <I-A)~
m=/(x) ^=/(x) \ /
/(x)+n-l m J(x)+n-l / χ . w /(x)+n-l m

m=/(x) m * 2=0 ^' m=0
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z=0 Z' z=0

e
z=J(x)

Therefore, (16) is reduced to

» -
m = / ( x ) "' '% z=I(κ)

and if π° is followed, the probability that the system is down at the time
instant t is

z=/(x)

and the difference with the optimal policy is o(μ1^).
Subcase 2.2: If Q(x) = 0, then a simple change in the summation order of
(16) will give the result.

Now, it is a matter of operations to check that both Case 1 and 2 can be
expressed as

= 0) =

Now, what happens if ^ ( x ) has two members or more? Then, one has
to examine the higher order coefficients of μv. This is very tedious and
moreover the continuation of τr° one may derive is not strongly optimal any-
more. As pointed out in the Introduction, we don't believe that a uniformly
optimal (i.e. independent of the particular values of μ and λ) policy ex-
ists then, except in particular cases. This situation may be remedied if the
optimization criterion is changed to the total discounted operation time of
the system, but again this will be so only for discount factors sufficiently
small or large. For the discounted problem, the optimal policy (which will
necessarily coincide with π° for the first two steps) is quite complicated but
easy to program and compute on a machine.
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4 The Corresponding Routing and Scheduling Prob-
lems

Let us consider N parallel queues, each with finite buffer size (capacity). The
buffer size of queue i is denoted by Ni, i = 1,..., N. Associated to queue i
is a control level Ki, i = 1,..., N. There are two problems we consider, the
"routing" and the "scheduling" problem.

In the routing problem jobs arrive according to a Poisson process with
rate λ. There are N processors, one assigned to each queue. All processors
are identical and serve all waiting customers (jobs) in the queue simultane-
ously. The time it takes for a job to be processed is exponentially distributed
with rate μ. Processing times and arrival times are all assumed to be inde-
pendent. A controller assigns new arrivals to queues and arriving jobs that
find all buffers occupied are lost to the system. A job assigned to a processor
may not change queue at a future time. In the scheduling problem, the time
it takes for any empty position in any buffer to be occupied is exponentially
distributed with rate μ, and these times are independent. There is a unique
processor which is to be assigned to a queue and which may process one job
at a time. The service times for each job are identical independent expo-
nentials with rate λ (and are also independent of the arrival times). The
controller assigns the processor to a queue and preemptions are allowed.
Again, arriving jobs that find all buffers occupied are lost to the system.

Now, let Xi represent the number of jobs waiting in queue i, i = 1,..., N
and let τr° be any policy satisfying steps 1 and 2 and σ° be any policy that
is derived by changing min with max in steps 1 and 2. Then, parts 2 and
3 of the of the present paper show that for the routing problem and for
mean processing times sufficiently long (i.e. for time consuming jobs) σ°
(τr°) maximizes (minimizes) the probability all queues have size less than Ki
at any time instant t.

Finally, let X{ be the number of empty spaces in the buffer of queue
i, i = l,...,iV and let π°(σ0) be any policy that satisfies steps 1 and 2
(that satisfies steps 1 and 2 with the min replaced by max ) Then, for the
scheduling problem and for mean arrival times sufficiently long (i.e. for rare
jobs) τr° (σ°) maximizes (minimizes) the probability at least one queue has
Ki or more empty spaces in its buffer at any time instant t.
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