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1 Introduction

A pure strategy in a Dubins and Savage (1976) gambling problem can be
thought of as a sequence of gambles selected one-by-one from those available
at each stage of the game. There are two natural ways to select a strategy
at random. One method is to select the individual gambles at random at
each stage. Another method is to choose the entire strategy at random from
the set of all pure strategies. Our first result (Theorem 2.1) is that these
two methods are equivalent in the context of measurable gambling theory.
This result is related to similar results in game theory due to Kuhn (1953)
and Aumann (1964), and in Markov decision processes due to Dynkin and
Yushkevich (1979) and Feinberg (1996).

Our second theorem concerns the set of all possible terminal distributions
that can be obtained by stopping a given Markov chain at random. Again we
consider two ways to randomize - first by choosing a distribution at random
from those terminal distributions that can be obtained using a nonrandom
stopping time, and second by using a randomized stopping time. It turns out
that the two methods lead to the same collection of terminal distributions
(Theorem 4.4).

In the final section of the paper, we consider a third way to obtain a
randomized terminal distribution. Namely, the decision to stop is made at
random at each stage. Although it seems that the set of terminal distribu-
tions obtained should still be the same, our proof requires a further condition
of some sort. Theorem 5.1 gives one such condition and another is explained
in the discussion which follows its proof.
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2 Randomized strategies

Let X be a Borel subset of a Polish space and let Ψ(X) be the set of
probability measures on the Borel σ-field of X. Give Ψ(X) the topology
of weak convergence, so Ψ(X) is again a Borel subset of a Polish space (
see ([9], 17E) for details). A gambling house on X is an analytic subset Γ
of X x Ψ(X) such that each section T(x) of Γ at x is nonempty. A pure
strategy σ available in Γ at x is & sequence σo,σi,... such that σo G Γ(x)
and, for n > l,σn is a universally measurable function on Xn into Ψ(X)
such that σn(xi,X2? ,%n) £ Γ(xn) for every x\,X2,.... ,xn Ξ -X"- Such a
pure strategy σ determines via the Ionescu-Tulcea Theorem ([3], Proposition
7.45) a unique probability measure on the Borel subsets of the history space
H = XN, where N is the set of positive integers and H is given the product
topology. We will identify the strategy with the measure it induces and use
the same symbol σ for the measure as well.

Let

Σp = {(#,cr) G X x Ψ(H) : σis a pure strategy available inΓatx}.

Because Γ is analytic, it follows that Γ has a universally measurable selector
by virtue of the von Neumann selection theorem ([15], 29.9) and, conse-
quently, each section Σγ(x) of Σp at x is nonempty. Furthermore, the set
ΣΓ is analytic as was proved by Dellacherie ([4], Theorem 3).

For a set M C Ψ(X), denote by scoM the strong convex hull of the
set M, that is, the set of μ G V(X) such that for some v G P(P(X)) with
ι/*(M) = 1,

A behavior strategy r available in Γ at x is a pure strategy available in
the gambling house scoΓ at x, where (scoΓ)(a;) = scoΓ(α ). It is known
that the operation "sco" preserves analytic sets ([5],p.l86), so that scoΓ is
a gambling house on X. As before identify r with the probability measure
it induces on the Borel subsets of H and use the same symbol r for the
measure. With this identification, the set of behavior strategies available in
Γ at x is just Σ s c o r(#).

A randomized strategy p available in Γ at x is a probability measure on
the Borel subsets of Ψ(H) such that p(Σγ(x)) — 1. Plainly, p induces in
an obvious way a probability measure on the Borel subsets of if, namely,
an element of scoΣr(x). We will therefore identify the set of randomized
strategies available in Γ at x with scoΣp(x). For countable X, the house
sco Γ was used by Hill and Pestien (1987) in their study of Markov strategies.

The main result of this section is that behavior strategies and randomized
strategies induce the same set of distributions on H. More precisely, in the
notation introduced above, we have:
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Theorem 2.1. For each i G l , Σ s c or(x) = scoΣr(x).

A simple consequence of this theorem is that a gambler gains nothing
through randomization if his payoff is the integral of a bounded, Borel func-
tion on the history space H. The theorem can also be applied to the strate-
gies available to one of the players in an n-person stochastic game when the
strategies of the other players are fixed.

The equivalence of randqmized and behavior strategies has been inves-
tigated in game theory by Kuhn (1953) and Aumann (1964). In their for-
mulations there is a technical difficulty in defining a randomized strategy.
As Aumann has pointed out in [2] (see also B.V.Rao (1971)), there is no
"natural" Borel structure on the space of pure strategies on which a proba-
bility measure can be defined to induce randomization. To get around this
difficulty, Aumann induces the randomization externally by mapping a stan-
dard space like [0,1] into the space of pure strategies and then using Lebesgue
measure for the randomization. Aumann then defines a behavior strategy as
a special kind of randomized strategy, where, roughly speaking, the choices
of actions at different instants of time are independent of each other. The
main result of Aumann (1964) is then that any randomized strategy can be
realized by a behavior strategy.

Contrast this with the situation in gambling where the space of pure
strategies is identified with an analytic set of probability measures and this
set admits a "natural" Borel structure, namely, its Borel σ-field. Pure strate-
gies can consequently be randomized intrinsically without the intervention of
an auxiliary space. It is also worthy of note that both inclusions in Theorem
2.1 are nontrivial, whereas in Aumann's formulation, a behavior strategy is
definitionally a randomized strategy.

There are also several results related to Theorem 2.1 in the literature on
Markov decision processes. Indeed, Feinberg (1996) proved that any behav-
ior strategy can be realized by a randomized strategy, and the converse was
shown by Dynkin and Yushkevich (1979, pages 91-92). These results are for
a Borel measurable setting under the assumption that a Borel selector exists.
Here we are able to avoid this assumption by using universally measurable
strategies. Some other related results can be found in Feinberg (1982, 1982a,
1986, 1991), Gikhman and Skorohod (1979), and Krylov (1965). In partic-
ular, Feinberg (1991) proves an analogue of Theorem 2.1 for any class of
policies satisfying a certain "strong non-repeating condition."

We now introduce some notation. For μ G Ψ(H) and n > 0, μn will de-
note the μ-probability distribution of the first n+1 coordinates #i, #2> >
and μ(xi, X2, 5 Xn) will denote a version of the //-conditional distribution
of xn+i given xi, X2, > #n which is jointly measurable in μ, xi, X2, > #n
Similarly, μ[xi,X2, , ^ J will denote a version of the μ-conditional distri-
bution of xn+i, #π+2> j given xi, X2,... , xn> which is jointly measurable



42 Maitra Sε Sudderth

in μ, xi, #2, ? #n Such versions exist by virtue of ([18], Lemma 2.2).

3 The proof of Theorem 2.1

The inclusion scoΣr(x) C Σ s c o r ( ^ ) has been established in ([19], Theorem

4.14).

To prove the reverse inclusion, we begin with a well known result (see,

for example, Aumann ([1])).

L e m m a 3.1. Suppose that Y and Z are Borel subsets of Polish spaces. Let

Q(y, E) be a universally measurable transition function (Markov kernel) on

Y x B(Z), where B(Z) is the Borel σ-field of Z. Then there is a universally

measurable function φ : Y x [0,1] —> Z such that Q(y, •) = λφy1 for all

y eY, where X is Lebesgue measure on [0,1] and φy is the section of φ at y.

The proof, which is routine, proceeds by identifying Z with [0,1] and

then uniformly "inverting" the distribution functions corresponding to the

probability measures Q(y, ),y G Y.

We return to the proof of the reverse inclusion. Fix XQ G X and let

μ G ΣSCoΓ(£o) By using the von Neumann selection theorem, one can define,

for each n > 0, a universally measurable function τ n : Xn —• P(P(X)) such

that

(a) τo(Γ(xo)) = 1,

(c) T n(xi, X2, • • . , Z n ) (Γ(z n ) ) = 1,

andμ(xi ,z 2 , ••• ,«n)(0 = / 7 ( ) τ n(^i ,*2, ,xn)(di) for almost all

By Lemma 3.1, choose, for each n > 0, a universally measurable function

φn : X n x [ 0 , l ] -

such that τ n (#i , x2,... , xn) = λφn(%i, #2? > #n> •) X for all

Xn. Set fΓ = [0, l]ω and give # ' the usual Borel σ-field and product

Lebesgue measure λ°°. With each s = (so?si,... >s n , . . . ) Ξ fl"7, we as-

sociate a probability measure 1/ = ψ(s) on the Borel subsets of if as follows:

the ^-distribution of x\ is φo{so), and for n > 1 and (xi, X2? > ^n) G X n ,

the ^-conditional distribution of x n +i is </>n(̂ i>X2? 5#π>sn). Then it is

easily verified that ^ is universally measurable from Hr to Ψ(H) (see [3],

p. 177 for details). Let

m(A) = ί<ψ{s){A)λ°°{ds) (3.1)
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for Borel subsets A of H.
We claim that μ = m. To prove the claim, it will suffice to prove that

μn = rnn for all n > 0. For n = 0 this follows from (3.1), the change
of variable formula, the fact that TQ = λ ^ 1 and (b). For the inductive
step, assume that μn~ι = mn~ι. Let A be a Borel subset of Xn and B a
Borel subset of X. Now calculate as follows using the abbreviation x for

(xi,X2j j Z n ) :

mn(A x B)

= /•••/ / [ / </>n(£, sn)(B) ψ(s0, s i , . . . , s n - i , . Γ ' 1 (dx)] dsndsn-i ...ds0

= f ' '({ I [IΦn& Sn){B) dsn]ψ(sOi 51, . . . , 5 n - i , . . . ̂ {dx^dSn-i ...ds0

τn(x)(dΊ)]ψ(s0, 8U . . . , β n - i , . . . )n-\dx)}dsn^ ...ds0

\(B)rn(x)(dΊ)]μn-1(dx)

= / μ{x){B)μn-\dx)
JA

= μn(A x B),

where the third equality is a consequence of the change of variable theorem
and the fact that τn(x) = \φn{x, -)" 1 , the fifth is by virtue of the inductive
hypothesis, and the sixth is by (c). It follows that μn = mn.

We set p = \°°ψ~ι. Since μ = m, it will follow from (3.1) and the
change of variable theorem that μ € scoΣr(xo) as soon as we show that
p(Έr(xo)) = 1. Towards establishing this, observe that

φ{s) e

if and only if

e r(x0)
and ,for all n > 1,

It will therefore suffice to show that each of the sets following the "if and
only if has λ°°-measure one. First

\°°({se Hf : φ(s)° e Γ(x0)}) = K{so e [0,1] : φo(so) e Γ(x0)} = 1
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because λ ^ 1 = TQ and τo(Γ(xo)) = l Next note that, for each n, the set of
s satisfying the last condition above can be written as

E={seH' :ψ(s)n-1({(x1,x2, ,Xn)eXn' Φn(xi,X2, . , ^ s n ) G Γ ( z n ) } ) = 1}.

It is now evident that the set E is determined by the first n + 1 coordinates
of s. Fix so, 5i,... , sn_i. In order to prove that X°°(E) = 1, it will suffice
to show that the (so, si,... , sn_χ)-section of E has Lebesgue measure one.
Abbreviate the measure ^(so, si,... , sn_i,... ) n " 1 by η and consider the set

D = {(xi, X2, ,xn, sn) e Xn x [0,1] : φn(xu x2,... , xn, sn) G T(xn)}.

Recall that \φn(xi, xi, , Xn, ')~ι — i~n(xi,X2, , Xn) and τn(#i, ^2,..., xn)
(T(xn)) = 1. It follows that each (xi, x<ι,... , rrn)-section of D has Lebesgue
measure one, hence (η x λ)(D) = 1. Consequently,

But the above set is just the (so, si,... , sn_i)-section of E. So the proof of
Theorem 2.1 is complete.

4 Terminal gambles

Cosider a gambling house Γ on a Borel subset X of a Polish space such that
T(x) is a singleton set {7^} for each x e X. It follows that the map x —> ηx is
Borel measurable. For each x G X, there is a unique strategy σ(x) available
in Γ at x. Under σ(x), the coordinate random variables Xn,n > 1, on if
form a Markov chain with initial state Xo = x and stationary transition
probability function x —• 7^.

Terminal gambles are distributions on the state space -X" obtained by
stopping the Markov chain. To make this precise, recall that a stopping
time is a universally measurable function on H into ώ = {0,1,2,... } U {00}
such that whenever t(h) = n < 00 and h! agrees with h through the first n
coordinates, t(h) = n. If t is a stopping time such that σ(x)({t < 00}) = 1,
denote by j(t) the σ(x)-distribution of Xt and let

Γpc ={(#, 7) G X x P(-X") : 7 = 7(t) for some stopping time t

such thatσ(x)({ί < 00}) = 1}.

It turns out Tpc is itself a gambling house (see Lemma 4.1) and is called the
pseudo-composition closure of Γ. (The term "pseudo" is used here because
Dubins and Savage (1976) used "composition closure" to denote a gambling
house defined as above except that they required that their stopping times
be everywhere finite.) For each x G X, Tpc(x) is a set of terminal gambles
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obtained by stopping the Markov chain, starting at x, at different stop-
ping times. Plainly, a larger set of terminal gambles will arise if we allow
randomized stopping times. A randomized stopping time τ is a universally
measurable function on [0,1] x H into ώ such that for each z G [0,1], the
section rz is a stopping time on H. As before, if r is a randomized stopping
time such that λ x σ(x)({τ < oo}) = 1, let η{τ) be the λ x σ(x)-distribution
of Xτ and let

prαn _ j ^ 7) G X x Ψ(X) : 7 = 7(7-) for some randomized stopping time

rsuch thatλ x σ(x)({τ < 00}) = 1},

where λ is Lebesgue measure.
The main result of this section (Theorem 4.4) is that for each x G X,

Γran(x) is the strong convex hull of Γpc(x). In other words, for a Markov
chain, we obtain exactly the same terminal gambles by randomization of
stopping times at the outset as by randomizing after obtaining the terminal
gambles from (deterministic) stopping times.

The gambling house Γ r α n (see Lemma 4.1 and Theorem 4.4) can also be
described, courtesy of a result of H.Rost ([5], p.50), in the following manner.
Recall that a bounded, Borel measurable function g on X is V-excessive,
where Γ' is a gambling house on X, if J gdη < g(x) for every 7 G Tf(x) and
x G X. The result of Rost can be paraphrased thus: if Γ is a gambling house
such that each Γ(x) is a singleton, then Γ r α n is the largest gambling house
on X with exactly the same excessive functions as Γ, that is, Γ r α n is the
saturation of Γ. (The saturation is treated by Dellacherie and Meyer (1983)
and again in [19].)

Lemma 4.1. The set Γpc is analytic in X x Ψ(X). Consequently, Γpc is a
gambling house on X.

Proof. For each x G X let Δ(x) denote the probability measure on H that as-
signs mass 1 to the history (#, x, . . .) . Call a measure μ G Ψ(H) almost surely
stagnant if μ is the image of v under the map h —> (/iχ, /12, , ̂ t(/ι)? ̂ t(h)> )
for some v G Ψ(H) and stopping time t such that u({t < 00}) = 1. Let P α s

be the set of almost surely stagnant measures on H. By ([18], Lemma 9.4),
μ G P α s if and only if

μ({h : μ[hu h2,... , hn] = Δ(/ιn)» ^ l a s n ^ o o .

The condition above is clearly Borel in μ, so P α s is Borel in Ψ(H), as was
noted in [18].

For μ G P α s and x G X, define

tx

μ = inf{n > 0 : μ[Λi, Λ2,. . , K] = Δ(/ιn)},
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where, for n = 0, hn = x, and μ[h\, h^ .. , Λn] = M Then ί* is a stopping
time with μ({i£ < 00} = 1. Let Σ α s be the subset of X x P α s defined by the
condition below:

μ({h : Vn(eitherμ[Λi, h2,... , Λn] = Δ(Λn) or μ(Λχ, /ι2,... , M = ΊhJ}) = l
(4.1)

Plainly, Σ α s is a Borel subset of X x F(H).
To complete the proof, let

\limhn , if the limit exists,

Ix* , otherwise,

where x* is a fixed element of X. Then it is easy to see that

= {(x, μ/"1) EXx V(X) : (x, μ) G Σ α s }. (4.3)

So Γpc is a Borel measurable image of the Borel set Σ α s . Consequently, Tpc

is analytic. D

Lemma 4.2. scoF* C Γ r α n.

Proof. Let 7 G sco(Γpc(x)). So there is a probability measure v G P(P(X))
such that u(Γpc{x)) = 1 and η{B) = / Y(£) i/(dY) for each Borel subset B
of X. Use (4.3) to fix a universally measurable function g : Tpc —•> P(jff)
such that (x,^(x,7)) G Σ α s and g{x,Ί)f~ι = 7, where Σ α s is defined by the
condition (4.1) and / by (4.2). Let φ be a Borel measurable function on
[0,1] into Ψ(X) such that λ^"1 = 1/, where λ is Lebesgue measure on [0,1].

Define r on [0,1] x H as follows:

^2-> - 5 hn] = Δ(/ i n ) } , if φ(z) i

otherwise.

Then r is a randomized stopping time.
Let P be the probability measure λ x σ(x). Then, for Borel 5 C I ,

P{{τ < 00, Xr G B} I Z = z) = φ{z){B) a.s.,

so

P({τ < 00, X τ € B}) = ί φ{z)(B) X(dz)

= JΊ'{B)v{dΊ')
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where the second equality is by virtue of the change of variable theorem. It
follows that 7 G Γ r α n(x). This completes the proof. D

Lemma 4.3. Γ r α n C scoP>c.

Proof. Suppose that 7 G Γrαn(α;). So there is a randomized stopping time τ
such that

< 00, XreB})

for every Borel subset B of X, where P = λ x σ(x). For 2 G [0,1], let ηz

be the terminal gamble under σ{x) when the stopping time τz is used. Note
that , for almost all 2, 7^ G Γpc(x) and that the map ψ(z) = 7^ is defined
for almost all 2 and is universally measurable. Since, for any Borel subset B
ofX,

= JΊz(B)X(dz)

and (Xφ"1)(Tpc(x)) = 1, it follows that 7 G sco(Γpc(z)), which completes
the proof. D

Putting Lemmas 4.2 and 4.3 together, we have

Theorem 4.4. Γrαn = scoΓpc.

5 Terminal gambles and behavior strategies

Let Γ be as in the previous section. We will continue with our study of the
gambling house Γ r α n. Let Γι be the leavable closure of Γ, that is, Γz(x) =
{ηx, δ(x)}, x G X. ( Here δ(x) is the probability measure that assigns mass
one to {#}.) Plainly, Tι has the same excessive functions as Γ. So Γ r α n is the
saturation of Γι as well as that of Γ. The question arises if every gamble in
Trαn can be realized as a terminal gamble by using a deterministic stopping
time and a behavior strategy in the house Γ*, that is, the randomization is
performed on the gambles in Γ*, but not on the stopping times. We do not
know the answer in general. In a special case, the answer is yes, and that is
our next result.

Theorem 5.1. Ifηx({x}) = 0, for every x G X, then

Yrαn C (scoΓ*)pc.
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Proof. Fix XQ e X and let 7 £ Γrαn(#o) So there is a randomized stopping
time τ such that λ x σ(xo)({τ < 00}) = 1 and 7 is the λ x σ(xo)-distribution
of XT. Write P for λ x σ(#o) and Q(x, •) for the transition function x —> 7^.
If μ is a finite measure on X, we define the measure μQ by

μQ(B) = jQ(x,B)μ(dx).

For each n > 0 and JB a Borel subset of X, define

Ίn(B) = P({XnEB,τ = n})

and

It is then easy to verify that

70 + 70 = S(xo) (5.1)

and, for n > 0,

7n + 7; = 7;_iQ (5-2)

For each n > 0, fix a Radon-Nikodym derivative αn of ηn with respect
to 7n + 7^ such that 0 < αn < 1.

Define now a behavior strategy σ* available in Γz at XQ, or equivalently,
a pure strategy available in sco Γι at XQ as follows:

σj = αo(xo)δ(xo) + (1 -

and, for n > 1,

σ* (xi, x2,... , xn) = αn(xn)δ(xn)

We are going to run the process Xn,n > 0, with XQ = xo according to σ*
and stop it at t*, where the stopping time t* is defined as follows:

„,,. x ί least n > 1 such that hn = /ιn-i5 if such an n exists,
t (ri) = <

I oo, otherwise.

We now claim that (a)σ*({t* < oo}) = 1 and (b)the σ*-distribution of
Xt* is 7. It will then follow that 7 G (scoΓz)pc(#o) Both claims follow
immediately from

σ*({ί* = n + 1, Xn+i 6 B}) = 7n(B) (5.3)

for every Borel subset B of X and n > 0.
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A simple calculation shows that

σ*({t* = l,Xi 6 B}) = α(xo)lB(xo)

Let n > 1. It is easy to check that

= (1 - αo(xo))Eσ{xo)(f[(l - ctiiXtfαniXJlBiXn)). ( 5 ' 4 )

We use here the hypothesis that 7χ({x}) = 0 for each x e X.
On the other hand,

Ίn(B) = / an(xn) (7n + η'n)(dxn)
JB

= ί αn(xn)( 7;_ 1Q)(dxn) (from (5.2))
JB

=IIB
-SL

B

ΓV»r. (Ύ*~ i l l — ΓV*~ 1 I T i l l i ) (T 1 HT I I Ύ 1 -I— Λ/ ^ 11/Ί/T 1 IL Λ 7 ϊ \ 71/ V, ^^Tΐ — J. V ̂ Tϊ — X / / ̂ *v V 71 — J. ? U /**/7ϊ/ V /7i — J. I ]fi. 1 / V *^/**/7ϊ — -ί / *

If we iterate this process, using (5.2) repeatedly, we will obtain

n-\

Ίn{B) = (1 - ao{xQ))Eσ(xo)(]J(l - *i(Xi))an{Xn)\B{Xn))

= σ*({t* = n + 1, Xn+Ϊ e B}) (from (5.4))

So (5.3) is established and the proof is complete.
D

The inclusion (scoΓz)pc C Γ r α n is always true. This can be seen by
using Rost's theorem, cited in the previous section, and the fact that the
excessive functions for the gambling house (scoΓ*)pc are exactly the same as
the Γ-excessive functions.

Here is a way of eliminating the hypothesis from Theorem 5.1. But there
is a price to pay in that we need to enlarge the state space. The details are
as follows.

Let X' be a copy of X that is disjoint from X. If x G X, x' will denote
the copy of x'm X1. Enlarge the state space X to X U X' and define a new
gambling house f on X U X1 as follows:

f (x) = {ΊXΛJ)}
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and

Γ(x') = {δ(x)} Ίίx1 eX'.

Redefine σ* and ί* as follows:

σ£ = αo(xo)δ(x'o) + (1 -

and, for n > 1,

αn{xn)δ{x'n) + (1 - α n (x n ))Q(x n , •), if a:n G

, if χ n = χ e X

ί
least n > 1 such that/ιn_i G X7, /ιn G X, and /ιn_i = /in7,

if there is such an n,

oo, otherwise.

One verifies by imitating the proof of Theorem 5.1 that the terminal
gamble 7 G Γ r α n(xo) can be realized by using the modified strategy σ* and
the modified stopping time t*. Unfortunately, the new σ* is not available in
the old house Γ*.
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