
Chapter 1

Inductive PAC-Bayesian
learning

The setting of inductive inference (as opposed to transductive inference to be dis-
cussed later) is the one described in the introduction.

When we will have to take the expectation of a random variable Z : Ω → R as
well as of a function of the parameter h : Θ → R with respect to some probability
measure, we will as a rule use short functional notation instead of resorting to the
integral sign: thus we will write P(Z) for

∫
Ω

Z(ω)P(dω) and π(h) for
∫
Θ

h(θ)π(dθ).
A more traditional statistical approach would focus on estimators θ̂ : Ω → Θ

of the parameter θ and be interested on the relationship between the empirical
error rate r(θ̂), defined by equation (0.1, page viii), which is the number of errors
made on the sample, and the expected error rate R(θ̂), defined by equation (0.2,
page ix), which is the expected probability of error on new instances of patterns.
The PAC-Bayesian approach instead chooses a broader perspective and allows the
estimator θ̂ to be drawn at random using some auxiliary source of randomness to
smooth the dependence of θ̂ on the sample. One way of representing the supple-
mentary randomness allowed in the choice of θ̂, is to consider what it is usual to
call posterior distributions on the parameter space, that is probability measures
ρ : Ω → M1

+(Θ,T), depending on the sample, or from a technical perspective,
regular conditional (or transition) probability measures. Let us recall that we use
the model described in the introduction: the training sample is modelled by the
canonical process (Xi, Yi)N

i=1 on Ω =
(
X×Y

)N , and a product probability measure
P =

⊗N
i=1 Pi on Ω is considered to reflect the assumption that the training sam-

ple is made of independent pairs of patterns and labels. The transition probability
measure ρ, along with P ∈ M1

+(Ω), defines a probability distribution on Ω×Θ and
describes the conditional distribution of the estimated parameter θ̂ knowing the
sample (Xi, Yi)N

i=1.
The main subject of this broadened theory becomes to investigate the relation-

ship between ρ(r), the average error rate of θ̂ on the training sample, and ρ(R), the
expected error rate of θ̂ on new samples. The first step towards using some kind
of thermodynamics to tackle this question, is to consider the Laplace transform
of ρ(R) − ρ(r), a well known provider of non-asymptotic deviation bounds. This
transform takes the form

P

{
exp

[
λ
[
ρ(R) − ρ(r)

]]}
,

1
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where some inverse temperature parameter λ ∈ R+, as a physicist would call it, is
introduced. This Laplace transform would be easy to bound if ρ did not depend on
ω ∈ Ω (namely on the sample), because ρ(R) would then be non-random, and

ρ(r) =
1
N

N∑
i=1

ρ
[
Yi �= fθ(Xi)

]
,

would be a sum of independent random variables. It turns out, and this will be
the subject of the next section, that this annoying dependence of ρ on ω can be
quantified, using the inequality

ρ(R) − ρ(r) ≤ λ−1 log
{

π
[
exp

[
λ(R − r)

]]}
+ λ−1K(ρ, π),

which holds for any probability measure π ∈ M1
+(Θ) on the parameter space;

for our purpose it will be appropriate to consider a prior distribution π that is
non-random, as opposed to ρ, which depends on the sample. Here, K(ρ, π) is the
Kullback divergence of ρ from π, whose definition will be recalled when we will
come to technicalities; it can be seen as an upper bound for the mutual information
between the (Xi, Yi)N

i=1 and the estimated parameter θ̂ . This inequality will allow
us to relate the penalized difference ρ(R) − ρ(r) − λ−1K(ρ, π) with the Laplace
transform of sums of independent random variables.

1.1. Basic inequality

Let us now come to the details of the investigation sketched above. The first thing
we will do is to study the Laplace transform of R(θ) − r(θ), as a starting point for
the more general study of ρ(R) − ρ(r): it corresponds to the simple case where θ̂
is not random at all, and therefore where ρ is a Dirac mass at some deterministic
parameter value θ.

In the setting described in the introduction, let us consider the Bernoulli random
variables σi(θ) = 1

[
Yi �= fθ(Xi)

]
, which indicates whether the classification rule fθ

made an error on the ith component of the training sample. Using independence
and the concavity of the logarithm function, it is readily seen that for any real
constant λ

log
{

P
{
exp

[
−λr(θ)

]}}
=

N∑
i=1

log
{

P

[
exp

(
− λ

N σi

)]}
≤ N log

{
1
N

N∑
i=1

P

[
exp

(
− λ

N σi

)]}
.

The right-hand side of this inequality is the log-Laplace transform of a Bernoulli
distribution with parameter 1

N

∑N
i=1 P(σi) = R(θ). As any Bernoulli distribution is

fully defined by its parameter, this log-Laplace transform is necessarily a function
of R(θ). It can be expressed with the help of the family of functions

(1.1) Φa(p) = −a−1 log
{
1 −

[
1 − exp(−a)

]
p
}
, a ∈ R, p ∈ (0, 1).

It is immediately seen that Φa is an increasing one-to-one mapping of the unit
interval onto itself, and that it is convex when a > 0, concave when a < 0 and can
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be defined by continuity to be the identity when a = 0. Moreover the inverse of Φa

is given by the formula

Φ−1
a (q) =

1 − exp(−aq)
1 − exp(−a)

, a ∈ R, q ∈ (0, 1).

This formula may be used to extend Φ−1
a to q ∈ R, and we will use this extension

without further notice when required.
Using this notation, the previous inequality becomes

log
{

P
{
exp

[
−λr(θ)

]}}
≤ −λΦ λ

N

[
R(θ)

]
, proving

Lemma 1.1.1. For any real constant λ and any parameter θ ∈ Θ,

P

{
exp

{
λ
[
Φ λ

N

[
R(θ)

]
− r(θ)

]}}
≤ 1.

In previous versions of this study, we had used some Bernstein bound, instead
of this lemma. Anyhow, as it will turn out, keeping the log-Laplace transform of a
Bernoulli instead of approximating it provides simpler and tighter results.

Lemma 1.1.1 implies that for any constants λ ∈ R+ and ε ∈)0, 1),

P

[
Φ λ

N

[
R(θ)

]
+

log(ε)
λ

≤ r(θ)
]
≥ 1 − ε.

Choosing λ ∈ arg max
R+

Φ λ
N

[
R(θ)

]
+

log(ε)
λ

, we deduce

Lemma 1.1.2. For any ε ∈)0, 1), any θ ∈ Θ,

P

{
R(θ) ≤ inf

λ∈R+
Φ−1

λ
N

[
r(θ) − log(ε)

λ

]}
≥ 1 − ε.

We will illustrate throughout these notes the bounds we prove with a small
numerical example: in the case where N = 1000, ε = 0.01 and r(θ) = 0.2, we get
with a confidence level of 0.99 that R(θ) ≤ .2402, this being obtained for λ = 234.

Now, to proceed towards the analysis of posterior distributions, let us put Uλ(θ,
ω) = λ

[
Φ λ

N

[
R(θ)

]
− r(θ, ω)

]
for short, and let us consider some prior probability

distribution π ∈ M1
+(Θ,T). A proper choice of π will be an important question,

underlying much of the material presented in this monograph, so for the time be-
ing, let us only say that we will let this choice be as open as possible by writing
inequalities which hold for any choice of π . Let us insist on the fact that when we
say that π is a prior distribution, we mean that it does not depend on the training
sample (Xi, Yi)N

i=1. The quantity of interest to obtain the bound we are looking for
is log

{
P

[
π
[
exp(Uλ)

]]}
. Using Fubini’s theorem for non-negative functions, we see

that
log
{

P

[
π
[
exp(Uλ)

]]}
= log

{
π
[
P
[
exp(Uλ)

]]}
≤ 0.

To relate this quantity to the expectation ρ(Uλ) with respect to any posterior
distribution ρ : Ω → M1

+(Θ), we will use the properties of the Kullback divergence
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K(ρ, π) of ρ with respect to π, which is defined as

K(ρ, π) =

⎧⎪⎨⎪⎩
∫

log( dρ
dπ )dρ, when ρ is absolutely continuous

with respect to π,
+∞, otherwise.

The following lemma shows in which sense the Kullback divergence function can be
thought of as the dual of the log-Laplace transform.

Lemma 1.1.3. For any bounded measurable function h : Θ → R, and any proba-
bility distribution ρ ∈ M1

+(Θ) such that K(ρ, π) < ∞,

log
{
π
[
exp(h)

]}
= ρ(h) − K(ρ, π) + K(ρ, πexp(h)),

where by definition
dπexp(h)

dπ
=

exp[h(θ)]
π[exp(h)]

. Consequently

log
{
π
[
exp(h)]

]}
= sup

ρ∈M1
+(Θ)

ρ(h) − K(ρ, π).

The proof is just a matter of writing down the definition of the quantities involved
and using the fact that the Kullback divergence function is non-negative, and can
be found in Catoni (2004, page 160). In the duality between measurable functions
and probability measures, we thus see that the log-Laplace transform with respect
to π is the Legendre transform of the Kullback divergence function with respect to
π. Using this, we get

P

{
exp

{
sup

ρ∈M1
+(Θ)

ρ[Uλ(θ)] − K(ρ, π)
}}

≤ 1,

which, combined with the convexity of λΦ λ
N

, proves the basic inequality we were
looking for.

Theorem 1.1.4. For any real constant λ,

P

{
exp

[
sup

ρ∈M1
+(Θ)

λ
[
Φ λ

N

[
ρ(R)

]
− ρ(r)

]
− K(ρ, π)

]}
≤ P

{
exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
(
Φ λ

N
◦R
)
− ρ(r)

]
− K(ρ, π)

]}
≤ 1.

We insist on the fact that in this theorem, we take a supremum in ρ ∈ M1
+(Θ)

inside the expectation with respect to P, the sample distribution. This means that
the proved inequality holds for any ρ depending on the training sample, that is for
any posterior distribution: indeed, measurability questions set aside,

P

{
exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
[
Uλ(θ)

]
− K(ρ, π)

]]}
= sup

ρ:Ω→M1
+(Θ)

P

{
exp

[
λ
[
ρ
[
Uλ(θ)

]
− K(ρ, π)

]]]}
,
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and more formally,

sup
ρ:Ω→M1

+(Θ)

P

{
exp

[
λ
[
ρ
[
Uλ(θ)

]
− K(ρ, π)

]]]}
≤ P

{
exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
[
Uλ(θ)

]
− K(ρ, π)

]]}
,

where the supremum in ρ taken in the left-hand side is restricted to regular condi-
tional probability distributions.

The following sections will show how to use this theorem.

1.2. Non local bounds

At least three sorts of bounds can be deduced from Theorem 1.1.4.
The most interesting ones with which to build estimators and tune parameters,

as well as the first that have been considered in the development of the PAC-
Bayesian approach, are deviation bounds. They provide an empirical upper bound
for ρ(R) — that is a bound which can be computed from observed data — with
some probability 1−ε, where ε is a presumably small and tunable parameter setting
the desired confidence level.

Anyhow, most of the results about the convergence speed of estimators to be
found in the statistical literature are concerned with the expectation P

[
ρ(R)

]
, there-

fore it is also enlightening to bound this quantity. In order to know at which rate
it may be approaching infΘ R, a non-random upper bound is required, which will
relate the average of the expected risk P

[
ρ(R)

]
with the properties of the contrast

function θ �→ R(θ).
Since the values of constants do matter a lot when a bound is to be used to se-

lect between various estimators using classification models of various complexities,
a third kind of bound, related to the first, may be considered for the sake of its
hopefully better constants: we will call them unbiased empirical bounds, to stress
the fact that they provide some empirical quantity whose expectation under P can
be proved to be an upper bound for P

[
ρ(R)

]
, the average expected risk. The price

to pay for these better constants is of course the lack of formal guarantee given by
the bound: two random variables whose expectations are ordered in a certain way
may very well be ordered in the reverse way with a large probability, so that basing
the estimation of parameters or the selection of an estimator on some unbiased
empirical bound is a hazardous business. Anyhow, since it is common practice to
use the inequalities provided by mathematical statistical theory while replacing the
proven constants with smaller values showing a better practical efficiency, consid-
ering unbiased empirical bounds as well as deviation bounds provides an indication
about how much the constants may be decreased while not violating the theory too
much.

1.2.1. Unbiased empirical bounds. Let ρ : Ω → M1
+(Θ) be some fixed (and

arbitrary) posterior distribution, describing some randomized estimator θ̂ : Ω → Θ.
As we already mentioned, in these notes a posterior distribution will always be a
regular conditional probability measure. By this we mean that

• for any A ∈ T, the map ω �→ ρ(ω, A) :
(
Ω, (B ⊗ B′)⊗N

)
→ R+ is assumed to

be measurable;
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• for any ω ∈ Ω, the map A �→ ρ(ω, A) : T → R+ is assumed to be a probability
measure.

We will also assume without further notice that the σ-algebras we deal with are
always countably generated. The technical implications of these assumptions are
standard and discussed for instance in Catoni (2004, pages 50-54), where, among
other things, a detailed proof of the decomposition of the Kullback Liebler diver-
gence is given.

Let us restrict to the case when the constant λ is positive. We get from Theorem
1.1.4 that

(1.2) exp
[
λ
{

Φ λ
N

[
P
[
ρ(R)

]]
− P

[
ρ(r)

]}
− P

[
K(ρ, π)

]]
≤ 1,

where we have used the convexity of the exp function and of Φ λ
N

. Since we have
restricted our attention to positive values of the constant λ, equation (1.2) can also
be written

P
[
ρ(R)

]
≤ Φ−1

λ
N

{
P
[
ρ(r) + λ−1K(ρ, π)

]}
,

leading to

Theorem 1.2.1. For any posterior distribution ρ : Ω → M1
+(Θ), for any positive

parameter λ,

P
[
ρ(R)

]
≤

1 − exp
[
−N−1

P
[
λρ(r) + K(ρ, π)

]]
1 − exp(− λ

N )

≤ P

{
λ

N
[
1 − exp(− λ

N )
] [ρ(r) +

K(ρ, π)
λ

]}
.

The last inequality provides the unbiased empirical upper bound for ρ(R) we were
looking for, meaning that the expectation of

λ

N
[
1−exp(− λ

N )
] [ρ(r) + K(ρ,π)

λ

]
is larger than the expectation of ρ(R). Let us no-

tice that 1 ≤ λ

N
[
1−exp(− λ

N )
] ≤

[
1− λ

2N

]−1 and therefore that this coefficient is close

to 1 when λ is significantly smaller than N .
If we are ready to believe in this bound (although this belief is not mathematically

well founded, as we already mentioned), we can use it to optimize λ and to choose
ρ. While the optimal choice of ρ when λ is fixed is, according to Lemma 1.1.3 (page
4), to take it equal to πexp(−λr), a Gibbs posterior distribution, as it is sometimes
called, we may for computational reasons be more interested in choosing ρ in some
other class of posterior distributions.

For instance, our real interest may be to select some non-randomized estimator
from a family θ̂m : Ω → Θm, m ∈ M , of possible ones, where Θm are measurable
subsets of Θ and where M is an arbitrary (non necessarily countable) index set.
We may for instance think of the case when θ̂m ∈ arg minΘm r. We may slightly
randomize the estimators to start with, considering for any θ ∈ Θm and any m ∈ M ,

Δm(θ) =
{

θ′ ∈ Θm :
[
fθ′(Xi)

]N
i=1

=
[
fθ(Xi)

]N
i=1

}
,

and defining ρm by the formula

dρm

dπ
(θ) =

1
[
θ ∈ Δm(θ̂m)

]
π
[
Δm(θ̂m)

] .
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Our posterior minimizes K(ρ, π) among those distributions whose support is re-
stricted to the values of θ in Θm for which the classification rule fθ is identical
to the estimated one f

θ̂m
on the observed sample. Presumably, in many practi-

cal situations, fθ(x) will be ρm almost surely identical to f
θ̂m

(x) when θ is drawn
from ρm, for the vast majority of the values of x ∈ X and all the sub-models Θm

not plagued with too much overfitting (since this is by construction the case when
x ∈ {Xi : i = 1, . . . , N}). Therefore replacing θ̂m with ρm can be expected to be a
minor change in many situations. This change by the way can be estimated in the
(admittedly not so common) case when the distribution of the patterns (Xi)N

i=1 is
known. Indeed, introducing the pseudo distance

(1.3) D(θ, θ′) =
1
N

N∑
i=1

P
[
fθ(Xi) �= fθ′(Xi)

]
, θ, θ′ ∈ Θ,

one immediately sees that R(θ′) ≤ R(θ) + D(θ, θ′), for any θ, θ′ ∈ Θ, and therefore
that

R(θ̂m) ≤ ρm(R) + ρm

[
D(·, θ̂m)

]
.

Let us notice also that in the case where Θm ⊂ R
dm , and R happens to be convex on

Δm(θ̂m), then ρm(R) ≥ R
[∫

θρm(dθ)
]
, and we can replace θ̂m with θ̃m =

∫
θρm(dθ),

and obtain bounds for R(θ̃m). This is not a very heavy assumption about R, in the
case where we consider θ̂m ∈ arg minΘm r. Indeed, θ̂m, and therefore Δm(θ̂m), will
presumably be close to arg minΘm R, and requiring a function to be convex in the
neighbourhood of its minima is not a very strong assumption.

Since r(θ̂m) = ρm(r), and K(ρm, π) = − log
{
π
[
Δm(θ̂m)

]}
, our unbiased empiri-

cal upper bound in this context reads as

λ

N
[
1 − exp(− λ

N )
] {r(θ̂m) −

log
{
π
[
Δm(θ̂m)

]}
λ

}
.

Let us notice that we obtain a complexity factor − log
{
π
[
Δm(θ̂m)

]}
which may be

compared with the Vapnik–Cervonenkis dimension. Indeed, in the case of binary
classification, when using a classification model with Vapnik–Cervonenkis dimen-
sion not greater than hm, that is when any subset of X which can be split in any
arbitrary way by some classification rule fθ of the model Θm has at most hm points,
then {

Δm(θ) : θ ∈ Θm

}
is a partition of Θm with at most

(
eN
hm

)hm

components: these facts, if not already
familiar to the reader, will be proved in Theorems 4.2.2 and 4.2.3 (page 144).
Therefore

inf
θ∈Θm

− log
{
π
[
Δm(θ)

]}
≤ hm log

(
eN

hm

)
− log

[
π(Θm)

]
.

Thus, if the model and prior distribution are well suited to the classification task, in
the sense that there is more “room” (where room is measured with π) between the
two clusters defined by θ̂m than between other partitions of the sample of patterns
(Xi)N

i=1, then we will have

− log
{
π
[
Δm(θ̂)

]}
≤ hm log

(
eN

hm

)
− log

[
π(Θm)

]
.
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An optimal value m̂ may be selected so that

m̂ ∈ arg min
m∈M

{
inf

λ∈R+

λ

N
[
1 − exp(− λ

N )
] (r(θ̂m) −

log
{
π
[
Δm(θ̂m)

]}
λ

)}
.

Since ρ
m̂

is still another posterior distribution, we can be sure that

P

{
R(θ̂

m̂
) − ρ

m̂

[
D(·, θ̂

m̂
)
]}

≤ P
[
ρ

m̂
(R)

]
≤ inf

λ∈R+
P

{
λ

N
[
1 − exp(− λ

N )
] (r(θ̂

m̂
) −

log
{
π
[
Δ

m̂
(θ̂

m̂
)
]}

λ

)}
.

Taking the infimum in λ inside the expectation with respect to P would be possible
at the price of some supplementary technicalities and a slight increase of the bound
that we prefer to postpone to the discussion of deviation bounds, since they are the
only ones to provide a rigorous mathematical foundation to the adaptive selection
of estimators.

1.2.2. Optimizing explicitly the exponential parameter λ. In this section
we address some technical issues we think helpful to the understanding of Theorem
1.2.1 (page 6): namely to investigate how the upper bound it provides could be
optimized, or at least approximately optimized, in λ. It turns out that this can be
done quite explicitly.

So we will consider in this discussion the posterior distribution ρ : Ω → M1
+(Θ)

to be fixed, and our aim will be to eliminate the constant λ from the bound by
choosing its value in some nearly optimal way as a function of P

[
ρ(r)

]
, the average

of the empirical risk, and of P
[
K(ρ, π)

]
, which controls overfitting.

Let the bound be written as

ϕ(λ) =
[
1 − exp(− λ

N )
]−1

{
1 − exp

[
− λ

N P
[
ρ(r)

]
− N−1

P
[
K(ρ, π)

]]}
.

We see that

N
∂

∂λ
log
[
ϕ(λ)

]
=

P
[
ρ(r)

]
exp

[
λ
N P
[
ρ(r)

]
+ N−1P

[
K(ρ, π)

]]
− 1

− 1
exp( λ

N ) − 1
.

Thus, the optimal value for λ is such that[
exp( λ

N ) − 1
]
P
[
ρ(r)

]
= exp

[
λ
N P
[
ρ(r)

]
+ N−1

P
[
K(ρ, π)

]]
− 1.

Assuming that 1 
 λ
N P
[
ρ(r)

]

 P[K(ρ,π)]

N , and keeping only higher order terms, we
are led to choose

λ =

√
2NP

[
K(ρ, π)

]
P
[
ρ(r)

]{
1 − P

[
ρ(r)

]} ,

obtaining

Theorem 1.2.2. For any posterior distribution ρ : Ω → M1
+(Θ),

P
[
ρ(R)

]
≤

1 − exp
{
−
√

2P[K(ρ,π)]P[ρ(r)]
N{1−P[ρ(r)]} − P[K(ρ,π)]

N

}
1 − exp

{
−
√

2P[K(ρ,π)]
NP[ρ(r)]{1−P[ρ(r)]}

} .
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This result of course is not very useful in itself, since neither of the two quantities
P
[
ρ(r)

]
and P

[
K(ρ, π)

]
are easy to evaluate. Anyhow it gives a hint that replacing

them boldly with ρ(r) and K(ρ, π) could produce something close to a legitimate
empirical upper bound for ρ(R). We will see in the subsection about deviation
bounds that this is indeed essentially true.

Let us remark that in the third chapter of this monograph, we will see another
way of bounding

inf
λ∈R+

Φ−1
λ
N

(
q +

d

λ

)
, leading to

Theorem 1.2.3. For any prior distribution π ∈ M1
+(Θ), for any posterior distri-

bution ρ : Ω → M1
+(Θ),

P
[
ρ(R)

]
≤
(

1 +
2P
[
K(ρ, π)

]
N

)−1{
P
[
ρ(r)

]
+

P
[
K(ρ, π)

]
N

+

√
2P
[
K(ρ, π)

]
P
[
ρ(r)

]{
1 − P

[
ρ(r)

]}
N

+
P
[
K(ρ, π)

]2
N2

}
,

as soon as P
[
ρ(r)

]
+

√
P
[
K(ρ, π)

]
2N

≤ 1
2
,

and P
[
ρ(R)

]
≤ P

[
ρ(r)

]
+

√
P
[
K(ρ, π)

]
2N

otherwise.

This theorem enlightens the influence of three terms on the average expected
risk:

• the average empirical risk, P
[
ρ(r)

]
, which as a rule will decrease as the size of

the classification model increases, acts as a bias term, grasping the ability of the
model to account for the observed sample itself;

• a variance term 1
N P
[
ρ(r)

]{
1− P

[
ρ(r)

]}
is due to the random fluctuations of

ρ(r);
• a complexity term P

[
K(ρ, π)

]
, which as a rule will increase with the size of

the classification model, eventually acts as a multiplier of the variance term.

We observed numerically that the bound provided by Theorem 1.2.2 is better
than the more classical Vapnik-like bound of Theorem 1.2.3. For instance, when
N = 1000, P

[
ρ(r)

]
= 0.2 and P

[
K(ρ, π)

]
= 10, Theorem 1.2.2 gives a bound lower

than 0.2604, whereas the more classical Vapnik-like approximation of Theorem 1.2.3
gives a bound larger than 0.2622. Numerical simulations tend to suggest the two
bounds are always ordered in the same way, although this could be a little tedious
to prove mathematically.

1.2.3. Non random bounds. It is time now to come to less tentative results and
see how far is the average expected error rate P

[
ρ(R)

]
from its best possible value

infΘ R.
Let us notice first that

λρ(r) + K(ρ, π) = K(ρ, πexp(−λr)) − log
{

π
[
exp(−λr)

]}
.
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Let us remark moreover that r �→ log
[
π
[
exp(−λr)

]]
is a convex functional, a prop-

erty which from a technical point of view can be dealt with in the following way:

(1.4) P

{
log
[
π
[
exp(−λr)

]]}
= P

{
sup

ρ∈M1
+(Θ)

−λρ(r) − K(ρ, π)
}

≥ sup
ρ∈M1

+(Θ)

P

{
−λρ(r) − K(ρ, π)

}
= sup

ρ∈M1
+(Θ)

−λρ(R) − K(ρ, π)

= log
{

π
[
exp(−λR)

]}
= −

∫ λ

0
πexp(−βR)(R)dβ.

These remarks applied to Theorem 1.2.1 lead to

Theorem 1.2.4. For any posterior distribution ρ : Ω → M1
+(Θ), for any positive

parameter λ,

P
[
ρ(R)

]
≤

1 − exp
{
− 1

N

∫ λ

0
πexp(−βR)(R)dβ − 1

N P
[
K(ρ, πexp(−λr))

]}
1 − exp(− λ

N )

≤ 1
N
[
1 − exp(− λ

N )
]{∫ λ

0
πexp(−βR)(R)dβ + P

[
K(ρ, πexp(−λr))

]}
.

This theorem is particularly well suited to the case of the Gibbs posterior distri-
bution ρ = πexp(−λr), where the entropy factor cancels and where P

[
πexp(−λr)(R)

]
is shown to get close to infΘ R when N goes to +∞, as soon as λ/N goes to 0 while
λ goes to +∞.

We can elaborate on Theorem 1.2.4 and define a notion of dimension of (Θ, R),
with margin η ≥ 0 putting

(1.5) dη(Θ, R) = sup
β∈R+

β
[
πexp(−βR)(R) − ess inf

π
R − η

]
≤ − log

{
π
[
R ≤ ess inf

π
R + η

]}
.

This last inequality can be established by the chain of inequalities:

βπexp(−βR)(R) ≤
∫ β

0
πexp(−γR)(R)dγ = − log

{
π
[
exp(−βR)

]}
≤ β

(
ess inf

π
R + η

)
− log

[
π
(
R ≤ ess inf

π
R + η

)]
,

where we have used successively the fact that λ �→ πexp(−λR)(R) is decreasing
(because it is the derivative of the concave function λ �→ − log

{
π
[
exp(−λR)

]}
)

and the fact that the exponential function takes positive values.
In typical “parametric” situations d0(Θ, R) will be finite, and in all circumstances

dη(Θ, R) will be finite for any η > 0 (this is a direct consequence of the definition
of the essential infimum). Using this notion of dimension, we see that

∫ λ

0

πexp(−βR)(R)dβ ≤ λ
(
ess inf

π
R + η

)
+
∫ λ

0

[
dη

β
∧ (1 − ess inf

π
R − η)

]
dβ
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= λ
(
ess inf

π
R + η

)
+ dη(Θ, R) log

[
eλ

dη(Θ, R)
(
1 − ess inf

π
R − η

)]
.

This leads to

Corollary 1.2.5 With the above notation, for any margin η ∈ R+, for any pos-
terior distribution ρ : Ω → M1

+(Θ),

P
[
ρ(R)

]
≤ inf

λ∈R+
Φ−1

λ
N

[
ess inf

π
R + η +

dη

λ
log
(

eλ

dη

)
+

P
{
K
[
ρ, πexp(−λr)

]}
λ

]
.

If one wants a posterior distribution with a small support, the theorem can also
be applied to the case when ρ is obtained by truncating πexp(−λr) to some level
set to reduce its support: let Θp = {θ ∈ Θ : r(θ) ≤ p}, and let us define for any
q ∈)0, 1) the level pq = inf{p : πexp(−λr)(Θp) ≥ q}, let us then define ρq by its
density

dρq

dπexp(−λr)
(θ) =

1(θ ∈ Θpq )
πexp(−λr)(Θpq )

,

then ρ0 = πexp(−λr) and for any q ∈ (0, 1(,

P
[
ρq(R)

]
≤

1 − exp
{
− 1

N

∫ λ

0
πexp(−βR)(R)dβ − log(q)

N

}
1 − exp(− λ

N )

≤ 1
N
[
1 − exp(− λ

N )
]{∫ λ

0
πexp(−βR)(R)dβ − log(q)

}
.

1.2.4. Deviation bounds. They provide results holding under the distribution
P of the sample with probability at least 1− ε, for any given confidence level, set by
the choice of ε ∈)0, 1(. Using them is the only way to be quite (i.e. with probability
1− ε) sure to do the right thing, although this right thing may be over-pessimistic,
since deviation upper bounds are larger than corresponding non-biased bounds.

Starting again from Theorem 1.1.4 (page 4), and using Markov’s inequality
P
[
exp(h) ≥ 1

]
≤ P

[
exp(h)

]
, we obtain

Theorem 1.2.6. For any positive parameter λ, with P probability at least 1 − ε,
for any posterior distribution ρ : Ω → M1

+(Θ),

ρ(R) ≤ Φ−1
λ
N

{
ρ(r) +

K(ρ, π) − log(ε)
λ

}

=
1 − exp

{
−λρ(r)

N
− K(ρ, π) − log(ε)

N

}
1 − exp

(
− λ

N

)
≤ λ

N
[
1 − exp

(
− λ

N

)] [ρ(r) +
K(ρ, π) − log(ε)

λ

]
.

We see that for a fixed value of the parameter λ, the upper bound is optimized
when the posterior is chosen to be the Gibbs distribution ρ = πexp(−λr).

In this theorem, we have bounded ρ(R), the average expected risk of an estimator
θ̂ drawn from the posterior ρ. This is what we will do most of the time in this study.
This is the error rate we will get if we classify a large number of test patterns,
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drawing a new θ̂ for each one. However, we can also be interested in the error rate
we get if we draw only one θ̂ from ρ and use this single draw of θ̂ to classify a
large number of test patterns. This error rate is R(θ̂). To state a result about its
deviations, we can start back from Lemma 1.1.1 (page 3) and integrate it with
respect to the prior distribution π to get for any real constant λ

P

{
π

[
exp

{
λ
[
Φ λ

N

(
R
)
− r

]}]}
≤ 1.

For any posterior distribution ρ : Ω → M1
+(Θ), this can be rewritten as

P

{
ρ

[
exp

{
λ
[
Φ λ

N

(
R
)
− r

]
− log

(
dρ
dπ

)
+ log(ε)

]}]}
≤ ε,

proving

Theorem 1.2.7 For any positive real parameter λ, for any posterior distribution
ρ : Ω → M1

+(Θ), with Pρ probability at least 1 − ε,

R(θ̂ ) ≤ Φ−1
λ
N

{
r(θ̂ ) + λ−1 log

(
ε−1 dρ

dπ

)}
≤ λ

N
[
1 − exp(− λ

N )
][r(θ̂ ) + λ−1 log

(
ε−1 dρ

dπ

)]
.

Let us remark that the bound provided here is the exact counterpart of the bound
of Theorem 1.2.6, since log

(
dρ
dπ

)
appears as a disintegrated version of the divergence

K(ρ, π). The parallel between the two theorems is particularly striking in the special
case when ρ = πexp(−λr). Indeed Theorem 1.2.6 proves that with P probability at
least 1 − ε,

πexp(−λr)(R) ≤ Φ−1
λ
N

{
−

log
{
π
[
exp

(
−λr

)]}
+ log(ε)

λ

}
,

whereas Theorem 1.2.7 proves that with Pπexp(−λr) probability at least 1 − ε

R(θ̂ ) ≤ Φ−1
λ
N

{
−

log
{
π
[
exp

(
−λr

)]}
+ log(ε)

λ

}
,

showing that we get the same deviation bound for πexp(−λr)(R) under P and for θ̂
under Pπexp(−λr).

We would like to show now how to optimize with respect to λ the bound given
by Theorem 1.2.6 (the same discussion would apply to Theorem 1.2.7). Let us
notice first that values of λ less than 1 are not interesting (because they provide a
bound larger than one, at least as soon as ε ≤ exp(−1)). Let us consider some real
parameter α > 1, and the set Λ = {αk; k ∈ N}, on which we put the probability
measure ν(αk) = [(k+1)(k+2)]−1. Applying Theorem 1.2.6 to λ = αk at confidence
level 1− ε

(k+1)(k+2) , and using a union bound, we see that with probability at least
1 − ε, for any posterior distribution ρ,

ρ(R) ≤ inf
λ′∈Λ

Φ−1
λ′
N

⎧⎨⎩ρ(r) +
K(ρ, π) − log(ε) + 2 log

[
log(α2λ′)

log(α)

]
λ′

⎫⎬⎭ .
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Now we can remark that for any λ ∈ (1, +∞(, there is λ′ ∈ Λ such that α−1λ ≤
λ′ ≤ λ. Moreover, for any q ∈ (0, 1), β �→ Φ−1

β (q) is increasing on R+. Thus with
probability at least 1 − ε, for any posterior distribution ρ,

ρ(R) ≤ inf
λ∈(1,∞(

Φ−1
λ
N

{
ρ(r) +

α

λ

[
K(ρ, π) − log(ε) + 2 log

(
log(α2λ)
log(α)

)]}

= inf
λ∈(1,∞(

1 − exp
{
− λ

N ρ(r) − α
N

[
K(ρ, π) − log(ε) + 2 log

(
log(α2λ)
log(α)

)]}
1 − exp(− λ

N )
.

Taking the approximately optimal value

λ =

√
2Nα [K(ρ, π) − log(ε)]

ρ(r)[1 − ρ(r)]
,

we obtain

Theorem 1.2.8. With probability 1 − ε, for any posterior distribution ρ : Ω →
M1

+(Θ), putting d(ρ, ε) = K(ρ, π) − log(ε),

ρ(R) ≤ inf
k∈N

1 − exp
{
−αk

N
ρ(r) − 1

N

[
d(ρ, ε) + log

[
(k + 1)(k + 2)

]]}
1 − exp

(
−αk

N

)

≤

1 − exp

⎧⎨⎩−
√

2αρ(r)d(ρ, ε)
N [1 − ρ(r)]

− α

N

[
d(ρ, ε) + 2 log

(
log

(
α2

√
2Nαd(ρ,ε)

ρ(r)[1−ρ(r)]

)
log(α)

)]⎫⎬⎭
1 − exp

[
−
√

2αd(ρ, ε)
Nρ(r)[1 − ρ(r)]

] .

Moreover with probability at least 1 − ε, for any posterior distribution ρ such that
ρ(r) = 0,

ρ(R) ≤ 1 − exp
[
−K(ρ, π) − log(ε)

N

]
.

We can also elaborate on the results in an other direction by introducing the
empirical dimension

(1.6) de = sup
β∈R+

β
[
πexp(−βr)(r) − ess inf

π
r
]
≤ − log

[
π
(
r = ess inf

π
r
)]

.

There is no need to introduce a margin in this definition, since r takes at most N
values, and therefore π

(
r = ess infπ r

)
is strictly positive. This leads to

Corollary 1.2.9. For any positive real constant λ, with P probability at least
1 − ε, for any posterior distribution ρ : Ω → M1

+(Θ),

ρ(R) ≤ Φ−1
λ
N

[
ess inf

π
r +

de

λ
log
(

eλ

de

)
+

K
[
ρ, πexp(−λr)

]
− log(ε)

λ

]
.

We could then make the bound uniform in λ and optimize this parameter in a
way similar to what was done to obtain Theorem 1.2.8.
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1.3. Local bounds

In this section, better bounds will be achieved through a better choice of the prior
distribution. This better prior distribution turns out to depend on the unknown
sample distribution P, and some work is required to circumvent this and obtain
empirical bounds.

1.3.1. Choice of the prior. As mentioned in the introduction, if one is willing
to minimize the bound in expectation provided by Theorem 1.2.1 (page 6), one is led
to consider the optimal choice π = P(ρ). However, this is only an ideal choice, since
P is in all conceivable situations unknown. Nevertheless it shows that it is possible
through Theorem 1.2.1 to measure the complexity of the classification model with
P
{
K
[
ρ, P(ρ)

]}
, which is nothing but the mutual information between the random

sample (Xi, Yi)N
i=1 and the estimated parameter θ̂, under the joint distribution Pρ.

In practice, since we cannot choose π = P(ρ), we have to be content with a
flat prior π, resulting in a bound measuring complexity according to P

[
K(ρ, π)

]
=

P
{
K
[
ρ, P(ρ)

]}
+K

[
P(ρ), π

]
larger by the entropy factor K

[
P(ρ), π

]
than the optimal

one (we are still commenting on Theorem 1.2.1).
If we want to base the choice of π on Theorem 1.2.4 (page 10), and if we choose

ρ = πexp(−λr) to optimize this bound, we will be inclined to choose some π such
that

1
λ

∫ λ

0
πexp(−βR)(R)dβ = − 1

λ
log
{

π
[
exp(−λR)

]}
is as far as possible close to infθ∈Θ R(θ) in all circumstances. To give a more specific
example, in the case when the distribution of the design (Xi)N

i=1 is known, one can
introduce on the parameter space Θ the metric D already defined by equation
(1.3, page 7) (or some available upper bound for this distance). In view of the fact
that R(θ) − R(θ′) ≤ D(θ, θ′), for any θ, θ′ ∈ Θ, it can be meaningful, at least
theoretically, to choose π as

π =
∞∑

k=1

1
k(k + 1)

πk,

where πk is the uniform measure on some minimal (or close to minimal) 2−k-net
N(Θ, D, 2−k) of the metric space (Θ, D). With this choice

− 1
λ

log
{

π
[
exp(−λR)

]}
≤ inf

θ∈Θ
R(θ)

+ inf
k

{
2−k +

log(|N(Θ, D, 2−k)|) + log[k(k + 1)]
λ

}
.

Another possibility, when we have to deal with real valued parameters, meaning
that Θ ⊂ R

d, is to code each real component θi ∈ R of θ = (θi)d
i=1 to some

precision and to use a prior μ which is atomic on dyadic numbers. More precisely
let us parametrize the set of dyadic real numbers as

D =

{
r
[
s, m, p, (bj)

p
j=1

]
= s2m

(
1 +

p∑
j=1

bj2−j

)

: s ∈ {−1, +1}, m ∈ Z, p ∈ N, bj ∈ {0, 1}
}

,
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where, as can be seen, s codes the sign, m the order of magnitude, p the precision
and (bj)

p
j=1 the binary representation of the dyadic number r

[
s, m, p, (bj)

p
j=1

]
. We

can for instance consider on D the probability distribution

(1.7) μ
{
r
[
s, m, p, (bj)

p
j=1

]}
=
[
3(|m| + 1)(|m| + 2)(p + 1)(p + 2)2p

]−1

,

and define π ∈ M1
+(Rd) as π = μ⊗d. This kind of “coding” prior distribution can

be used also to define a prior on the integers (by renormalizing the restriction of
μ to integers to get a probability distribution). Using μ is somehow equivalent to
picking up a representative of each dyadic interval, and makes it possible to restrict
to the case when the posterior ρ is a Dirac mass without losing too much (when
Θ = (0, 1), this approach is somewhat equivalent to considering as prior distribution
the Lebesgue measure and using as posterior distributions the uniform probabil-
ity measures on dyadic intervals, with the advantage of obtaining non-randomized
estimators). When one uses in this way an atomic prior and Dirac masses as pos-
terior distributions, the bounds proven so far can be obtained through a simpler
union bound argument. This is so true that some of the detractors of the PAC-
Bayesian approach (which, as a newcomer, has sometimes received a suspicious
greeting among statisticians) have argued that it cannot bring anything that ele-
mentary union bound arguments could not essentially provide. We do not share of
course this derogatory opinion, and while we think that allowing for non atomic
priors and posteriors is worthwhile, we also would like to stress that the upcoming
local and relative bounds could hardly be obtained with the only help of union
bounds.

Although the choice of a flat prior seems at first glance to be the only alternative
when nothing is known about the sample distribution P, the previous discussion
shows that this type of choice is lacking proper localisation, and namely that we
loose a factor K

{
P
[
πexp(−λr)

]
, π
}
, the divergence between the bound-optimal prior

P
[
πexp(−λr)

]
, which is concentrated near the minima of R in favourable situations,

and the flat prior π. Fortunately, there are technical ways to get around this diffi-
culty and to obtain more local empirical bounds.

1.3.2. Unbiased local empirical bounds. The idea is to start with some flat
prior π ∈ M1

+(Θ), and the posterior distribution ρ = πexp(−λr) minimizing the
bound of Theorem 1.2.1 (page 6), when π is used as a prior. To improve the bound,
we would like to use P

[
πexp(−λr)

]
instead of π, and we are going to make the guess

that we could approximate it with πexp(−βR) (we have replaced the parameter λ
with some distinct parameter β to give some more freedom to our investigation,
and also because, intuitively, P

[
πexp(−λr)

]
may be expected to be less concentrated

than each of the πexp(−λr) it is mixing, which suggests that the best approximation
of P

[
πexp(−λr)

]
by some πexp(−βR) may be obtained for some parameter β < λ).

We are then led to look for some empirical upper bound of K
[
ρ, πexp(−βR)

]
. This

is happily provided by the following computation

P
{
K
[
ρ, πexp(−βR)

]}
= P

[
K(ρ, π)

]
+ βP

[
ρ(R)

]
+ log

{
π
[
exp(−βR)

]}
= P

{
K
[
ρ, πexp(−βr)

]}
+ βP

[
ρ(R − r)

]
+ log

{
π
[
exp(−βR)

]}
− P

{
log π

[
exp(−βr)

]}
.
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Using the convexity of r �→ log
{
π
[
exp(−βr)

]}
as in equation (1.4) on page 10, we

conclude that

0 ≤ P
{
K
[
ρ, πexp(−βR)

]}
≤ βP

[
ρ(R − r)

]
+ P

{
K
[
ρ, πexp(−βr)

]}
.

This inequality has an interest of its own, since it provides a lower bound for
P
[
ρ(R)

]
. Moreover we can plug it into Theorem 1.2.1 (page 6) applied to the prior

distribution πexp(−βR) and obtain for any posterior distribution ρ and any positive
parameter λ that

Φ λ
N

{
P
[
ρ(R)

]}
≤ P

{
ρ(r) +

β

λ
ρ(R − r) +

1
λ

P

{
K
[
ρ, πexp(−βr)

]}}
.

In view of this, it it convenient to introduce the function

Φ̃a,b(p) = (1 − b)−1
[
Φa(p) − bp

]
= −(1 − b)−1

{
a−1 log

{
1 − p

[
1 − exp(−a)

]}
+ bp

}
,

p ∈ (0, 1), a ∈)0,∞(, b ∈ (0, 1(.

This is a convex function of p, moreover

Φ̃′
a,b(0) =

{
a−1

[
1 − exp(−a)

]
− b
}

(1 − b)−1,

showing that it is an increasing one to one convex map of the unit interval unto
itself as soon as b ≤ a−1

[
1 − exp(−a)

]
. Its convexity, combined with the value of

its derivative at the origin, shows that

Φ̃a,b(p) ≥
a−1

[
1 − exp(−a)

]
− b

1 − b
p.

Using this notation and remarks, we can state

Theorem 1.3.1. For any positive real constants β and λ such that 0 ≤ β < N [1−
exp(− λ

N )], for any posterior distribution ρ : Ω → M1
+(Θ),

P

{
ρ(r) −

K
[
ρ, πexp(−βr)

]
β

}
≤ P

[
ρ(R)

]
≤ Φ̃−1

λ
N , β

λ

{
P

[
ρ(r) +

K
[
ρ, πexp(−βr)

]
λ − β

]}
≤ λ − β

N [1 − exp(− λ
N )] − β

P

[
ρ(r) +

K
[
ρ, πexp(−βr)

]
λ − β

]
.

Thus (taking λ = 2β), for any β such that 0 ≤ β < N
2 ,

P
[
ρ(R)

]
≤ 1

1 − 2β
N

P

{
ρ(r) +

K
[
ρ, πexp(−βr)

]
β

}
.

Note that the last inequality is obtained using the fact that 1−exp(−x) ≥ x− x2

2 ,
x ∈ R+.
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Corollary 1.3.2. For any β ∈ (0, N(,

P
[
πexp(−βr)(r)

]
≤ P

[
πexp(−βr)(R)

]
≤ inf

λ∈(−N log(1− β
N ),∞(

λ − β

N [1 − exp(− λ
N )] − β

P
[
πexp(−βr)(r)

]
≤ 1

1 − 2β
N

P
[
πexp(−βr)(r)

]
,

the last inequality holding only when β < N
2 .

It is interesting to compare the upper bound provided by this corollary with
Theorem 1.2.1 (page 6) when the posterior is a Gibbs measure ρ = πexp(−βr). We
see that we have got rid of the entropy term K

[
πexp(−βr), π

]
, but at the price of

an increase of the multiplicative factor, which for small values of β
N grows from

(1 − β
2N )−1 (when we take λ = β in Theorem 1.2.1), to (1 − 2β

N )−1. Therefore
non-localized bounds have an interest of their own, and are superseded by localized
bounds only in favourable circumstances (presumably when the sample is large
enough when compared with the complexity of the classification model).

Corollary 1.3.2 shows that when 2β
N is small, πexp(−βr)(r) is a tight approximation

of πexp(−βr)(R) in the mean (since we have an upper bound and a lower bound which
are close together).

Another corollary is obtained by optimizing the bound given by Theorem 1.3.1
in ρ, which is done by taking ρ = πexp(−λr).

Corollary 1.3.3. For any positive real constants β and λ such that 0 ≤ β <
N [1 − exp(− λ

N )],

P
[
πexp(−λr)(R)

]
≤ Φ̃−1

λ
N , β

λ

{
P

[
1

λ − β

∫ λ

β

πexp(−γr)(r)dγ

]}
≤ 1

N [1 − exp(− λ
N )] − β

P

[∫ λ

β
πexp(−γr)(r)dγ

]
.

Although this inequality gives by construction a better upper bound for
infλ∈R+ P

[
πexp(−λr)(R)

]
than Corollary 1.3.2, it is not easy to tell which one of

the two inequalities is the best to bound P
[
πexp(−λr)(R)

]
for a fixed (and possibly

suboptimal) value of λ, because in this case, one factor is improved while the other
is worsened.

Using the empirical dimension de defined by equation (1.6) on page 13, we see
that

1
λ − β

∫ λ

β

πexp(−γr)(r)dγ ≤ ess inf
π

r + de log
(

λ

β

)
.

Therefore, in the case when we keep the ratio λ
β bounded, we get a better depen-

dence on the empirical dimension de than in Corollary 1.2.9 (page 13).

1.3.3. Non random local bounds. Let us come now to the localization of the
non-random upper bound given by Theorem 1.2.4 (page 10). According to Theorem
1.2.1 (page 6) applied to the localized prior πexp(−βR),
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λΦ λ
N

{
P
[
ρ(R)

]}
≤ P

{
λρ(r) + K(ρ, π) + βρ(R)

}
+ log

{
π
[
exp(−βR)

]}
= P

{
K
[
ρ, πexp(−λr)

]
− log

{
π
[
exp(−λr)

]}
+ βρ(R)

}
+ log

{
π
[
exp(−βR)

]}
≤ P

{
K
[
ρ, πexp(−λr)

]
+ βρ(R)

}
− log

{
π
[
exp(−λR)

]}
+ log

{
π
[
exp(−βR)

]}
,

where we have used as previously inequality (1.4) (page 10). This proves

Theorem 1.3.4. For any posterior distribution ρ : Ω → M1
+(Θ), for any real

parameters β and λ such that 0 ≤ β < N
[
1 − exp(− λ

N )
]
,

P
[
ρ(R)

]
≤ Φ̃−1

λ
N , β

λ

{
1

λ − β

∫ λ

β

πexp(−γR)(R)dγ + P

[
K
[
ρ, πexp(−λr)

]
λ − β

]}
≤ 1

N
[
1 − exp(− λ

N )
]
− β

{∫ λ

β

πexp(−γR)(R)dγ + P

{
K
[
ρ, πexp(−λr)

]}}
.

Let us notice in particular that this theorem contains Theorem 1.2.4 (page 10)
which corresponds to the case β = 0. As a corollary, we see also, taking ρ = πexp(−λr)

and λ = 2β, and noticing that γ �→ πexp(−γR)(R) is decreasing, that

P
[
πexp(−λr)(R)

]
≤ inf

β,β<N [1−exp(− λ
N )]

β

N
[
1 − exp(− λ

N )
]
− β

πexp(−βR)(R)

≤ 1
1 − λ

N

πexp(−λ
2 R)(R).

We can use this inequality in conjunction with the notion of dimension with margin
η introduced by equation (1.5) on page 10, to see that the Gibbs posterior achieves
for a proper choice of λ and any margin parameter η ≥ 0 (which can be chosen to
be equal to zero in parametric situations)

(1.8) inf
λ

P
[
πexp(−λr)(R)

]
≤ ess inf

π
R + η +

4dη

N

+ 2

√
2dη

(
ess infπ R + η

)
N

+
4d2

η

N2
.

Deviation bounds to come next will show that the optimal λ can be estimated from
empirical data.

Let us propose a little numerical example as an illustration: assuming that
d0 = 10, N = 1000 and ess infπ R = 0.2, we obtain from equation (1.8) that
infλ P

[
πexp(−λr)(R)

]
≤ 0.373.

1.3.4. Local deviation bounds. When it comes to deviation bounds, for tech-
nical reasons we will choose a slightly more involved change of prior distribution
and apply Theorem 1.2.6 (page 11) to the prior πexp[−βΦ

− β
N

◦R]. The advantage of

tweaking R with the nonlinear function Φ− β
N

will appear in the search for an em-
pirical upper bound of the local entropy term. Theorem 1.1.4 (page 4), used with
the above-mentioned local prior, shows that

(1.9) P

{
sup

ρ∈M1
+(Θ)

λ
{

ρ
(
Φ λ

N
◦R
)
− ρ(r)

}
− K

[
ρ, πexp(−βΦ

− β
N

◦R)

]}
≤ 1.
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Moreover

(1.10) K
[
ρ, πexp[−βΦ

− β
N

◦R]

]
= K

[
ρ, πexp(−βr)

]
+ βρ

[
Φ− β

N
◦R − r

]
+ log

{
π
[
exp

(
−βΦ− β

N
◦R
)]}

− log
{

π
[
exp(−βr)

]}
,

which is an invitation to find an upper bound for log
{

π
[
exp

[
−βΦ− λ

N
◦ R

]]}
−

log
{

π
[
exp(−βr)

]}
. For conciseness, let us call our localized prior distribution π,

thus defined by its density

dπ

dπ
(θ) =

exp
{
−βΦ− β

N

[
R(θ)

]}
π
{

exp
[
−βΦ− β

N
◦R
]} .

Applying once again Theorem 1.1.4 (page 4), but this time to −β, we see that

(1.11) P

{
exp

[
log
{

π
[
exp

(
−βΦ− β

N
◦R
)]}

− log
{

π
[
exp(−βr)

]}]}
= P

{
exp

[
log
{

π
[
exp

(
−βΦ− β

N
◦R)

)]}
+ inf

ρ∈M1
+(Θ)

βρ(r) + K(ρ, π)
]}

≤ P

{
exp

[
log
{

π
[
exp

(
−βΦ− β

N
◦R)

)]}
+ βπ(r) + K(π, π)

]}
= P

{
exp

[
β
[
π(r) − π

(
Φ− β

N
◦R
)]

+ K(π, π)
]}

≤ 1.

Combining equations (1.10) and (1.11) and using the concavity of Φ− β
N

, we see that
with P probability at least 1 − ε, for any posterior distribution ρ : Ω → M1

+(Θ),

0 ≤ K(ρ, π) ≤ K
[
ρ, πexp(−βr)

]
+ β

[
Φ− β

N

[
ρ(R)

]
− ρ(r)

]
− log(ε).

We have proved a lower deviation bound:

Theorem 1.3.5 For any positive real constant β, with P probability at least 1− ε,
for any posterior distribution ρ : Ω → M1

+(Θ),

exp
{

β

N

[
ρ(r) −

K[ρ, πexp(−βr)] − log(ε)
β

]}
− 1

exp
(

β
N

)
− 1

≤ ρ(R).

We can also obtain a lower deviation bound for θ̂. Indeed equation (1.11) can
also be written as

P

{
πexp(−βr)

[
exp

{
β
[
r − Φ− β

N
◦ R

]}]}
≤ 1.

This means that for any posterior distribution ρ : Ω → M1
+(Θ),

P

{
ρ
[
exp

{
β
[
r − Φ− β

N
◦ R

]
− log

(
dρ

dπexp(−βr)

)}]}
≤ 1.

We have proved
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Theorem 1.3.6 For any positive real constant β, for any posterior distribution
ρ : Ω → M1

+(Θ), with Pρ probability at least 1 − ε,

R(θ̂ ) ≥ Φ−1

− β
N

[
r(θ̂ ) −

log
(

dρ
dπexp(−βr)

)
− log(ε)

β

]

=
exp

{
β

N

[
r(θ̂ ) −

log
(

dρ
dπexp(−βr)

)
− log(ε)

β

]}
− 1

exp
(

β

N

)
− 1

.

Let us now resume our investigation of the upper deviations of ρ(R). Using the
Cauchy-Schwarz inequality to combine equations (1.9, page 18) and (1.11, page 19),
we obtain

(1.12)

P

{
exp

[
1
2

sup
ρ∈M1

+(Θ)

λρ
(
Φ λ

N
◦R
)
− βρ

(
Φ− β

N
◦R
)
− (λ− β)ρ(r)−K

[
ρ, πexp(−βr)

]]}
= P

{
exp

[
1
2 sup

ρ∈M1
+(Θ)

(
λ
{

ρ
(
Φ λ

N
◦R
)
− ρ(r)

}
− K(ρ, π)

)]
× exp

[
1
2

(
log
{

π
[
exp

(
−βΦ− β

N
◦R
)]}

− log
{

π
[
exp(−βr)

]})]}
≤ P

{
exp

[
sup

ρ∈M1
+(Θ)

(
λ
{

ρ
(
Φ λ

N
◦R
)
− ρ(r)

}
− K(ρ, π)

)]}1/2

× P

{
exp

[(
log
{

π
[
exp

(
−βΦ− β

N
◦R
)]}

− log
{

π
[
exp(−βr)

]})]}1/2

≤ 1.

Thus with P probability at least 1 − ε, for any posterior distribution ρ,

λΦ λ
N

[
ρ(R)

]
− βΦ− β

N

[
ρ(R)

]
≤ λρ

(
Φ λ

N
◦ R

)
− βρ

(
Φ− β

N
◦ R

)
≤ (λ − β)ρ(r) + K(ρ, πexp(−βr)) − 2 log(ε).

(It would have been more straightforward to use a union bound on deviation in-
equalities instead of the Cauchy-Schwarz inequality on exponential moments, any-
how, this would have led to replace −2 log(ε) with the worse factor 2 log(2

ε ).) Let
us now recall that

λΦ λ
N

(p) − βΦ− β
N

(p) = −N log
{

1 −
[
1 − exp

(
− λ

N

)]
p
}

− N log
{

1 +
[
exp

(
β
N

)
− 1

]
p
}

,

and let us put

B = (λ − β)ρ(r) + K
[
ρ, πexp(−βr)

]
− 2 log(ε)

= K
[
ρ, πexp(−λr)

]
+
∫ λ

β
πexp(−ξr)(r)dξ − 2 log(ε).

Let us consider moreover the change of variables α = 1−exp(− λ
N ) and γ = exp( β

N )−
1. We obtain

[
1 − αρ(R)

][
1 + γρ(R)

]
≥ exp(−B

N ), leading to
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Theorem 1.3.7. For any positive constants α, γ, such that 0 ≤ γ < α < 1, with P

probability at least 1 − ε, for any posterior distribution ρ : Ω → M1
+(Θ), the bound

M(ρ) = −
log
[
(1 − α)(1 + γ)

]
α − γ

ρ(r) +
K(ρ, πexp[−N log(1+γ)r]) − 2 log(ε)

N(α − γ)

=
K
[
ρ, πexp[N log(1−α)r]

]
+
∫ −N log(1−α)

N log(1+γ)

πexp(−ξr)(r)dξ − 2 log(ε)

N(α − γ)
,

is such that

ρ(R) ≤ α − γ

2αγ

(√
1 +

4αγ

(α − γ)2
{
1 − exp

[
−(α − γ)M(ρ)

]}
− 1

)
≤ M(ρ),

Let us now give an upper bound for R(θ̂ ). Equation (1.12 page 20) can also be
written as

P

{[
πexp(−βr)

{
exp

[
λΦ λ

N
◦ R − βΦ− β

N
◦ R − (λ − β)r

]}] 1
2
}

≤ 1.

This means that for any posterior distribution ρ : Ω → M1
+(Θ),

P

{[
ρ
{

exp
[
λΦ λ

N
◦ R − βΦ− β

N
◦ R − (λ − β)r − log

(
dρ

dπexp(−βr)

)]}] 1
2
}

≤ 1.

Using the concavity of the square root function, this inequality can be weakened
to

P

{
ρ

[
exp

{
1
2

[
λΦ λ

N
◦ R − βΦ− β

N
◦ R − (λ − β)r − log

(
dρ

dπexp(−βr)

)]}]}
≤ 1.

We have proved

Theorem 1.3.8. For any positive real constants λ and β and for any posterior
distribution ρ : Ω → M1

+(Θ), with Pρ probability at least 1 − ε,

λΦ λ
N

[
R(θ̂ )

]
− βΦ− β

N

[
R(θ̂ )

]
≤ (λ − β) r(θ̂ ) + log

[
dρ

dπexp(−βr)
(θ̂ )
]
− 2 log(ε).

Putting α = 1 − exp
(
− λ

N

)
, γ = exp

(
β
N

)
− 1 and

M(θ) = −
log
[
(1 − α)(1 + γ)

]
α − γ

r(θ) +
log
[

dρ
dπexp[−N log(1+γ)r]

(θ)
]
− 2 log(ε)

N(α − γ)

=
log
[

dρ
dπexp[N log(1−α)r]

(θ)
]

+
∫ −N log(1−α)

N log(1+γ)

πexp(−ξr)(r) dξ − 2 log(ε)

N(α − γ)
,

we can also, in the case when γ < α, write this inequality as

R(θ̂ ) ≤ α − γ

2αγ

(√
1 +

4αγ

(α − γ)2
{

1 − exp
[
−(α − γ)M(θ̂ )

]}
− 1

)
≤ M(θ̂).
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It may be enlightening to introduce the empirical dimension de defined by equa-
tion (1.6) on page 13. It provides the upper bound∫ λ

β

πexp(−ξr)(r)dξ ≤ (λ − β) ess inf
π

r + de log
(

λ

β

)
,

which shows that in Theorem 1.3.7 (page 21),

M(ρ) ≤
log
[
(1 + γ)(1 − α)

]
γ − α

ess inf
π

r

+
de log

[
− log(1−α)
log(1+γ)

]
+ K

[
ρ, πexp[N log(1−α)r]

]
− 2 log(ε)

N(α − γ)
.

Similarly, in Theorem 1.3.8 above,

M(θ) ≤
log
[
(1 + γ)(1 − α)

]
γ − α

ess inf
π

r

+
de log

[
− log(1−α)
log(1+γ)

]
+ log

[
dρ

dπexp[N log(1−α)r]
(θ)
]
− 2 log(ε)

N(α − γ)

Let us give a little numerical illustration: assuming that de = 10, N = 1000, and
ess infπ r = 0.2, taking ε = 0.01, α = 0.5 and γ = 0.1, we obtain from Theorem
1.3.7 πexp[N log(1−α)r](R) � πexp(−693r)(R) ≤ 0.332 ≤ 0.372, where we have given
respectively the non-linear and the linear bound. This shows the practical interest
of keeping the non-linearity. Optimizing the values of the parameters α and γ would
not have yielded a significantly lower bound.

The following corollary is obtained by taking λ = 2β and keeping only the linear
bound; we give it for the sake of its simplicity:

Corollary 1.3.9. For any positive real constant β such that exp( β
N )+exp(−2β

N ) <
2, which is the case when β < 0.48N , with P probability at least 1− ε, for any pos-
terior distribution ρ : Ω → M1

+(Θ),

ρ(R) ≤
βρ(r) + K

[
ρ, πexp(−βr)

]
− 2 log(ε)

N
[
2 − exp

(
β
N

)
− exp

(
−2β

N

)]
=

∫ 2β

β
πexp(−ξr)(r)dξ + K

[
ρ, πexp(−2βr)

]
− 2 log(ε)

N
[
2 − exp( β

N ) − exp(−2β
N )
] .

Let us mention that this corollary applied to the above numerical example gives
πexp(−200r)(R) ≤ 0.475 (when we take β = 100, consistently with the choice γ =
0.1).

1.3.5. Partially local bounds. Local bounds are suitable when the lowest
values of the empirical error rate r are reached only on a small part of the parameter
set Θ. When Θ is the disjoint union of sub-models of different complexities, the
minimum of r will as a rule not be “localized” in a way that calls for the use of
local bounds. Just think for instance of the case when Θ =

⊔M
m=1 Θm, where the

sets Θ1 ⊂ Θ2 ⊂ · · · ⊂ ΘM are nested. In this case we will have infΘ1 r ≥ infΘ2 r ≥
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· · · ≥ infΘM
r, although ΘM may be too large to be the right model to use. In this

situation, we do not want to localize the bound completely. Let us make a more
specific fanciful but typical pseudo computation. Just imagine we have a countable
collection (Θm)m∈M of sub-models. Let us assume we are interested in choosing
between the estimators θ̂m ∈ arg minΘm r, maybe randomizing them (e.g. replacing
them with πm

exp(−λr)). Let us imagine moreover that we are in a typically parametric
situation, where, for some priors πm ∈ M1

+(Θm), m ∈ M , there is a “dimension”
dm such that λ

[
πm

exp(−λr)(r) − r(θ̂m)
]
� dm. Let μ ∈ M1

+(M) be some distribution
on the index set M . It is easy to see that (μπ)exp(−λr) will typically not be properly
local, in the sense that typically

(μπ)exp(−λr)(r) =
μ
{

πexp(−λr)(r)π
[
exp(−λr)

]}
μ
{

π
[
exp(−λr)

]}

�

∑
m∈M

[
(inf
Θm

r) + dm

λ

]
exp

[
−λ(inf

Θm

r) − dm log
(

eλ
dm

)]
μ(m)∑

m∈M

exp
[
−λ(inf

Θm

r) − dm log
(

eλ
dm

)]
μ(m)

�
{

inf
m∈M

(inf
Θm

r) + dm

λ log
(

eλ
dm

)
− 1

λ log[μ(m)]
}

+ log
{∑

m∈M

exp
[
−dm log( λ

dm
)
]
μ(m)

}
.

where we have used the approximations

− log
{

π
[
exp(−λr)

]}
=
∫ λ

0

πexp(−βr)(r)dβ

�
∫ λ

0

(inf
Θm

r) +
[

dm

β ∧ 1
]
dβ � λ(inf

Θm

r) + dm

[
log
(

λ
dm

)
+ 1

]
,

and
∑

m h(m) exp[−h(m)]ν(m)∑
m exp[−h(m)]ν(m)

� inf
m

h(m)−log[ν(m)], ν ∈ M1
+(M), taking ν(m) =

μ(m) exp
[
−dm log

(
λ

dm

)]∑
m′ μ(m′) exp

[
−dm′ log

(
λ

dm′

)] .
These approximations have no pretension to be rigorous or very accurate, but

they nevertheless give the best order of magnitude we can expect in typical situa-
tions, and show that this order of magnitude is not what we are looking for: mixing
different models with the help of μ spoils the localization, introducing a multiplier
log
(

λ
dm

)
to the dimension dm which is precisely what we would have got if we had

not localized the bound at all. What we would really like to do in such situations is
to use a partially localized posterior distribution, such as πm̂

exp(−λr), where m̂ is an
estimator of the best sub-model to be used. While the most straightforward way to
do this is to use a union bound on results obtained for each sub-model Θm, here
we are going to show how to allow arbitrary posterior distributions on the index
set (corresponding to a randomization of the choice of m̂).

Let us consider the framework we just mentioned: let the measurable parameter
set (Θ,T) be a union of measurable sub-models, Θ =

⋃
m∈M Θm. Let the index set
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(M, M) be some measurable space (most of the time it will be a countable set). Let
μ ∈ M1

+(M) be a prior probability distribution on (M, M). Let π : M → M1
+(Θ) be

a regular conditional probability measure such that π(m, Θm) = 1, for any m ∈ M .
Let μπ ∈ M1

+(M ×Θ) be the product probability measure defined for any bounded
measurable function h : M × Θ → R by

μπ(h) =
∫

m∈M

(∫
θ∈Θ

h(m, θ)π(m, dθ)
)

μ(dm).

For any bounded measurable function h : Ω × M × Θ → R, let πexp(h) : Ω × M →
M1

+(Θ) be the regular conditional posterior probability measure defined by

dπexp(h)

dπ
(m, θ) =

exp
[
h(m, θ)

]
π
[
m, exp(h)

] ,
where consistently with previous notation π(m, h) =

∫
Θ

h(m, θ)π(m, dθ) (we will
also often use the less explicit notation π(h)). For short, let

U(θ, ω) = λΦ λ
N

[
R(θ)

]
− βΦ− β

N

[
R(θ)

]
− (λ − β)r(θ, ω).

Integrating with respect to μ equation (1.12, page 20), written in each sub-model
Θm using the prior distribution π(m, ·), we see that

P

{
exp

[
sup

ν∈M1
+(M)

sup
ρ:M→M1

+(Θ)

1
2

[
(νρ)(U) − ν

{
K(
[
ρ, πexp(−βr)

]}]
−K(ν, μ)

]}
≤ P

{
exp

[
sup

ν∈M1
+(M)

1
2
ν

(
sup

ρ:M→M1
+(Θ)

ρ(U) − K(ρ, πexp(−βr))
)
− K(ν, μ)

]}
= P

{
μ

[
exp

{
1
2 sup

ρ:M→M1
+(Θ)

[
ρ(U) − K

[
ρ, πexp(−βr)

]]}]}
= μ

{
P

[
exp

{
1
2 sup

ρ:M→M1
+(Θ)

[
ρ(U) − K

[
ρ, πexp(−βr)

]]}]}
≤ 1.

This proves that

(1.13) P

{
exp

[
1
2

sup
ν∈M1

+(M)

sup
ρ:M→M1

+(Θ)

νρ
[
λΦ λ

N
(R) − βΦ− β

N
(R)

]
− (λ − β)νρ(r) − 2K(ν, μ) − ν

{
K
[
ρ, πexp(−βr)

]}]}
≤ 1.

Introducing the optimal value of r on each sub-model r
(m) = ess infπ(m,·) r and
the empirical dimensions

de(m) = sup
ξ∈R+

ξ
[
πexp(−ξr)(m, r) − r
(m)

]
,

we can thus state

Theorem 1.3.10. For any positive real constants β < λ, with P probability at least
1− ε, for any posterior distribution ν : Ω → M1

+(M), for any conditional posterior
distribution ρ : Ω × M → M1

+(Θ),

νρ
[
λΦ λ

N
(R) − βΦ− β

N
(R)

]
≤ λΦ λ

N

[
νρ(R)

]
− βΦ− β

N

[
νρ(R)

]
≤ B1(ν, ρ),
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where B1(ν, ρ) = (λ − β)νρ(r) + 2K(ν, μ) + ν
{
K
[
ρ, πexp(−βr)

]}
− 2 log(ε)

= ν

[∫ λ

β

πexp(−αr)(r)dα

]
+ 2K(ν, μ) + ν

{
K
[
ρ, πexp(−λr)

]}
− 2 log(ε)

= −2 log
{

μ

[
exp

(
−1

2

∫ λ

β

πexp(−αr)(r)dα

)]}
+ 2K

[
ν, μ(π[exp(−λr)]

π[exp(−βr)]

)1/2

]
+ ν

{
K
[
ρ, πexp(−λr)

]}
− 2 log(ε),

and therefore B1(ν, ρ) ≤ ν
[
(λ − β)r
 + log

(
λ
β

)
de

]
+ 2K(ν, μ)

+ ν
{
K
[
ρ, πexp(−λr)

]}
− 2 log(ε),

as well as B1(ν, ρ) ≤ −2 log
{

μ

[
exp

(
− (λ−β)

2 r
 − 1
2 log

(
λ
β

)
de

)]}
+ 2K

[
ν, μ(

π[exp(−λr)]
π[exp(−βr)]

)1/2

]
+ ν

{
K
[
ρ, πexp(−λr)

]
− 2 log(ε).

Thus, for any real constants α and γ such that 0 ≤ γ < α < 1, with P probability
at least 1 − ε, for any posterior distribution ν : Ω → M1

+(M) and any conditional
posterior distribution ρ : Ω × M → M1

+(Θ), the bound

B2(ν, ρ) = − log
[
(1−α)(1+γ)

]
α−γ νρ(r) +

2K(ν,μ)+ν
{

K
[
ρ,π(1+γ)−Nr

]}
−2 log(ε)

N(α−γ)

=
1

N(α − γ)

{
2K

[
ν, μ(

π[(1−α)Nr ]
π[(1+γ)−Nr ]

)1/2

]
+ ν

{
K
[
ρ, π(1−α)Nr

]}}

− 2
N(α − γ)

log

{
μ

[
exp

[
−1

2

∫ −N log(1−α)

N log(1+γ)

πexp(−ξr)(·, r)dξ

]]}

− 2 log(ε)
N(α − γ)

satisfies

νρ(R) ≤ α − γ

2αγ

(√
1 +

4αγ

(α − γ)2
{

1 − exp
[
−(α − γ)B2(ν, ρ)

]}
− 1

)
≤ B2(ν, ρ).

If one is willing to bound the deviations with respect to Pνρ, it is enough to
remark that the equation preceding equation (1.13, page 24) can also be written as

P

{
μ

[{
πexp(−βr)

[
exp

{
λΦ λ

N
◦ R − βΦ− β

N
◦ R − (λ − β)r

}]}1/2
]}

≤ 1.

Thus for any posterior distributions ν : Ω → M1
+(M) and ρ : Ω × M → M1

+(Θ),

P

{
ν

[{
ρ
[
exp

{
λΦ λ

N
◦ R − βΦ− β

N
◦ R

− (λ − β)r − 2 log
(

dν
dμ

)
− log

(
dρ

dπexp(−βr)

)}]}1/2
]}

≤ 1.
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Using the concavity of the square root function to pull the integration with respect
to ρ out of the square root, we get

Pνρ

{
exp

[
1
2

{
λΦ λ

N
◦ R − βΦ− β

N
◦ R

− (λ − β)r − 2 log
(

dν
dπ

)
− log

(
dρ

dπexp(−βr)

)}]}
≤ 1.

This leads to

Theorem 1.3.11. For any positive real constants β < λ, for any posterior distri-
butions ν : Ω → M1

+(M) and ρ : Ω × M → M1
+(Θ), with Pνρ probability at least

1 − ε,

λΦ λ
N

[
R(m̂, θ̂ )

]
− βΦ− β

N

[
R(m̂, θ̂ )

]
≤ (λ − β)r(m̂, θ̂)

+ 2 log
[

dν
dμ (m̂ )

]
+ log

[
dρ

dπexp(−βr)
(m̂, θ̂ )

]
− 2 log(ε)

=
∫ λ

β

πexp(−αr)(r)dα

+ 2 log
[

dν
dμ (m̂)

]
+ log

[
dρ

dπexp(−λr)
(m̂, θ̂ )

]
− 2 log(ε)

= 2 log
{

μ

[
exp

(
−1

2

∫ λ

β

πexp(−αr)(r)dα

)]}

+ 2 log
[

dν
dμ(

π[exp(−λr)]
π[exp(−βr)]

)1/2
(m̂)

]
+ log

[
dρ

dπexp(−λr)
(m̂, θ̂ )

]
− 2 log(ε).

Another way to state the same inequality is to say that for any real constants α and
γ such that 0 ≤ γ < α < 1, with Pνρ probability at least 1 − ε,

R(m̂, θ̂)

≤ α − γ

2αγ

(√
1 +

4αγ

(α − γ)2
{

1 − exp
[
−(α − γ)B(m̂, θ̂)

]}
− 1

)
≤ B(m̂, θ̂),

where

B(m̂, θ̂) = −
log
[
(1 − α)(1 + γ)

]
α − γ

r(m̂, θ̂)

+
2 log

[
dν
dμ (m̂)

]
+ log

[
dρ

dπ(1+γ)−Nr
(m̂, θ̂)

]
− 2 log(ε)

N(α − γ)

=
2

N(α − γ)
log
[

dν

dμ(
π[(1−α)Nr ]

π[(1+γ)−Nr ]

)1/2
(m̂)

]

+
log
[

dρ
dπ(1−α)Nr

(m̂, θ̂)
]
− 2 log(ε)

N(α − γ)
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+
2

N(α − γ)
log
{

μ

[
exp

(
−1

2

∫ λ

β

πexp(−αr)(r)dα

)]}
.

Let us remark that in the case when ν = μ(
π[(1−α)Nr ]

π[(1+γ)−Nr ]

)1/2 and ρ = π(1−α)Nr , we

get as desired a bound that is adaptively local in all the Θm (at least when M is
countable and μ is atomic):

B(ν, ρ) ≤ − 2
N(α−γ) log

{
μ

{
exp

[
N
2 log

[
(1 + γ)(1 − α)

]
r


− log
(

− log(1−α)
log(1+γ)

)
de

2

]}}
− 2 log(ε)

N(α − γ)

≤ inf
m∈M

{
− log

[
(1−α)(1+γ)

]
α−γ r
(m)

+ log
(

− log(1−α)
log(1+γ)

)
de(m)

N(α−γ) − 2
log
[
εμ(m)

]
N(α−γ)

}
.

The penalization by the empirical dimension de(m) in each sub-model is as desired
linear in de(m). Non random partially local bounds could be obtained in a way that
is easy to imagine. We leave this investigation to the reader.

1.3.6. Two step localization. We have seen that the bound optimal choice of
the posterior distribution ν on the index set in Theorem 1.3.10 (page 24) is such
that

dν

dμ
(m) ∼

(
π
[
exp

(
−λr(m, ·)

)]
π
[
exp

(
−βr(m, ·)

)]) 1
2

= exp
[
−1

2

∫ λ

β

πexp(−αr)(m, r)dα

]
.

This suggests replacing the prior distribution μ with μ defined by its density

(1.14)
dμ

dμ
(m) =

exp
[
−h(m)

]
μ
[
exp(−h)

] ,

where h(m) = −ξ

∫ γ

β

πexp(−αΦ− η
N

◦R)

[
Φ− η

N
◦R(m, ·)

]
dα.

The use of Φ− η
N
◦R instead of R is motivated by technical reasons which will appear

in subsequent computations. Indeed, we will need to bound

ν

[∫ λ

β

πexp(−αΦ− η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
in order to handle K(ν, μ). In the spirit of equation (1.9, page 18), starting back
from Theorem 1.1.4 (page 4), applied in each sub-model Θm to the prior distribution
πexp(−γΦ− η

N
◦R) and integrated with respect to μ, we see that for any positive real

constants λ, γ and η, with P probability at least 1−ε, for any posterior distribution
ν : Ω → M1

+(M) on the index set and any conditional posterior distribution ρ :
Ω × M → M1

+(Θ),
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(1.15) νρ
(
λΦ λ

N
◦R − γΦ− η

N
◦R
)
≤ λνρ(r)

+ νK(ρ, π) + K(ν, μ) + ν
{

log
[
π
[
exp

(
−γΦ− η

N
◦R
)]]}

− log(ε).

Since x �→ f(x) def= λΦ λ
N
− γΦ− η

N
(x) is a convex function, it is such that

f(x) ≥ xf ′(0) = xN
{[

1 − exp(− λ
N )
]
+ γ

η

[
exp( η

N ) − 1
]}

.

Thus if we put

(1.16) γ =
η
[
1 − exp(− λ

N )
]

exp( η
N ) − 1

,

we obtain that f(x) ≥ 0, x ∈ R, and therefore that the left-hand side of equation
(1.15) is non-negative. We can moreover introduce the prior conditional distribution
π defined by

dπ

dπ
(m, θ) =

exp
[
−βΦ− η

N
◦ R(θ)

]
π
{
m, exp

[
−βΦ− η

N
◦ R

]} .

With P probability at least 1 − ε, for any posterior distributions ν : Ω → M1
+(M)

and ρ : Ω × M → M1
+(Θ),

βνρ(r) + ν
[
K(ρ, π)

]
= ν

{
K
[
ρ, πexp(−βr)

]}
− ν

[
log
{

π
[
exp(−βr)

]}]
≤ ν

{
K
[
ρ, πexp(−βr)

]}
+ βνπ(r) + ν

[
K(π, π)

]
≤ ν

{
K
[
ρ, πexp(−βr)

]}
+ βνπ

(
Φ− η

N
◦R
)

+ β
η

[
K(ν, μ) − log(ε)

]
+ ν

[
K(π, π)

]
= ν

{
K
[
ρ, πexp(−βr)

]}
− ν

{
log
[
π
[
exp

(
−βΦ− η

N
◦R
)]]}
+ β

η

[
K(ν, μ) − log(ε)

]
.

Thus, coming back to equation (1.15), we see that under condition (1.16), with P

probability at least 1 − ε,

0 ≤ (λ − β)νρ(r) + ν
{
K
[
ρ, πexp(−βr)

]}
− ν

[∫ γ

β

πexp(−αΦ− η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
+ (1 + β

η )
[
K(ν, μ) + log(2

ε )
]
.

Noticing moreover that

(λ − β)νρ(r) + ν
{
K
[
ρ, πexp(−βr)

]}
= ν

{
K
[
ρ, πexp(−λr)

]}
+ ν

[∫ λ

β

πexp(−αr)(r)dα

]
,

and choosing ρ = πexp(−λr), we have proved

Theorem 1.3.12. For any positive real constants β, γ and η, such that
γ < η

[
exp( η

N ) − 1
]−1, defining λ by condition (1.16), so that
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λ = −N log
{

1− γ
η

[
exp( η

N )−1
]}

, with P probability at least 1− ε, for any posterior

distribution ν : Ω → M1
+(M), any conditional posterior distribution ρ : Ω × M →

M1
+(Θ),

ν

[∫ γ

β

πexp(−αΦ− η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
≤ ν

[∫ λ

β

πexp(−αr)(r)dα

]
+
(
1 + β

η

)[
K(ν, μ) + log

(
2
ε

)]
.

Let us remark that this theorem does not require that β < γ, and thus provides
both an upper and a lower bound for the quantity of interest:

Corollary 1.3.13. For any positive real constants β, γ and η such that max{β,

γ} < η
[
exp( η

N )−1
]−1, with P probability at least 1−ε, for any posterior distributions

ν : Ω → M1
+(M) and ρ : Ω × M → M1

+(Θ),

ν

[∫ γ

−N log{1− β
N [exp( η

N )−1]}
πexp(−αr)(r)dα

]
−
(
1 + γ

η

)[
K(ν, μ) + log

(
3
ε

)]
≤ ν

[∫ γ

β

πexp(−αΦ− η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
≤ ν

[∫ −N log{1− γ
η [exp( η

N )−1]}

β

πexp(−αr)(r)dα

]
+
(
1 + β

η

)[
K(ν, μ) + log

(
3
ε

)]
.

We can then remember that

K(ν, μ) = ξ
(
ν − μ

)[∫ γ

β

πexp(−αΦ− η
N

◦R)

(
Φ− η

N
◦R
)
dα

]
+ K(ν, μ) − K(μ, μ),

to conclude that, putting

(1.17) Gη(α) = −N log
{
1 − α

η

[
exp

(
η
N ) − 1

]}
≥ α, α ∈ R+,

and

(1.18)
dν̂

dμ
(m) def=

exp
[
−h(m)

]
μ
[
exp(−h)

] where h(m) = ξ

∫ γ

Gη(β)

πexp(−αr)(m, r)dα,

the divergence of ν with respect to the local prior μ is bounded by[
1 − ξ

(
1 + β

η

)]
K(ν, μ)

≤ ξν

[∫ Gη(γ)

β

πexp(−αr)(r)dα

]
− ξμ

[∫ γ

Gη(β)

πexp(−αr)(r)dα

]
+ K(ν, μ) − K(μ, μ) + ξ

(
2 + β+γ

η

)
log
(

3
ε

)
≤ ξν

[∫ Gη(γ)

β

πexp(−αr)(r)dα

]
+ K(ν, μ)

+ log
{

μ

[
exp

(
−ξ

∫ γ

Gη(β)

πexp(−αr)(r)dα

)]}
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+ ξ
(
2 + β+γ

η

)
log
(

3
ε

)
= K(ν, ν̂) + ξν

[(∫ Gη(β)

β

+
∫ Gη(γ)

γ

)
πexp(−αr)(r)dα

]
+ ξ

(
2 + β+γ

η

)
log
(

3
ε

)
.

We have proved

Theorem 1.3.14. For any positive constants β, γ and η such that
max{β, γ} < η

[
exp( η

N ) − 1
]−1, with P probability at least 1 − ε, for any pos-

terior distribution ν : Ω → M1
+(M) and any conditional posterior distribution

ρ : Ω × M → M1
+(Θ),

K(ν, μ) ≤
[
1 − ξ

(
1 +

β

η

)]−1
{

K(ν, ν̂)

+ ξν

[(∫ Gη(β)

β

+
∫ Gη(γ)

γ

)
πexp(−αr)(r)dα

]
+ ξ

(
2 + β+γ

η

)
log
(

3
ε

)}
≤
[
1 − ξ

(
1 +

β

η

)]−1
{

K(ν, ν̂)

+ ξν

[[
Gη(γ) − γ + Gη(β) − β

]
r
 + log

(
Gη(β)Gη(γ)

βγ

)
de

]
+ ξ

(
2 + β+γ

η

)
log
(

3
ε

)}
,

where the local prior μ is defined by equation (1.14, page 27) and the local posterior
ν̂ and the function Gη are defined by equation (1.18, page 29).

We can then use this theorem to give a local version of Theorem 1.3.10 (page 24).
To get something pleasing to read, we can apply Theorem 1.3.14 with constants β′,
γ′ and η chosen so that 2ξ

1−ξ(1+ β′
η )

= 1, Gη(β′) = β and γ′ = λ, where β and λ are

the constants appearing in Theorem 1.3.10. This gives

Theorem 1.3.15. For any positive real constants β < λ and η such that λ <

η
[
exp( η

N ) − 1
]−1, with P probability at least 1 − ε, for any posterior distribution

ν : Ω → M1
+(M), for any conditional posterior distribution ρ : Ω × M → M1

+(Θ),

νρ
[
λΦ λ

N
(R) − βΦ− β

N
(R)

]
≤ λΦ λ

N

[
νρ(R)

]
− βΦ− β

N

[
νρ(R)

]
≤ B3(ν, ρ),

where B3(ν, ρ) = ν

[∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

]
+
(
3 + G−1

η (β)

η

)
K
[
ν, μ

exp
[
−
(
3+

G
−1
η (β)

η

)−1 ∫ λ

β
πexp(−αr)(r)dα

]]
+ ν

{
K(ρ, πexp(−λr)

]}
+
(
4 + G−1

η (β)+λ

η

)
log
(

4
ε

)
≤ ν

[[
Gη(λ) − G−1

η (β)
]
r
 + log

(
Gη(λ)

G−1
η (β)

)
de

]
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+
(
3 + G−1

η (β)

η

)
K
[
ν, μ

exp
[
−
(
3+

G
−1
η (β)

η

)−1 ∫ λ

β
πexp(−αr)(r)dα

]]
+ ν

{
K(ρ, πexp(−λr)

]}
+
(
4 + G−1

η (β)+λ

η

)
log
(

4
ε

)
,

and where the function Gη is defined by equation (1.17, page 29).

A first remark: if we had the stamina to use Cauchy Schwarz inequalities (or more
generally Hölder inequalities) on exponential moments instead of using weighted
union bounds on deviation inequalities, we could have replaced log(4

ε ) with − log(ε)
in the above inequalities.

We see that we have achieved the desired kind of localization of Theorem 1.3.10
(page 24), since the new empirical entropy term

K[ν, μ
exp[−ξ

∫ λ

β
πexp(−αr)(r)dα]

]

cancels for a value of the posterior distribution on the index set ν which is of the
same form as the one minimizing the bound B1(ν, ρ) of Theorem 1.3.10 (with a
decreased constant, as could be expected). In a typical parametric setting, we will
have ∫ λ

β

πexp(−αr)(r)dα � (λ − β)r
(m) + log
(

λ
β

)
de(m),

and therefore, if we choose for ν the Dirac mass at

m̂ ∈ arg minm∈M r
(m) +
log( λ

β )

λ−β de(m),
and ρ(m, ·) = πexp(−λr)(m, ·), we will get, in the case when the index set M is
countable,

B3(ν, ρ) � max

⎧⎨⎩[Gη(λ) − G−1
η (β)

]
, (λ − β)

log
[

Gη(λ)

G
−1
η (β)

]
log( λ

β )

⎫⎬⎭
×
[
r
(m̂) +

log( λ
β )

λ−β de(m̂)
]

+
(
3 + G−1

η (β)

η

)
log

{∑
m∈M

μ(m)
μ(m̂)

exp
[
−
(
3 + G−1

η (β)

η

)−1

×
{

(λ − β)
[
r
(m) − r
(m̂)

]
+ log

(
λ
β

)[
de(m) − de(m̂)

]}]}
+
(
4 + G−1

η (β)+λ

η

)
log
(

4
ε

)
.

This shows that the impact on the bound of the addition of supplementary models

depends on their penalized minimum empirical risk r
(m) +
log( λ

β )

λ−β de(m). More
precisely the adaptive and local complexity factor

log

{∑
m∈M

μ(m)
μ(m̂)

exp
[
−
(
3 + G−1

η (β)

η

)−1

×
{

(λ − β)
[
r
(m) − r
(m̂)

]
+ log

(
λ
β

)[
de(m) − de(m̂)

]}]}
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replaces in this bound the non local factor

K(ν, μ) = − log
[
μ(m̂)

]
= log

[ ∑
m∈M

μ(m)
μ(m̂)

]

which appears when applying Theorem 1.3.10 (page 24) to the Dirac mass ν = δ
m̂

.
Thus in the local bound, the influence of models decreases exponentially fast when
their penalized empirical risk increases.

One can deduce a result about the deviations with respect to the posterior νρ
from Theorem 1.3.15 (page 30) without much supplementary work: it is enough for
that purpose to remark that with P probability at least 1 − ε, for any posterior
distribution ν : Ω → M1

+(M),

ν

[
log
{

πexp(−λr)

[
exp

{
λΦ λ

N
(R) − βΦ− β

N
(R)

}]}]
− ν

(∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

)
−
(
3 + G−1

η (β)

η

)
K
[
ν, μ

exp

[
−
(
3+

G
−1
η (β)

η

)−1 ∫ λ

β
πexp(−αr)(r)dα

]]
−
(
4 + G−1

η (β)+λ

η

)
log
(

4
ε

)
≤ 0,

this inequality being obtained by taking a supremum in ρ in Theorem 1.3.15 (page
30). One can then take a supremum in ν, to get, still with P probability at least
1 − ε,

log

{
μ

exp

[
−
(
3+

G
−1
η (β)

η

)−1 ∫ λ

β
πexp(−αr)(r)dα

][
{

πexp(−λr)

[
exp

{
λΦ λ

N
(R) − βΦ− β

N
(R)

}]}(3+ G
−1
η (β)

η

)−1

× exp

(
−
(
3 + G−1

η (β)

η

)−1
∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

)]}

≤
4 + G−1

η (β)+λ

η

3 + G−1
η (β)

η

log
(

4
ε

)
.

Using the fact that x �→ xα is concave when α =
(
3 + G−1

η (β)

η

)−1
< 1, we get for

any posterior conditional distribution ρ : Ω × M → M1
+(Θ),

μ
exp

[
−
(
3+

G
−1
η (β)

η

)−1 ∫ λ

β
πexp(−αr)(r)dα

]ρ{

exp

[(
3 + G−1

η (β)

η

)−1
(

λΦ λ
N

(R) − βΦ− β
N

(R) −
∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

+ log
[

dρ

dπexp(−λr)
(m̂, θ̂ )

])]}
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≤ exp

(
4 + G−1

η (β)+λ

η

3 + G−1
η (β)

η

log
(

4
ε

))
.

We can thus state

Theorem 1.3.16. For any ε ∈)0, 1(, with P probability at least 1 − ε, for any
posterior distribution ν : Ω → M1

+(M) and conditional posterior distribution ρ :
Ω × M → M1

+(Θ), for any ξ ∈)0, 1(, with νρ probability at least 1 − ξ,

λΦ λ
N

(R) − βΦ− β
N

(R) ≤
∫ Gη(λ)

G−1
η (β)

πexp(−αr)(r)dα

+
(
3 + G−1

η (β)

η

)
log

⎡⎢⎢⎣ dν

dμ
exp

[
−
(
3+

G
−1
η (β)

η

)−1 ∫ λ

β
πexp(−αr)(r)dα

] (m̂)

⎤⎥⎥⎦
+ log

[
dρ

dπexp(−λr)
(m̂, θ̂ )

]
+
(
4 + G−1

η (β)+λ

η

)
log
(

4
ε

)
−
(
3 + G−1

η (β)

η

)
log(ξ).

Note that the given bound consequently holds with Pνρ probability at least
(1 − ε)(1 − ξ) ≥ 1 − ε − ξ.

1.4. Relative bounds

The behaviour of the minimum of the empirical process θ �→ r(θ) is known to
depend on the covariances between pairs

[
r(θ), r(θ′)

]
, θ, θ′ ∈ Θ. In this respect,

our previous study, based on the analysis of the variance of r(θ) (or technically
on some exponential moment playing quite the same role), loses some accuracy in
some circumstances (namely when infΘ R is not close enough to zero).

In this section, instead of bounding the expected risk ρ(R) of any posterior
distribution, we are going to upper bound the difference ρ(R) − infΘ R, and more
generally ρ(R) − R(θ̃), where θ̃ ∈ Θ is some fixed parameter value.

In the next section we will analyse ρ(R)− πexp(−βR)(R), allowing us to compare
the expected error rate of a posterior distribution ρ with the error rate of a Gibbs
prior distribution. We will also analyse ρ1(R) − ρ2(R), where ρ1 and ρ2 are two
arbitrary posterior distributions, using comparison with a Gibbs prior distribution
as a tool, and in particular as a tool to establish the required Kullback divergence
bounds.

Relative bounds do not provide the same kind of results as direct bounds on
the error rate: it is not possible to estimate ρ(R) with an order of precision higher
than (ρ(R)/N)1/2, so that relative bounds cannot of course achieve that, but they
provide a way to reach a faster rate for ρ(R) − infΘ R, that is for the relative
performance of the estimator within a restricted model.

The study of PAC-Bayesian relative bounds was initiated in the second and third
parts of J.-Y. Audibert’s dissertation (Audibert, 2004b).

In this section and the next, we will suggest a series of possible uses of relative
bounds. As usual, we will start with the simplest inequalities and proceed towards
more sophisticated techniques with better theoretical properties, but at the same
time less precise constants, so that which one is the more fitted will depend on the
size of the training sample.
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The first thing we will do is to compute for any posterior distribution ρ : Ω →
M1

+(Θ) a relative performance bound bearing on ρ(R)− infΘ R. We will also com-
pare the classification model indexed by Θ with a sub-model indexed by one of
its measurable subsets Θ1 ⊂ Θ. For this purpose we will form the difference
ρ(R) − R(θ̃), where θ̃ ∈ Θ1 is some possibly unobservable value of the parame-
ter in the sub-model defined by Θ1, typically chosen in arg minΘ1 R. If this is so
and ρ(R) − R(θ̃) = ρ(R) − infΘ1 R, a negative upper bound indicates that it is
definitely worth using a randomized estimator ρ supported by the larger parameter
set Θ instead of using only the classification model defined by the smaller set Θ1.

1.4.1. Basic inequalities. Relative bounds in this section are based on the
control of r(θ) − r(θ̃), where θ, θ̃ ∈ Θ. These differences are related to the random
variables

ψi(θ, θ̃) = σi(θ) − σi(θ̃) = 1
[
fθ(Xi) �= Yi

]
− 1

[
f

θ̃
(Xi) �= Yi

]
.

Some supplementary technical difficulties, as compared to the previous sections,
come from the fact that ψi(θ, θ̃) takes three values, whereas σi(θ) takes only two.
Let

(1.19) r′(θ, θ̃) = r(θ) − r(θ̃) =
1
N

N∑
i=1

ψi(θ, θ̃), θ, θ̃ ∈ Θ,

and R′(θ, θ̃) = R(θ)−R(θ̃) = P
[
r′(θ, θ̃)

]
. We have as usual from independence that

log
{

P

[
exp

[
−λr′(θ, θ̃)

]]}
=

N∑
i=1

log
{

P

[
exp

[
− λ

N ψi(θ, θ̃)
]]}

≤ N log
{

1
N

N∑
i=1

P

{
exp

[
− λ

N
ψi(θ, θ̃)

]}}
.

Let Ci be the distribution of ψi(θ, θ̃) under P and let C̄ = 1
N

∑N
i=1 Ci ∈ M1

+

(
{−1, 0,

1}
)
. With this notation

(1.20) log
{

P

[
exp

[
−λr′(θ, θ̃)

]]}
≤ N log

{∫
ψ∈{−1,0,1}

exp
(
− λ

N
ψ
)
C̄(dψ)

}
.

The right-hand side of this inequality is a function of C̄. On the other hand, C̄
being a probability measure on a three point set, is defined by two parameters, that
we may take equal to

∫
ψC̄(dψ) and

∫
ψ2C̄(dψ). To this purpose, let us introduce

M ′(θ, θ̃) =
∫

ψ2C̄(dψ) = C̄(+1) + C̄(−1) =
1
N

N∑
i=1

P
[
ψ2

i (θ, θ̃)
]
, θ, θ̃ ∈ Θ.

It is a pseudo distance (meaning that it is symmetric and satisfies the triangle
inequality), since it can also be written as

M ′(θ, θ̃) =
1
N

N∑
i=1

P

{∣∣∣1[fθ(Xi) �= Yi

]
− 1

[
f

θ̃
(Xi) �= Yi

]∣∣∣}, θ, θ̃ ∈ Θ.
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It is readily seen that

N log
{∫

exp
(
− λ

N
ψ

)
C̄(dψ)

}
= −λΨ λ

N

[
R′(θ, θ̃), M ′(θ, θ̃)

]
,

where

Ψa(p, m) = −a−1 log
[
(1 − m) +

m + p

2
exp(−a) +

m − p

2
exp(a)

]
= −a−1 log

{
1 − sinh(a)

[
p − m tanh(a

2 )
]}

.(1.21)

Thus plugging this equality into inequality (1.20, page 34) we get

Theorem 1.4.1. For any real parameter λ,

log
{

P

[
exp

[
−λr′(θ, θ̃)

]]}
≤ −λΨ λ

N

[
R′(θ, θ̃), M ′(θ, θ̃)

]
, θ, θ̃ ∈ Θ,

where r′ is defined by equation (1.19, page 34) and Ψ and M ′ are defined just above.

To make a link with previous work of Mammen and Tsybakov — see e.g. Mam-
men et al. (1999) and Tsybakov (2004) — we may consider the pseudo-distance
D on Θ defined by equation (1.3, page 7). This distance only depends on the dis-
tribution of the patterns. It is often used to formulate margin assumptions, in the
sense of Mammen and Tsybakov. Here we are going to work rather with M ′: as it
is dominated by D in the sense that M ′(θ, θ̃) ≤ D(θ, θ̃), θ, θ̃ ∈ Θ, with equality in
the important case of binary classification, hypotheses formulated on D induce hy-
potheses on M ′, and working with M ′ may only sharpen the results when compared
to working with D.

Using the same reasoning as in the previous section, we deduce

Theorem 1.4.2. For any real parameter λ, any θ̃ ∈ Θ, any prior distribution
π ∈ M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

λ
[
ρ
{
Ψ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]}
− ρ

[
r′(·, θ̃)

]]
− K(ρ, π)

]}
≤ 1.

We are now going to derive some other type of relative exponential inequal-
ity. In Theorem 1.4.2 we obtained an inequality comparing one observed quantity
ρ
[
r′(·, θ̃ )

]
with two unobserved ones, ρ

[
R′(·, θ̃ )

]
and ρ

[
M ′(·, θ̃ )

]
, — indeed, because

of the convexity of the function λΨ λ
N

,

λρ
{
Ψ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]}
≥ λΨ λ

N

{
ρ
[
R′(·, θ̃ )

]
, ρ
[
M ′(·, θ̃ )

]}
.

This may be inconvenient when looking for an empirical bound for ρ
[
R′(·, θ̃)

]
,

and we are going now to seek an inequality comparing ρ
[
R′(·, θ̃ )

]
with empirical

quantities only.
This is possible by considering the log-Laplace transform of some modified ran-

dom variable χi(θ, θ̃). We may consider more precisely the change of variable defined
by the equation

exp
(
− λ

N
χi

)
= 1 − λ

N
ψi,
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which is possible when λ
N ∈ )−1, 1( and leads to define

χi = −N

λ
log
(

1 − λ

N
ψi

)
.

We may then work on the log-Laplace transform

log

{
P

[
exp

{
− λ

N

N∑
i=1

χi(θ, θ̃)
}]}

= log

{
P

[
N∏

i=1

(
1 − λ

N
ψi(θ, θ̃)

)]}

= log

{
P

[
exp

{ N∑
i=1

log
[
1 − λ

N
ψi(θ, θ̃)

]}]}
.

We may now follow the same route as previously, writing

log

{
P

[
exp

{ N∑
i=1

log
[
1 − λ

N
ψi(θ, θ̃)

]}]}

=
N∑

i=1

log
[
1 − λ

N
P
[
ψi(θ, θ̃)

]]
≤ N log

[
1 − λ

N
R′(θ, θ̃ )

]
.

Let us also introduce the random pseudo distance

(1.22) m′(θ, θ̃) =
1
N

N∑
i=1

ψi(θ, θ̃)2

=
1
N

N∑
i=1

∣∣∣1[fθ(Xi) �= Yi

]
− 1

[
f

θ̃
(Xi) �= Yi

]∣∣∣, θ, θ̃ ∈ Θ.

This is the empirical counterpart of M ′, implying that P(m′) = M ′. Let us notice
that

1
N

N∑
i=1

log
[
1 − λ

N ψi(θ, θ̃)
]

=
log(1 − λ

N ) − log(1 + λ
N )

2
r′(θ, θ̃)

+
log(1 − λ

N ) + log(1 + λ
N )

2
m′(θ, θ̃)

=
1
2

log

(
1 − λ

N

1 + λ
N

)
r′
(
θ, θ̃

)
+

1
2

log
(
1 − λ2

N2

)
m′(θ, θ̃ ).

Let us put γ = N
2 log

(
1+ λ

N

1− λ
N

)
, so that

λ = N tanh
(

γ
N

)
and N

2 log
(
1 − λ2

N2

)
= −N log

[
cosh( γ

N )
]
.

With this notation, we can conveniently write the previous inequality as

P

{
exp

[
−N log

[
1 − tanh

(
γ
N

)
R′(θ, θ̃)

]
− γr′

(
θ, θ̃

)
− N log

[
cosh( γ

N )
]
m′(θ, θ̃ )]} ≤ 1.

Integrating with respect to a prior probability measure π ∈ M1
+(Θ), we obtain
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Theorem 1.4.3. For any real parameter γ, for any θ̃ ∈ Θ, for any prior probability
distribution π ∈ M1

+(Θ),

P

{
exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1 − tanh

(
γ
N

)
R′(·, θ̃ )

]}
− γρ

[
r′(·, θ̃ )

]
− N log

[
cosh( γ

N )
]
ρ
[
m′(·, θ̃ )

]
− K(ρ, π)

}]}
≤ 1.

1.4.2. Non random bounds. Let us first deduce a non-random bound from
Theorem 1.4.2 (page 35). This theorem can be conveniently taken advantage of by
throwing the non-linearity into a localized prior, considering the prior probability
measure μ defined by its density

dμ

dπ
(θ) =

exp
{
−λΨ λ

N

[
R′(θ, θ̃ ), M ′(θ, θ̃ )

]
+ βR′(θ, θ̃ )

}
π
{

exp
{
−λΨ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}} .

Indeed, for any posterior distribution ρ : Ω → M1
+(Θ),

K(ρ, μ) = K(ρ, π) + λρ
{

Ψ λ
N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]}
− βρ

[
R′(·, θ̃ )

]
+ log

{
π
[
exp

{
−λΨ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
.

Plugging this into Theorem 1.4.2 (page 35) and using the convexity of the exponen-
tial function, we see that for any posterior probability distribution ρ : Ω → M1

+(Θ),

βP
{
ρ
[
R′(·, θ̃ )

]}
≤ λP

{
ρ
[
r′(·, θ̃ )

]}
+ P

[
K(ρ, π)

]
+ log

{
π
[
exp

{
−λΨ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
.

We can then recall that

λρ
[
r′(·, θ̃ )

]
+ K(ρ, π) = K

[
ρ, πexp(−λr)

]
− log

{
π
[
exp

[
−λr′(·, θ̃ )

]]}
,

and notice moreover that

−P

{
log
{

π
[
exp

[
−λr′(·, θ̃ )

]]}}
≤ − log

{
π
[
exp

[
−λR′(·, θ̃ )

]]}
,

since R′ = P(r′) and h �→ log
{

π
[
exp(h)

]}
is a convex functional. Putting these two

remarks together, we obtain

Theorem 1.4.4. For any real positive parameter λ, for any prior distribution
π ∈ M1

+(Θ), for any posterior distribution ρ : Ω → M1
+(Θ),

P
{
ρ
[
R′(·, θ̃ )

]}
≤ 1

β
P
[
K(ρ, πexp(−λr))

]
+

1
β

log
{

π
[
exp

{
−λΨ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

]}]}
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− 1
β

log
{

π
[
exp

[
−λR′(·, θ̃ )

]]}
≤ 1

β
P
[
K(ρ, πexp(−λr))

]
+

1
β

log
{

π
[
exp

{
−
[
N sinh( λ

N ) − β
]
R′(·, θ̃ )

+ 2N sinh( λ
2N )2M ′(·, θ̃ )

}]}
− 1

β
log
{

π
[
exp

[
−λR′(·, θ̃ )

]]}
.

It may be interesting to derive some more suggestive (but slightly weaker) bound
in the important case when Θ1 = Θ and R(θ̃) = infΘ R. In this case, it is convenient
to introduce the expected margin function

(1.23) ϕ(x) = sup
θ∈Θ

M ′(θ, θ̃) − xR′(θ, θ̃), x ∈ R+.

We see that ϕ is convex and non-negative on R+. Using the bound M ′(θ, θ̃ ) ≤
xR′(θ, θ̃ ) + ϕ(x), we obtain

P
{
ρ
[
R′(·, θ̃ )

]}
≤ 1

β
P
[
K(ρ, πexp(−λr))

]
+

1
β

log
{

π

[
exp

{
−
{
N sinh( λ

N )
[
1 − x tanh( λ

2N )
]
− β

}
R′(·, θ̃ )

}]}
+

N sinh( λ
N ) tanh( λ

2N )
β

ϕ(x) − 1
β

log
{

π
[
exp

[
−λR′(·, θ̃ )

]]}
.

Let us make the change of variable γ = N sinh( λ
N )
[
1 − x tanh( λ

2N )
]
− β to obtain

Corollary 1.4.5. For any real positive parameters x, γ and λ such that x ≤
tanh( λ

2N )−1 and 0 ≤ γ < N sinh( λ
N )
[
1 − x tanh( λ

2N )
]
,

P
[
ρ(R)

]
− inf

Θ
R ≤

{
N sinh( λ

N )
[
1 − x tanh( λ

2N )
]
− γ

}−1

×
{∫ λ

γ

[
πexp(−αR)(R) − inf

Θ
R
]
dα

+ N sinh
(

λ
N

)
tanh

(
λ

2N

)
ϕ(x) + P

[
K(ρ, πexp(−λr))

]}
.

Let us remark that these results, although well suited to study Mammen and
Tsybakov’s margin assumptions, hold in the general case: introducing the convex
expected margin function ϕ is a substitute for making hypotheses about the relations
between R and D.

Using the fact that R′(θ, θ̃ ) ≥ 0, θ ∈ Θ and that ϕ(x) ≥ 0, x ∈ R+, we can
weaken and simplify the preceding corollary even more to get

Corollary 1.4.6. For any real parameters β, λ and x such that x ≥ 0 and 0 ≤
β < λ − x λ2

2N , for any posterior distribution ρ : Ω → M1
+(Θ),
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P
[
ρ(R)

]
≤ inf

Θ
R

+
[
λ − x λ2

2N − β
]−1

{∫ λ

β

[
πexp(−αR)(R) − inf

Θ
R
]
dα

+ P
{
K
[
ρ, πexp(−λr)

]}
+ ϕ(x)

λ2

2N

}
.

Let us apply this bound under the margin assumption first considered by Mam-
men and Tsybakov (Mammen et al., 1999; Tsybakov, 2004), which says that for
some real positive constant c and some real exponent κ ≥ 1,

(1.24) R′(θ, θ̃) ≥ cD(θ, θ̃)κ, θ ∈ Θ.

In the case when κ = 1, then ϕ(c−1) = 0, proving that

P
{
πexp(−λr)

[
R′(·, θ̃ )

]}
≤

∫ λ

β
πexp(−γR)

[
R′(·, θ̃ )

]
dγ

N sinh( λ
N )
[
1 − c−1 tanh( λ

2N )
]
− β

≤
∫ λ

β
πexp(−γR)

[
R′(·, θ̃ )

]
dγ

λ − λ2

2cN − β
.

Taking for example λ = cN
2 , β = λ

2 = cN
4 , we obtain

P
[
πexp(−2−1cNr)(R)

]
≤ inf R +

8
cN

∫ cN
2

cN
4

πexp(−γR)

[
R′(·, θ̃)

]
dγ

≤ inf R + 2πexp(− cN
4 R)

[
R′(·, θ̃ )

]
.

If moreover the behaviour of the prior distribution π is parametric, meaning that
πexp(−βR)

[
R′(·, θ̃ )

]
≤ d

β , for some positive real constant d linked with the dimension
of the classification model, then

P
[
πexp(− cN

2 r)(R)
]
≤ inf R +

8 log(2)d
cN

≤ inf R +
5.55 d

cN
.

In the case when κ > 1,

ϕ(x) ≤ (κ − 1)κ− κ
κ−1 (cx)−

1
κ−1 = (1 − κ−1)(κcx)−

1
κ−1 ,

thus P
{
πexp(−λr)

[
R′(·, θ̃ )

]}
≤
∫ λ

β
πexp(−γR)

[
R′(·, θ̃ )

]
dγ + (1 − κ−1)(κcx)−

1
κ−1 λ2

2N

λ − xλ2

2N − β
.

Taking for instance β = λ
2 , x = N

2λ , and putting b = (1 − κ−1)(cκ)−
1

κ−1 , we obtain

P
[
πexp(−λr)(R)

]
− inf R ≤ 4

λ

∫ λ

λ/2

πexp(−γR)

[
R′(·, θ̃ )

]
dγ + b

(
2λ

N

) κ
κ−1

.

In the parametric case when πexp(−γR)

[
R′(·, θ̃ )

]
≤ d

γ , we get

P
[
πexp(−λr)(R)

]
− inf R ≤ 4 log(2)d

λ
+ b

(
2λ

N

) κ
κ−1

.
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Taking

λ = 2−1
[
8 log(2)d

] κ−1
2κ−1 (κc)

1
2κ−1 N

κ
2κ−1 ,

we obtain

P
[
πexp(−λr)(R)

]
− inf R ≤ (2 − κ−1)(κc)−

1
2κ−1

(
8 log(2)d

N

) κ
2κ−1

.

We see that this formula coincides with the result for κ = 1. We can thus reduce
the two cases to a single one and state

Corollary 1.4.7. Let us assume that for some θ̃ ∈ Θ, some positive real constant
c, some real exponent κ ≥ 1 and for any θ ∈ Θ, R(θ) ≥ R(θ̃) + cD(θ, θ̃)κ. Let us
also assume that for some positive real constant d and any positive real parameter
γ, πexp(−γR)(R) − inf R ≤ d

γ . Then

P

[
π

exp
{
−2−1[8 log(2)d]

κ−1
2κ−1 (κc)

1
2κ−1 N

κ
2κ−1 r

}(R)
]

≤ inf R + (2 − κ−1)(κc)−
1

2κ−1

(
8 log(2)d

N

) κ
2κ−1

.

Let us remark that the exponent of N in this corollary is known to be the mini-
max exponent under these assumptions: it is unimprovable, whatever estimator is
used in place of the Gibbs posterior shown here (at least in the worst case com-
patible with the hypotheses). The interest of the corollary is to show not only the
minimax exponent in N , but also an explicit non-asymptotic bound with reason-
able and simple constants. It is also clear that we could have got slightly better
constants if we had kept the full strength of Theorem 1.4.4 (page 37) instead of
using the weaker Corollary 1.4.6 (page 38).

We will prove in the following empirical bounds showing how the constant λ can
be estimated from the data instead of being chosen according to some margin and
complexity assumptions.

1.4.3. Unbiased empirical bounds. We are going to define an empirical coun-
terpart for the expected margin function ϕ. It will appear in empirical bounds having
otherwise the same structure as the non-random bound we just proved. Anyhow,
we will not launch into trying to compare the behaviour of our proposed empiri-
cal margin function with the expected margin function, since the margin function
involves taking a supremum which is not straightforward to handle. When we will
touch the issue of building provably adaptive estimators, we will instead formulate
another type of bounds based on integrated quantities, rather than try to analyse
the properties of the empirical margin function.

Let us start as in the previous subsection with the inequality

βP

{
ρ
[
R′(·, θ̃ )

]}
≤ P

{
λρ
[
r′(·, θ̃ )

]
+ K(ρ, π)

}
+ log

{
π
[
exp

{
−λΨ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}]}
.

We have already defined by equation (1.22, page 36) the empirical pseudo-distance

m′(θ, θ̃ ) =
1
N

N∑
i=1

ψi(θ, θ̃ )2.
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Recalling that P
[
m′(θ, θ̃ )

]
= M ′(θ, θ̃ ), and using the convexity of h �→

log
{

π
[
exp(h)

]}
, leads to the following inequalities:

log
{

π
[
exp

{
−λΨ λ

N

[
R′(·, θ̃ ), M ′(·, θ̃ )

]
+ βR′(·, θ̃ )

}]}
≤ log

{
π
[
exp

{
−N sinh( λ

N )R′(·, θ̃ )

+ N sinh( λ
N ) tanh( λ

2N )M ′(·, θ̃ ) + βR′(·, θ̃ )
]}]}

≤ P

{
log
{

π
[
exp

{
−
[
N sinh( λ

N ) − β
]
r′(·, θ̃ )

+ N sinh( λ
N ) tanh( λ

2N )m′(·, θ̃ )
}]}}

.

We may moreover remark that

λρ
[
r′(·, θ̃ )

]
+ K(ρ, π) =

[
β − N sinh( λ

N ) + λ
]
ρ
[
r′(·, θ̃ )

]
+ K

[
ρ, πexp{−[N sinh( λ

N )−β]r}
]

− log
{

π
[
exp

{
−
[
N sinh( λ

N ) − β
]
r′(·, θ̃ )

}]}
.

This establishes

Theorem 1.4.8. For any positive real parameters β and λ, for any posterior dis-
tribution ρ : Ω → M1

+(Θ),

P
{
ρ
[
R′(·, θ̃ )

]}
≤ P

{[
1 −

N sinh( λ
N ) − λ

β

]
ρ
[
r′(·, θ̃ )

]
+

K
[
ρ, πexp{−[N sinh( λ

N )−β]r}
]

β

+ β−1 log
{

πexp{−[N sinh( λ
N )−β]r}

[
exp

[
N sinh( λ

N ) tanh( λ
2N )m′(·, θ̃ )

]]}}
.

Taking β = N
2 sinh( λ

N ), using the fact that sinh(a) ≥ a, a ≥ 0 and expressing
tanh(a

2 ) = a−1
[√

1 + sinh(a)2−1
]
and a = log

[√
1 + sinh(a)2+sinh(a)

]
, we deduce

Corollary 1.4.9. For any positive real constant β and any posterior distribution
ρ : Ω → M1

+(Θ),

P
{
ρ
[
R′(·, θ̃ )

]}
≤ P

{[
N
β log

(√
1 + 4β2

N2 + 2β
N

)
− 1

]
︸ ︷︷ ︸

≤1

ρ
[
r′(·, θ̃ )

]

+
1
β

{
K
[
ρ, πexp(−βr)

]
+ log

[
πexp(−βr)

{
exp

[
N
(√

1 + 4β2

N2 − 1
)
m′(·, θ̃ )

]}]}}
.
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This theorem and its corollary are really analogous to Theorem 1.4.4 (page 37),
and it could easily be proved that under Mammen and Tsybakov margin assump-
tions we obtain an upper bound of the same order as Corollary 1.4.7 (page 40).
Anyhow, in order to obtain an empirical bound, we are now going to take a supre-
mum over all possible values of θ̃, that is over Θ1. Although we believe that taking
this supremum will not spoil the bound in cases when over-fitting remains un-
der control, we will not try to investigate precisely if and when this is actually
true, and provide our empirical bound as such. Let us say only that on qualitative
grounds, the values of the margin function quantify the steepness of the contrast
function R or its empirical counterpart r, and that the definition of the empirical
margin function is obtained by substituting P, the true sample distribution, with
P =

(
1
N

∑N
i=1 δ(Xi,Yi)

)⊗N , the empirical sample distribution, in the definition of
the expected margin function. Therefore, on qualitative grounds, it seems hopeless
to presume that R is steep when r is not, or in other words that a classification
model that would be inefficient at estimating a bootstrapped sample according to
our non-random bound would be by some miracle efficient at estimating the true
sample distribution according to the same bound. To this extent, we feel that our
empirical bounds bring a satisfactory counterpart of our non-random bounds. Any-
how, we will also produce estimators which can be proved to be adaptive using
PAC-Bayesian tools in the next section, at the price of a more sophisticated con-
struction involving comparisons between a posterior distribution and a Gibbs prior
distribution or between two posterior distributions.

Let us now restrict discussion to the important case when θ̃ ∈ arg minΘ1 R.
To obtain an observable bound, let θ̂ ∈ arg minθ∈Θ r(θ) and let us introduce the
empirical margin functions

ϕ(x) = sup
θ∈Θ

m′(θ, θ̂) − x
[
r(θ) − r(θ̂)

]
, x ∈ R+,

ϕ̃(x) = sup
θ∈Θ1

m′(θ, θ̂) − x
[
r(θ) − r(θ̂)

]
, x ∈ R+.

Using the fact that m′(θ, θ̃) ≤ m′(θ, θ̂) + m′(θ̂, θ̃), we get

Corollary 1.4.10. For any positive real parameters β and λ, for any posterior
distribution ρ : Ω → M1

+(Θ),

P
[
ρ(R)

]
− inf

Θ1
R ≤ P

{[
1 − N sinh( λ

N )−λ

β

][
ρ(r) − r(θ̂)

]
+

K
[
ρ, πexp{−[N sinh( λ

N )−β]r}
]

β

+ β−1 log
{

πexp{−[N sinh( λ
N )−β]r}

[
exp

[
N sinh

(
λ
N

)
tanh

(
λ

2N

)
m′(·, θ̂)

]]}
+ β−1N sinh( λ

N ) tanh( λ
2N )ϕ̃

[
β

N sinh( λ
N ) tanh( λ

2N )

(
1 −

N sinh( λ
N ) − λ

β

)]}
.

Taking β = N
2 sinh( λ

N ), we also obtain

P
[
ρ(R)

]
− inf

Θ1
R ≤ P

{[
N
β log

(√
1 + 4β2

N2 + 2β
N

)
− 1

]
︸ ︷︷ ︸

≤1

[
ρ(r) − r(θ̂)

]
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+
1
β

{
K
[
ρ, πexp(−βr)

]
+ log

[
πexp(−βr)

{
exp

[
N
(√

1 + 4β2

N2 − 1
)
m′(·, θ̂)

]}]}

+
N

β

(√
1 + 4β2

N2 − 1
)
ϕ̃

[
log
(√

1 + 4β2

N2 + 2β
N

)
− β

N(√
1 + 4β2

N2 − 1
) ]}

.

Note that we could also use the upper bound m′(θ, θ̂) ≤ x
[
r(θ) − r(θ̂)

]
+ ϕ(x)

and put α = N sinh( λ
N )
[
1 − x tanh( λ

2N )
]
− β, to obtain

Corollary 1.4.11. For any non-negative real parameters x, α and λ, such that
α < N sinh( λ

N )
[
1 − x tanh( λ

2N )
]
, for any posterior distribution ρ : Ω → M1

+(Θ),

P
[
ρ(R)

]
− inf

Θ1
R

≤ P

{[
1 −

N sinh( λ
N )
[
1 − x tanh( λ

2N )
]
− λ

N sinh( λ
N )
[
1 − x tanh( λ

2N )
]
− α

][
ρ(r) − r(θ̂)

]
+

K
[
ρ, πexp(−αr)

]
N sinh( λ

N )
[
1 − x tanh( λ

2N )
]
− α

+
N sinh( λ

N ) tanh( λ
2N )

N sinh( λ
N )
[
1 − x tanh( λ

2N )
]
− α

×
[
ϕ(x) + ϕ̃

(
λ − α

N sinh( λ
N ) tanh( λ

2N )

)]}
.

Let us notice that in the case when Θ1 = Θ, the upper bound provided by this
corollary has the same general form as the upper bound provided by Corollary 1.4.5
(page 38), with the sample distribution P replaced with the empirical distribution
of the sample P =

(
1
N

∑N
i=1 δ(Xi,Yi)

)⊗N . Therefore, our empirical bound can be of
a larger order of magnitude than our non-random bound only in the case when our
non-random bound applied to the bootstrapped sample distribution P would be of
a larger order of magnitude than when applied to the true sample distribution P. In
other words, we can say that our empirical bound is close to our non-random bound
in every situation where the bootstrapped sample distribution P is not harder to
bound than the true sample distribution P. Although this does not prove that our
empirical bound is always of the same order as our non-random bound, this is a good
qualitative hint that this will be the case in most practical situations of interest,
since in situations of “under-fitting”, if they exist, it is likely that the choice of the
classification model is inappropriate to the data and should be modified.

Another reassuring remark is that the empirical margin functions ϕ and ϕ̃ behave
well in the case when infΘ r = 0. Indeed in this case m′(θ, θ̂) = r′(θ, θ̂) = r(θ),
θ ∈ Θ, and thus ϕ(1) = ϕ̃(1) = 0, and

ϕ̃(x) ≤ −(x − 1) infΘ1 r, x ≥ 1.
This shows that in this case we recover the same accuracy as with non-relative local
empirical bounds. Thus the bound of Corollary 1.4.11 does not collapse in presence
of massive over-fitting in the larger model, causing r(θ̂) = 0, which is another hint
that this may be an accurate bound in many situations.
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1.4.4. Relative empirical deviation bounds. It is natural to make use of
Theorem 1.4.3 (page 37) to obtain empirical deviation bounds, since this theorem
provides an empirical variance term.

Theorem 1.4.3 is written in a way which exploits the fact that ψi takes only the
three values −1, 0 and +1. However, it will be more convenient for the following
computations to use it in its more general form, which only makes use of the fact
that ψi ∈ (−1, 1). With notation to be explained hereafter, it can indeed also be
written as

(1.25) P

{
exp

[
sup

ρ∈M1
+(Θ)

{
−Nρ

{
log
[
1 − λP (ψ)

]}
+ Nρ

{
P
[
log(1 − λψ)

]}
− K(ρ, π)

}]}
≤ 1.

We have used the following notation in this inequality. We have put

P =
1
N

N∑
i=1

δ(Xi,Yi),

so that P is our notation for the empirical distribution of the process
(Xi, Yi)N

i=1. Moreover we have also used

P = P(P ) =
1
N

N∑
i=1

Pi,

where it should be remembered that the joint distribution of the process (Xi, Yi)N
i=1

is P =
⊗N

i=1 Pi. We have considered ψ(θ, θ̃) as a function defined on X × Y as
ψ(θ, θ̃)(x, y) = 1

[
y �= fθ(x)

]
− 1

[
y �= f

θ̃
(x)
]
, (x, y) ∈ X × Y so that it should be

understood that

P (ψ) =
1
N

N∑
i=1

P
[
ψi(θ, θ̃)

]
=

1
N

N∑
i=1

P

{
1
[
Yi �= fθ(Xi)

]
− 1

[
Yi �= f

θ̃
(Xi)

]}
= R′(θ, θ̃).

In the same way

P
[
log(1 − λψ)

]
=

1
N

N∑
i=1

log
[
1 − λψi(θ, θ̃)

]
.

Moreover integration with respect to ρ bears on the index θ, so that

ρ
{

log
[
1 − λP (ψ)

]}
=
∫

θ∈Θ

log
{

1 − λ

N

N∑
i=1

P
[
ψi(θ, θ̃)

]}
ρ(dθ),

ρ
{

P
[
log(1 − λψ)

]}
=
∫

θ∈Θ

{
1
N

N∑
i=1

log
[
1 − λψi(θ, θ̃)

]}
ρ(dθ).
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We have chosen concise notation, as we did throughout these notes, in order to
make the computations easier to follow.

To get an alternate version of empirical relative deviation bounds, we need to find
some convenient way to localize the choice of the prior distribution π in equation
(1.25, page 44). Here we propose replacing π with μ = πexp{−N log[1+βP (ψ)]}, which
can also be written π

exp{−N log[1+βR′(·,θ̃)]}. Indeed we see that

K(ρ, μ) = Nρ
{

log
[
1 + βP (ψ)

]}
+ K(ρ, π)

+ log
{

π
[
exp

{
−N log

[
1 + βP (ψ)

]}]}
.

Moreover, we deduce from our deviation inequality applied to −ψ, that (as long as
β > −1),

P

{
exp

[
Nμ

{
P
[
log(1 + βψ)

]}
− Nμ

{
log
[
1 + βP (ψ)

]}]}
≤ 1.

Thus

P

{
exp

[
log
{

π
[
exp

{
−N log

[
1 + βP (ψ)

]}]}
− log

{
π
[
exp

{
−NP

[
log(1 + βψ)

]}]}]}
≤ P

{
exp

[
−Nμ

{
log
[
1 + βP (ψ)

]}
− K(μ, π)

+ Nμ
{

P
[
log(1 + βψ)

]}
+ K(μ, π)

]}
≤ 1.

This can be used to handle K(ρ, μ), making use of the Cauchy–Schwarz inequality
as follows

P

{
exp

[
1
2

[
−N log

{(
1 − λρ

[
P (ψ)

])(
1 + βρ

[
P (ψ)

])}
+Nρ

{
P
[
log(1 − λψ)

]}
− K(ρ, π) − log

{
π
[
exp

{
−NP

[
log(1 + βψ)

]}]}]]}

≤ P

{
exp

[
−N log

{(
1 − λρ

[
P (ψ)

])}

+ Nρ
{

P
[
log(1 − λψ)

]}
− K(ρ, μ)

]}1/2

× P

{
exp

[
log
{

π
[
exp

{
−N log

[
1 + βP (ψ)

]}]}

− log
{

π
[
exp

{
−NP

[
log(1 + βψ)

]}]}]}1/2

≤ 1.
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This implies that with P probability at least 1 − ε,

− N log
{(

1 − λρ
[
P (ψ)

])(
1 + βρ

[
P (ψ)

])}
≤ −Nρ

{
P
[
log(1 − λψ)

]}
+ K(ρ, π) + log

{
π
[
exp

{
−NP

[
log(1 + βψ)

]}]}
− 2 log(ε).

It is now convenient to remember that

P
[
log(1 − λψ)

]
=

1
2

log
(

1 − λ

1 + λ

)
r′(θ, θ̃) +

1
2

log(1 − λ2)m′(θ, θ̃).

We thus can write the previous inequality as

− N log
{(

1 − λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

])}
≤ N

2
log
(

1 + λ

1 − λ

)
ρ
[
r′(·, θ̃)

]
− N

2
log(1 − λ2)ρ

[
m′(·, θ̃)

]
+ K(ρ, π)

+ log
{

π

[
exp

{
− N

2
log
(1 + β

1 − β

)
r′(·, θ̃)

− N

2
log(1 − β2)m′(·, θ̃)

}]}
− 2 log(ε).

Let us assume now that θ̃ ∈ arg minΘ1 R. Let us introduce θ̂ ∈ arg minΘ r. Decom-
posing r′(θ, θ̃) = r′(θ, θ̂) + r′(θ̂, θ̃) and considering that

m′(θ, θ̃) ≤ m′(θ, θ̂) + m′(θ̂, θ̃),
we see that with P probability at least 1− ε, for any posterior distribution ρ : Ω →
M1

+(Θ),

− N log
{(

1 − λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

)}
≤ N

2
log
(

1 + λ

1 − λ

)
ρ
[
r′(·, θ̂)

]
− N

2
log(1 − λ2)ρ

[
m′(·, θ̂)

]
+ K(ρ, π)

+ log
{

π

[
exp

{
−N

2 log
(

1+β
1−β

)[
r′(·, θ̂ )

]
− N

2 log(1 − β2)m′(·, θ̂ )
}]}

+ N
2 log

[
(1+λ)(1−β)
(1−λ)(1+β)

][
r(θ̂ ) − r(θ̃)

]
− N

2 log
[
(1 − λ2)(1 − β2)

]
m′(θ̂ , θ̃) − 2 log(ε).

Let us now define for simplicity the posterior ν : Ω → M1
+(Θ) by the identity

dν

dπ
(θ) =

exp
{
−N

2 log
(

1+λ
1−λ

)
r′(θ, θ̂) + N

2 log(1 − λ2)m′(θ, θ̂)
}

π

[
exp

{
−N

2 log
(

1+λ
1−λ

)
r′(·, θ̂) + N

2 log(1 − λ2)m′(·, θ̂)
}] .

Let us also introduce the random bound

B =
1
N

log
{

ν

[
exp

[
N
2 log

[
(1+λ)(1−β)
(1−λ)(1+β)

]
r′(·, θ̂)
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− N
2 log

[
(1 − λ2)(1 − β2)

]
m′(·, θ̂ )

]]}
+ sup

θ∈Θ1

1
2

log
[

(1−λ)(1+β)
(1+λ)(1−β)

]
r′(θ, θ̂ )

− 1
2

log
[
(1 − λ2)(1 − β2)

]
m′(θ, θ̂ ) − 2

N
log(ε).

Theorem 1.4.12. Using the above notation, for any real constants 0 ≤ β < λ < 1,
for any prior distribution π ∈ M1

+(Θ), for any subset Θ1 ⊂ Θ, with P probability at
least 1 − ε, for any posterior distribution ρ : Ω → M1

+(Θ),

− log
{(

1 − λ
[
ρ(R) − inf

Θ1
R
])(

1 + β
[
ρ(R) − inf

Θ1
R
])}

≤ K(ρ, ν)
N

+ B.

Therefore,

ρ(R) − inf
Θ1

R

≤ λ − β

2λβ

(√
1 + 4

λβ

(λ − β)2

[
1 − exp

(
−B − K(ρ, ν)

N

)]
− 1

)

≤ 1
λ − β

(
B +

K(ρ, ν)
N

)
.

Let us define the posterior ν̂ by the identity

dν̂

dπ
(θ) =

exp
[
−N

2 log
(

1+β
1−β

)
r′(θ, θ̂) − N

2 log(1 − β2)m′(θ, θ̂)
]

π
{

exp
[
−N

2 log
(

1+β
1−β

)
r′(·, θ̂) − N

2 log(1 − β2)m′(·, θ̂)
]} .

It is useful to remark that

1
N

log
{

ν

[
exp

[N
2

log
( (1 + λ)(1 − β)

(1 − λ)(1 + β)

)
r′(·, θ̂)

− N

2
log
[
(1 − λ2)(1 − β2)

]
m′(·, θ̂)

]]}

≤ ν̂

{
1
2

log
( (1 + λ)(1 − β)

(1 − λ)(1 + β)

)
r′(·, θ̂)

− 1
2

log
[
(1 − λ2)(1 − β2)

]
m′(·, θ̂)

}
.

This inequality is a special case of

log
{

π
[
exp(g)

]}
− log

{
π
[
exp(h)

]}
=
∫ 1

α=0

πexp[h+α(g−h)](g − h)dα ≤ πexp(g)(g − h),

which is a consequence of the convexity of α �→ log
{

π
[
exp

[
h + α(g − h)

]]}
.
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Let us introduce as previously ϕ(x) = supθ∈Θ m′(θ, θ̂) − x r′(θ, θ̂), x ∈ R+. Let
us moreover consider ϕ̃(x) = supθ∈Θ1

m′(θ, θ̂)− x r′(θ, θ̂), x ∈ R+. These functions
can be used to produce a result which is slightly weaker, but maybe easier to read
and understand. Indeed, we see that, for any x ∈ R+, with P probability at least
1 − ε, for any posterior distribution ρ,

− N log
{(

1 − λρ
[
R′(·, θ̃)

])(
1 + βρ

[
R′(·, θ̃)

])}
≤ N

2
log
[

(1 + λ)
(1 − λ)(1 − λ2)x

]
ρ
[
r′(·, θ̂)

]
− N

2
log
[
(1 − λ2)(1 − β2)

]
ϕ(x) + K(ρ, π)

+ log
{

π

[
exp

{
−N

2 log
[

(1+β)
(1−β)(1−β2)x

]
r′(·, θ̂)

}]}

− N

2
log
[
(1 − λ2)(1 − β2)

]
ϕ̃

⎛⎝ log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log [(1 − λ2)(1 − β2)]

⎞⎠
− 2 log(ε)

=
∫ N

2 log
[

(1+λ)
(1−λ)(1−λ2)x

]
N
2 log

[
(1+β)

(1−β)(1−β2)x

] πexp(−αr)

[
r′(·, θ̂)

]
dα

+ K(ρ, π
exp{−N

2 log[
(1+λ)

(1−λ)(1−λ2)x ]r}) − 2 log(ε)

− N

2
log
[
(1 − λ2)(1 − β2)

] ⎡⎣ϕ(x) + ϕ̃

⎛⎝ log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log[(1 − λ2)(1 − β2)]

⎞⎠⎤⎦ .

Theorem 1.4.13. With the previous notation, for any real constants 0 ≤ β < λ <
1, for any positive real constant x, for any prior probability distribution π ∈ M1

+(Θ),
for any subset Θ1 ⊂ Θ, with P probability at least 1−ε, for any posterior distribution
ρ : Ω → M1

+(Θ), putting

B(ρ) =
1

N(λ − β)

∫ N
2 log

[
(1+λ)

(1−λ)(1−λ2)x

]
N
2 log

[
(1+β)

(1−β)(1−β2)x

] πexp(−αr)

[
r′(·, θ̂)

]
dα

+
K(ρ, π

exp{−N
2 log[

(1+λ)
(1−λ)(1−λ2)x ]r}) − 2 log(ε)

N(λ − β)

− 1
2(λ − β)

log
[
(1 − λ2)(1 − β2)

] ⎡⎣ϕ(x) + ϕ̃

⎛⎝ log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log[(1 − λ2)(1 − β2)]

⎞⎠⎤⎦
≤ 1

N(λ − β)
de log

⎛⎝ log
[

(1+λ)
(1−λ)(1−λ2)x

]
log
(

(1+β)
(1−β)(1−β2)x

)
⎞⎠

+
K(ρ, π

exp{−N
2 log[

(1+λ)
(1−λ)(1−λ2)x ]r}) − 2 log(ε)

N(λ − β)
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− 1
2(λ − β)

log
[
(1 − λ2)(1 − β2)

] ⎡⎣ϕ(x) + ϕ̃

⎛⎝ log
[

(1+λ)(1−β)
(1−λ)(1+β)

]
− log[(1 − λ2)(1 − β2)]

⎞⎠⎤⎦ ,

the following bounds hold true:

ρ(R) − inf
Θ1

R

≤ λ − β

2λβ

(√
1 +

4λβ

(λ − β)2
{

1 − exp
[
−(λ − β)B(ρ)

]}
− 1

)
≤ B(ρ).

Let us remark that this alternative way of handling relative deviation bounds
made it possible to carry on with non-linear bounds up to the final result. For
instance, if λ = 0.5, β = 0.2 and B(ρ) = 0.1, the non-linear bound gives ρ(R) −
infΘ1 R ≤ 0.096.
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