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A note on Talagrand’s convex hull

concentration inequality

David Pollard1

Yale University

Abstract: The paper reexamines an argument by Talagrand that leads to a
remarkable exponential tail bound for the concentration of probability near a
set. The main novelty is the replacement of a mysterious calculus inequality
by an application of Jensen’s inequality.

1. Introduction

Let X be a set equipped with a sigma-field A. For each vector w = (w1, . . . , wn)
in Rn

+, the weighted Hamming distance between two vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn), in Xn is defined as

dw(x, y) :=
∑

i≤n
wihi(x, y) where hi(x, y) =

{
1 if xi �= yi

0 otherwise.

For a subset A of Xn and x ∈ Xn, the distances dw(x, A) and D(x, A) are defined
by

dw(x) := inf{y ∈ A : dw(x, y)} and D(x, A) := supw∈W dw(X, A),

where the supremum is taken over all weights in the set

W :=

{
(w1, . . . , wn) : wi ≥ 0 for each i and |w|2 :=

∑
i≤n

w2
i ≤ 1

}
.

Talagrand ([10], Section 4.1) proved a remarkable concentration inequality for
random elements X = (X1, . . . , Xn) of Xn with independent coordinates and sub-
sets A ∈ An:

(1) P{X ∈ A}P{D(X, A) ≥ t} ≤ exp(−t2/4) for all t ≥ 0.

As Talagrand showed, this inequality has many applications to problems in combi-
natorial optimization and other areas. See [12], Chapter 6 of [7] and Section 4 of
[6], for further examples.

There has been a strong push in the literature to establish concentration and
deviation inequalities by “more intuitive” methods, such as those based on the
tensorization, as in [1, 3–5]. I suspect the search for alternative approaches has
been driven by the miraculous roles played by some elementary inequalities in
Talagrand’s proofs.
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Talagrand [10] used an induction on n to establish his result. He invoked a slightly
mysterious inequality in the inductive step,

inf
0≤θ≤1

u−θ exp
(

(1 − θ)2

4

)
≤ 2 − u for 0 < u < 1,

which he borrowed from [2] – see Talagrand’s discussion following his Lemma 4.1.3
for an explanation of how those authors generalized the earlier result from [8]. There
is similar mystery in Talagrand’s Lemma 4.2.1, which (in my notation) asserts that

sup
0≤θ≤1

u−θ/c exp
(
ψc(1 − θ)

)
≤ 1 + c − u

c
for 0 < u < 1,

where ψc is defined in equation (6) below. (My ψc(u) equals Talagrand’s ξ(α, u)
with α = 1/c.) Talagrand [9] had used this inequality to further generalize the
result of [2], giving the concentration inequality listed as Theorem 4.2.4 in [10]. It
was my attempts to understand how he arrived at his ξ(α, u) function that led me
to the concavity argument that I present in the note.

It is my purpose to modify Talagrand’s proof so that the inductive step becomes
a simple application of the Hölder inequality (essentially as in the original proof)
and the Jensen inequality. Most of my methods are minor variations on the methods
in the papers just cited; my only claim of originality is for the recognition that the
mysterious inequalities can be replaced by more familiar appeals to concavity. See
also the Remarks at the end of this Section.

The distance D(x, A) has another representation, as a minimization over a convex
subset of [0, 1]. Write h(x, y) for the point of {0, 1}n with ith coordinate hi(x, y). For
each fixed x, the function h(x, ·) maps A onto a subset h(x, A) := {h(x, y) : y ∈ A}
of {0, 1}n. The convex hull, co (h(x, A)), of h(x, A) in [0, 1]n is compact, and

D(x, A) = inf{|ξ| : ξ ∈ co (h(x, A))}.

Each point ξ of co (h(x, A)) can be written as
∫

h(x, y) ν(dy) for a ν in the set P(A)
of all probability measures for which ν(A) = 1. That is, ξi = ν{y ∈ A : yi �= xi}.
Thus

(2) D(x, A)2 = inf
ν∈P(A)

∑
i≤n

(
ν{y ∈ A : yi �= xi}

)2
.

Talagrand actually proved inequality (1) by showing that

(3) P{X ∈ A}P exp
(

1
4D(X, A)2

)
≤ 1.

He also established an even stronger result, in which the D(X, A)2/4 in (3) is
replaced by a more complicated distance function.

For each convex, increasing function ψ with ψ(0) = 0 = ψ′(0) define

(4) Fψ(x, A) := inf
ν∈P(A)

∑
i≤n

ψ
(
ν{y ∈ A : yi �= xi}

)
,

For each c > 0 ([10], Section 4.2) showed that

(5) (P{X ∈ A})cP exp
(
Fψc(X, A)

)
≤ 1,
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where

ψc(θ) := c−1

(
(1 − θ) log(1 − θ) − (1 − θ + c) log

(
(1 − θ) + c

1 + c

))

=
∑

k≥2

θk

k

(
Rc + R2

c + · · · + Rk−1
c

(k − 1)

)
with Rc :=

1
c + 1

.(6)

≥ θ2

2 + 2c
.

As you will see in Section 3, this strange function is actually the largest solution to
a differential inequality,

ψ′′(1 − θ) ≤ 1/(θ2 + θc) for 0 < θ < 1.

Inequality (5) improves on (3) because D(x, A)2/4 ≤ Fψ1(x, A).
Following the lead of [10], Section 4.4, we can ask for general conditions on the

convex ψ under which an analog of (5) holds with some other decreasing function
of P{X ∈ A} as an upper bound. The following slight modification of Talagrand’s
theorems gives a sufficient condition in a form that serves to emphasize the role
played by Jensen’s inequlity.

Theorem 1. Suppose γ is a decreasing function with γ(0) = ∞ and ψ is a convex
function. Define Gψ(η, θ) := ψ(1 − θ) + θη and Gψ(η) := inf0≤θ≤1 Gψ(η, θ) for
η ∈ R+. Suppose

(i) r �→ exp(Gψ(γ(r) − γ(r0))) is concave on [0, r0], for each r0 ≤ 1
(ii) (1 − p)eψ(1) + p ≤ eγ(p) for 0 ≤ p ≤ 1.

Then P exp(Fψ(X, A)) ≤ exp(γ(P{X ∈ A})) for every A ∈ An and every random
element X of Xn with independent components.

The next lemma, a more general version of which is proved in Section 3, leads to
a simple sufficient condition for the concavity assumption (i) of Theorem 1 to hold.

Lemma 2 (Concavity lemma). Suppose ψ : [0, 1] → R+ is convex and increas-
ing, with ψ(0) = 0 = ψ′(0) and ψ′′(θ) > 0 for 0 < θ < 1. Suppose ξ : [0, r0] →
R+ ∪ {∞} is continuous and twice differentiable on (0, r0). Suppose also that there
exists some finite constant c for which ξ′′(r) ≤ cξ′(r)2 for 0 < r < r0. If

ψ′′(1 − θ) ≤ 1/(θ2 + θc) for 0 < θ < 1

then the function r �→ exp(Gψ(ξ(r))) is concave on [0, r0].

Lemma 2 will be applied with ξ(r) = γ(r) − γ(r0) for 0 ≤ r ≤ r0. As shown in
Section 3, the conditions of the Lemma hold for ψ(θ) = θ2/4 with γ(r) = log(1/r)
and also for the ψc from (6) with γ(r) = c−1 log(1/r).

Remarks.

(i) If γ(0) were finite, the inequality asserted by Theorem 1 could not hold for all
nonempty A and all X. For example, if each Xi had a nonatomic distribution
and A were a singleton set we would have Fψ(X, A) = nψ(1) almost surely.
The quantity P exp(Fψ(X, A)) would exceed exp(γ(0)) for large enough n. It
it to avoid this difficulty that we need γ(0) = ∞.
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(ii) Assumption (ii) of the Theorem, which is essentially an assumption that the
asserted inequality holds for n = 1, is easy to check if γ is a convex function
with γ(1) ≥ 0. For then the function B(p) := exp(γ(p)) is convex with B(1) ≥
1 and B′(1) = γ′(1)eγ(1). We have

B(p) ≥ (1 − p)eψ(1) + p for all p in [0, 1]

if B′(1) ≤ 1 − eψ(1).
(iii) A helpful referee has noted that both my specific examples are already covered

by Talagrand’s results. He (or she) asked whether there are other (ψ, γ) pairs
that lead to other useful concentration inequalities. A good question, but I
do not yet have any convincing examples. Actually, I had originally thought
that my methods would extend to the limiting case where c tends to zero,
leading to an answer to the question posed on page 128 of [10]. Unfortunately
my proof ran afoul of the requirement γ(0) = ∞. I suspect more progress
might be made by replacing the strong assumption on ψ′′ from Lemma 2 by
something closer to the sufficient conditions presented in Section 3.

2. Proof of Theorem 1

Argue by induction on n. As a way of keeping the notation straight, replace the
subscript on Fψ(x, B) by an n when the argument B is a subset of Xn. Also, work
with the product measure Q = ⊗i≤nQi for the distribution of X and Q−n = ⊗i<nQi

for the distribution of (X1, . . . , Xn−1). The assertion of the Theorem then becomes

Q exp
(
Fn(x, A)

)
≤ exp(γ(QA))

For n = 1 and B ∈ A we have F1(x, B) = ψ(1){x /∈ B} + 0{x ∈ B} so that
Q1 exp(F1(x, B)) ≤ (1 − p)eψ(1) + p, where p = Q1B. Assumption (ii) then gives
the desired exp(γ(p)) bound.

Now suppose that n > 1 and that the inductive hypothesis is valid for dimensions
strictly smaller than n. Write Q as Q−n ⊗ Qn. To simplify notation, write w for
x−n := (x1, . . . , xn−1) and z for xn. Define the cross section Az := {w ∈ Xn−1 :
(w, z) ∈ A} and write Rz for Q−nAz. Define r0 := supz∈X Rz. Notice that r0 ≥
Qz

nRz = QA.
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The key to the proof is a recursive bound for Fn: for each x = (w, z) with Az �= ∅,
each m with Am �= ∅, and all θ = 1 − θ̄ ∈ [0, 1],

(7) ψ(θ̄) + Fn(x, A) ≤ θFn−1(w, Az) + θ̄Fn−1(w, Am).

To establish inequality (7), suppose µz is a probability measure concentrated
on Az and µm is a probability measure concentrated on Am. For a θ in [0, 1],
define ν = θµz ⊗ δz + θ̄µm ⊗ δm, a probability measure concentrated on the subset
(Az × {z}) ∪ (Am × {m}) of A. Notice that, for i < n,

ν{y ∈ A : yi �= xi} = θµz{w ∈ Az : yi �= xi} + θ̄µm{w ∈ Am : yi �= xi}

so that, by convexity of ψ,

ψ
(
ν{yi �= xi}

)
≤ θψ(µz{w ∈ Az : yi �= xi}) + θ̄ψ(µm{w ∈ Am : yi �= xi});

and (remembering that xn = z),

ν{y ∈ A : yn �= xn} =

{
θ̄ if z �= m

0 otherwise
≤ θ̄.

Thus

Fn(x, A) ≤ ψ(θ̄) + θ
∑

i<n
ψ

(
µz{yi �= xi}

)
+ θ̄

∑
i<n

ψ
(
µm{yi �= xi}

)
.

The two sums over the first n − 1 coordinates are like those that appear in the
definitions of Fn−1(w, Az) and Fn−1(w, Az). Indeed, taking an infimum over all
µz ∈ P(Az) and µm ∈ P(Am) we get the expression on the right-hand side of (7).

Take exponentials of both sides of (7) then integrate out with respect to Q−n

over the w component. For 0 < θ < 1 invoke the Hölder inquality, Q−nUθV θ̄ ≤
(Q−nU)θ(Q−nV )θ̄, with U = exp(Fn−1(w, Az)) and V = exp(Fn−1(w, Am)), for a
fixed m. For each z with Az �= ∅ we get

Q−n exp
(
Fn((w, z), A)

)
(8)

≤ eψ(θ̄)
(
Q−n exp

(
Fn−1(w, Az)

))θ (
Q−n exp

(
Fn−1(w, Am)

))
θ̄.

The inequality also hold in the extreme cases where θ = 0 or θ = 1, by continuity.
The inductive hypothesis bounds the last product by

exp
(
ψ(θ̄) + θγ(Rz) + θ̄γ(Rm)

)
= exp

(
γ(Rm) + G(γ(Rz) − γ(Rm), θ)

)
.

The exponent is a decreasing function of Rm. Take an infimum over m, to replace
γ(Rm) by γ(r0). Then take an infimum over θ to get

Q−n exp
(
Fn((w, z), A)

)
≤ exp

(
γ(r0) + G(ξ(Rz))

)
(9)

where ξ(r) := γ(Rz) − γ(r0) for 0 ≤ r ≤ r0.

If the cross section Az is empty, the set P(Az) is empty. The argument leading
from (7) to (9) still works if we fix θ equal to zero throughout, giving the bound

Qw
−n exp

(
Fn(x, A)

)
≤ exp

(
γ(r0) + ψ(1)

)
if Az = ∅.

Thus the inequality (9) also holds with Rz = 0 when Az = ∅, because ξ(0) =
γ(0) − γ(r0) = ∞ and G(∞) = ψ(1).
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By Assumption (i), the function r �→ exp(G(ξ(r))) is concave on [0, r0]. Integrate
both sides of (9) with respect to Qn to average out over the z variable. Then invoke
Jensen’s inequality and the fact that QnRz = QA, to deduce that

Q exp
(
Fn(x, A)

)
≤ exp

(
γ(r0) + G

(
γ(QA) − γ(r0)

))
.

Finally, use the inequality G(η) ≤ η to bound the last expression by exp(γ(QA)),
thereby completing the inductive step.

Remark. Note that it is important to integrate with respect to Qn before using
the bound on G: the upper bound exp(−γ(Rz)) is a convex function of Rz, not
concave.

3. Proof of the concavity lemma

I will establish a more detailed set of results than asserted by Lemma 2. Invoke the
monotonicity and continuity of ψ′ to define g(η) as the solution to ψ′ (1 − g(η)

)
= η

if 0 ≤ η < ψ′(1) and g(η) = 0 if ψ′(1) ≤ η. Then the following assertions are true.
(I drop the ψ subscripts for notational simplicity.)

(i)

G(η) =

{
ψ

(
1 − g(η)

)
+ ηg(η) for 0 ≤ η < ψ′(1)

ψ(1) for ψ′(1) ≤ η

(ii) G is increasing and concave, with a continuous, decreasing first derivative g.
In particular, G(0) = 0 and G′(0) = g(0) = 1.

(iii) G′′(η) = g′(η) = −[ψ′′(1 − g(η))]−1 for 0 < η < ψ′(1).
(iv) G(η) ≤ η for all η ∈ R+.
(v) Suppose ξ : J → R+ is a convex function defined on a subinterval J of the

real line, with ξ′ �= 0 on the interior of J . Suppose

1
ψ′′(1 − ξr)

≥ g(ξr)2 + g(ξr)ξ′′(r)/ξ′(r)2,

for all r in the interior of J for which ξr := ξ(r) ∈ (0, 1). Then r �→
exp(G(ξ(r))) is a concave function on J .

Proof of (i) through (iv). The fact that G is concave and increasing follows from
its definition as an infimum of increasing linear functions of η. (It would also follow
from the fact that G′(η) = g(η), which is nonnegative and decreasing.) Replacement
of the infimum over 0 ≤ θ ≤ 1 by the value at θ = 1 gives the inequality G(η) ≤ η.

If η ≥ ψ′(1), the derivative −ψ′(1− θ)+η is nonnegative on [0, 1], which ensures
that the infimum is achieved at θ = 1.

If 0 < η < ψ′(1), the infimum is achieved at the zero of the derivative, θ = g(η).
Differentiation of the defining equality ψ′(1 − g(η)) = η then gives the expression
for g′(η). Similarly

G′(η) = −ψ′ (1 − g(η)
)
g′(η) + ηg′(η) + g(η) = g(η).

The infimum that defines G(0) is achieved at g(0) = 1, which gives G(0) =
ψ(0) = 0. Continuity of g at 0 then gives G′(0) = g(0) = 1.
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Proof of (v). Note that the function L(r) := exp(G(ξ(r))) is continuous on J and
takes the value eψ(1) for all r at which ξ(r) ≥ ψ′(1). The second derivative L′′(r)
exists except possibly at points r for which ξ(r) = ψ′(1). In particular, L′′(r) = 0
when ξ(r) > ψ′(1) and

L′′(r) =
(
g′(ξr)(ξ′r)

2 + g(ξr)ξ′′r + g(ξr)2(ξ′r)
2
)
L(r) for 0 < ξr < ψ′(1).

From (iii) and the positivity of L, the last expression is ≤ 0 if and only if

− (ξ′r)
2

ψ′′(1 − g(ξr))
+ g(ξr)ξ′′r + g(ξr)2(ξ′r)

2 ≤ 0.

Divide through by (ξ′r)2 then rearrange to get the asserted inequality for ψ′′.
Lemma 2 follows as a special case of (i) through (iv).

Special cases. If supr ξ′′(r)/ξ′(r)2 ≤ c, with c a positive constant, the inequality
from part (v) will certainly hold if

(10) ψ′′(1 − θ) ≤ (θ2 + cθ)−1 for all 0 < θ < 1.

This differential inequality can be solved, subject to the constraints 0 = ψ(0) =
ψ′(0), by two integrations. Indeed,

ψ′(1 − θ) =
∫ 1

θ

ψ′′(1 − t) dt ≤
∫ 1

θ

dt

t2 + ct
= c−1

(
− log θ + log

(
θ + c

1 + c

))

and, with ψc defined by (6),

ψ(1 − θ) =
∫ 1

θ

ψ′(1 − t) dt ≤ c−1

∫ 1

θ

− log t + log
(

t + c

1 + c

)
dt = ψc(1 − θ).

Note that ψc(1 − θ) is the solution to the differential equation

ψ′′
c (1 − θ) =

1
θ2 + cθ

for all 0 < θ < 1, with ψc(0) = ψ′
c(0) = 0.

It is the largest solution to (10).
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