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Abstract: We study the asymptotic behavior of piecewise constant least
squares regression estimates, when the number of partitions of the estimate
is penalized. We show that the estimator is consistent in the relevant metric
if the signal is in L2([0, 1]), the space of càdlàg functions equipped with the
Skorokhod metric or C([0, 1]) equipped with the supremum metric. Moreover,
we consider the family of estimates under a varying smoothing parameter, also
called scale space. We prove convergence of the empirical scale space towards
its deterministic target.

1. Introduction

Initially, the use of piecewise constant functions for regression has been proposed by
[25], who called the corresponding reconstruction the regressogram. [25] proposed
it as a simple exploratory tool. For a given set of jump locations, the regressogram
simply averages the data between two successive jumps. A difficult issue, however,
is a proper selection of the location of jumps and its convergence analysis.

Approximation by step functions is well examined in approximation theory (see
e.g., [7]), and there are several statistical estimation procedures which use locally
constant reconstructions. [14] studied the case where the signal is a step function
with one jump and showed that in this case the signal can be estimated at the para-
metric n−1/2-rate and that the jump location can be estimated at a rate of n−1.
This was generalized by [28] and [29] to step functions with a given a known upper
bound for the number of jumps. The locally adaptive regression splines method by
[16] and the taut string procedure by [6] use locally constant estimates to recon-
struct unknown regression functions, which belong to more general function classes.
Both methods reduce the complexity of the reconstruction by minimizing the total
variation of the estimator, which in turn leads to a small number of local extreme
values.
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In this work we choose a different approach and define the complexity of the
reconstruction by the number of intervals where the reconstruction is constant, or
equivalently by the number of jumps of the reconstruction. Compared to the total
variation approach, this method obviously captures extreme plateaus more easily
but is less robust to outliers. This might be of interest in applications where extreme
plateaus are informative, like for example in mass spectroscopy.

Throughout the following, we assume a regression model of the type

(1) Yi,n = f̄i,n + ξi,n, (i = 1, . . . , n),

where (ξi,n)i=1,...,n is a triangular array of independent zero-mean random variables
and f̄i,n is the mean value of a square integrable function f ∈ L2([0, 1)) over the
interval [(i − 1)/n, i/n] (see e.g. [9]),

(2) f̄i,n = n

∫ i/n

(i−1)/n

f(u) du.

This model is well suited for physical applications, where observations of this type
are quite common.

We consider minimizers Tγ(Yn) ∈ argminHγ(·, Yn) of the hard thresholding func-
tional

(3) Hγ(u, Yn) = γ · #J(u) +
1
n

n∑
i=1

(ui − Yi,n)2 ,

where
J(u) = {i : 1 ≤ i ≤ n − 1, ui �= ui+1}

is the set of jumps of u. In the following we will call the minimizers of (3) jump
penalized least squares estimators or short Jplse.

Clearly choosing γ is equivalent to choosing a number of partitions of the Jplse.
Figure 1 shows the Jplse for a sample dataset and different choices of the smoothing
parameter γ.

This paper complements work of the authors on convergence rates of the Jplse. [2]
show that given a proper choice of the smoothing parameter γ it is possible to obtain
optimal rates for certain classes of approximation spaces under the assumption of
subgaussian tails of the error distribution. As special cases the class of piecewise
Hölder continuous functions of order 0 < α ≤ 1 and the class of functions with
bounded total variation are obtained.

In this paper we show consistency of regressograms constructed by minimizing
(3) for arbitrary L2 functions and more general assumptions on the error. If the true
function is càdlàg, we additionally show consistency in the Skorokhod topology. This
is a substantially stronger statement than the L2 convergence and yields consistency
of the whole graph of the estimator.

In concrete applications the choice of the regularization parameter γ > 0 in (3),
which controls the degree of smoothness (which means just the number of jumps)
of the estimate Tγ(Yn), is a delicate and important task. As in kernel regression
[18, 23], a screening of the estimates over a larger region can be useful (see [16, 26]).
Adapting a viewpoint from computer vision (see [15]), [3, 4] and [17] proposed to
consider the family (Tγ(f))γ>0, denoted as scale space, as target of inference. This
was justified in [4] by the fact that the empirical scale space converges towards that
of the actual density or regression function pointwisely and uniformly on compact
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Fig 1. The Jplse for different values of γ. The dots represent the noisy observations of some
signal f represented by the grey line. The black line shows the estimator, with γ chosen such that
the reconstruction has four, six, eight and ten partitions, respectively.

sets. The main motivation for analyzing the scale space is exploration of structures
as peaks and valleys in regression and detection of modes in density estimation.
Properties of the scale space in kernel smoothing are that structures like modes
disappear monotonically for a shrinking resolution level and that the reconstruc-
tion changes continuously with respect to the bandwidth. For the Jplse, the family
(Tγ(f))γ>0 behaves quite differently. Notable distinctions are that jumps may not
change monotonically and that there are only finitely many possible different esti-
mates. To deal with these features, we consider convergence of the scale space in the
space of càdlàg functions equipped with the Skorokhod J1 topology. In this setting
we deduce (under identifiability assumptions) convergence of the empirical scale
space towards its deterministic target. Note that the computation of the empirical
scale space is feasible. The family (Tγ(Yn)))γ>0 can be computed in O(n3) and the
minimizer for one γ in O(n2) steps (see [26]).

The paper is organized as follows. After introducing some notation in Section 2,
we provide in Section 3.1 the consistency results for general functions in the L2

metric. In Section 3.2 we present the results of convergence in the Skorokhod topol-
ogy. Finally in Section 3.3 convergence results for the scale space are given. The
proofs as well as a short introduction to the concept of epi-convergence, which is
required in the main part of the proofs, are given in the Appendix.

2. Model assumptions

By S([0, 1)) = span{1[s,t) : 0 ≤ s < t ≤ 1} we will denote the space of step functions
with a finite but arbitrary number of jumps and by D([0, 1)) the càdlàg space of
right continuous functions on [0, 1] with left limits and left continuous at 1. Both
will be considered as subspaces of L2([0, 1)) with the obvious identification of a
function with its equivalence class, which is injective for these two spaces. More
generally, by D([0, 1), Θ) and D([0,∞), Θ) we will denote spaces of functions with
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values in a metric space (Θ, ρ), which are right continuous and have left limits. ‖ · ‖
will denote the norm of L2([0, 1)) and the norm on L∞([0, 1)) is denoted by ‖ · ‖∞.

Minimizers of the hard thresholding functionals (3) will be embedded into L2([0,
1)) by the map ιn : R

n �−→ L2([0, 1)),

ιn((u1, . . . , un)) =
n∑

i=1

ui1[(i−1)/n,i/n).

Under the regression model (1), this leads to estimates f̂n = ιn(Tγn(Yn)), i.e.

f̂n ∈ ιn(argminHγn(·, Yn)).

Note that, for a functional F we denote by argminF the whole set of minimizers.
Here and in the following (γn)n∈N is a (possibly random) sequence of smoothing
parameters. We suppress the dependence of f̂n on γn since this choice will be clear
from the context.

For the noise, we assume the following condition.

(A) For all n ∈ N the random variables (ξi,n)1≤i≤n are independent. Moreover,
there exists a sequence (βn)n∈N with n−1βn → 0 such that

(4) max
1≤i≤j≤n

(ξi,n + · · · + ξj,n)2

j − i + 1
≤ βn P-a.s.,

for almost every n.

The behavior of the process (4) is well known for certain classes of i.i.d. sub-
gaussian random variables (see e.g. [22]). If for example ξi,n = ξi ∼ N(0, σ2) for all
i = 1, . . . , n and all n, we can choose βn = 2σ2 log n in Condition (A). The next
result shows that (A) is satisfied for a broad class of subgaussian random variables.

Lemma 1. Assume the noise satisfies the following generalized subgaussian condi-
tion

(5) Eeνξi,n ≤ eαnζν2
, (for all ν ∈ R, n ∈ N, 1 ≤ i ≤ n)

with 0 ≤ ζ < 1 and α > 0. Then there exist a C > 0 such that for βn = Cnζ log n
Condition (A) is satisfied.

A more common moment condition is given by the following lemma.

Lemma 2. Assume the noise satisfies

(6) sup
i,n

E|ξi,n|2m < ∞, (for all n ∈ N, 1 ≤ i ≤ n)

for m > 2. Then for all C > 0 and βn = C(n log n)2/m Condition (A) is satisfied.

3. Consistency

In order to extend the functional in (3) to L2([0, 1)), we define for γ > 0, the
functionals H∞

γ : L2([0, 1)) × L2([0, 1)) �−→ R ∪∞:

H∞
γ (g, f) =

{
γ · #J (g) + ‖f − g‖2

, g ∈ S([0, 1)),
∞, otherwise.
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Here
J (g) = {t ∈ (0, 1) : g(t−) �= g(t+)}

is the set of jumps of g ∈ S([0, 1)). For γ = 0, we set H∞
0 (g, f) = ‖f − g‖2 for all

g ∈ L2([0, 1)). The following lemma guarantees the existence of a minimizer.

Lemma 3. For any f ∈ L2([0, 1)) and all γ ≥ 0 we have

argminH∞
γ (·, f) �= ∅.

In the following we assume that Yn is determined through (1), the noise ξn

satisfies (A) and (βn)n∈N is a sequence with βn/n → 0 such that (4) holds.

3.1. Convergence in L2

We start with investigating the asymptotic behavior of the Jplse when the sequence
γn converges to a constant γ greater than zero. In this case we do not recover the
original function in the limit, but a parsimonious representation at a certain scale
of interest determined by γ.

Theorem 1. Suppose that f ∈ L2([0, 1)) and γ > 0 are such that fγ is a unique
minimizer of H∞

γ (·, f). Then for any (random) sequence (γn)n∈N ⊂ (0,∞) with
γn → γ P-a.s., we have

f̂n
L2([0,1))−−−−−→

n→∞
fγ P-a.s.

The next theorem states the consistency of the Jplse towards the true signal for
γ = 0 under some conditions on the sequence γn.

(H) (γn)n∈N satisfies γn → 0 and γnn/βn → ∞ P-a.s..

Theorem 2. Assume f ∈ L2([0, 1)) and (γn)n∈N satisfies (H). Then

f̂n
L2([0,1))−−−−−→

n→∞
f, P-a.s.

3.2. Convergence in Skorokhod topology

As we use càdlàg functions for reconstructing the original signal, it is natural to
ask, whether it is possible to obtain consistency in the Skorokhod topology.

We remember the definition of the Skorokhod metric [12, Section 5 and 6]. Let
Λ∞ denote the set of all strictly increasing continuous functions λ : R+ �−→ R+

which are onto. We define for f, g ∈ D([0,∞), Θ)

ρ(f(λ(t) ∧ u), g(t))

where L(λ) = sups �=t≥0 | log λ(t)−λ(s)
t−s |. Similarly, Λ1 is the set of all strictly increas-

ing continuous onto functions λ : [0, 1] �−→ [0, 1] with appropriate definition of L.
Slightly abusing notation, we set for f, g ∈ D([0, 1), Θ),

ρS(f, g) = inf
{

max(L(λ), sup
0≤t≤1

ρ(f(λ(t)), g(t))) : λ ∈ Λ1

}
.

The topology induced by this metric is called J1 topology. After determining the
metric we want to use, we find that in the situation of Theorem 1 we can establish
consistency without further assumptions, whereas in the situation of Theorem 2 f
has to belong to D([0, 1)).
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Theorem 3. (i) Under the assumptions of Theorem 1,

f̂n
D([0,1))−−−−−→
n→∞

fγ P-a.s.

(ii) If f ∈ D([0, 1)) and (γn)n∈N satisfies (H), then

f̂n
D([0,1))−−−−−→
n→∞

f P-a.s.

If f is continuous on [0, 1], then

f̂n
L∞([0,1])−−−−−−→

n→∞
f P-a.s.

3.3. Convergence of the scale spaces

As mentioned in the introduction, following [4], we now want to study the scale space
family (Tγ(f))γ>0 as target for inference. First we show that the map γ �→ Tγ(f)
can be chosen piecewise constant with finitely many jumps.

Lemma 4. Let f ∈ L2([0, 1)). Then there exists a number m(f) ∈ N ∪ {∞} and a
decreasing sequence (γm)m(f)

m=0 ⊂ R ∪∞ such that

(i) γ0 = ∞, γm(f) = 0,
(ii) for all 1 ≤ i ≤ m(f) and γ′, γ′′ ∈ (γi, γi−1) we have that

argminH∞
γ′ (·, f) = argminH∞

γ′′(·, f) ,

(iii) for all 1 ≤ i ≤ m(f) − 1 and γi+1 < γ′ < γi < γ′′ < γi−1 we have:

argminH∞
γi

(·, f) ⊇ argminH∞
γ′ (·, f) ∪ argminH∞

γ′′(·, f) ,

and
(iv) for all γ′ > γ1

argminH∞
∞ (·, f) = argminH∞

γ′ (·, f) = {T∞(f)} .

Here T∞(f) is defined by T∞(f)(x) =
∫

f(u) du1[0,1)(x).

Thus we may consider functions τ̂n ∈ D([0,∞), L2([0, 1))) with

τ̂n(ζ) ∈ ιn(argminH1/ζ(·, Yn)) ,

for all ζ ≥ 0. We will call τ̂n the empirical scale space. Similarly, we define the
deterministic scale space τ for a given function f , such that

(7) τ(ζ) ∈ argminH∞
1/ζ(·, f)), (for all ζ ≥ 0).

The following theorem shows that the empirical scale space converges almost surely
to the deterministic scale space. Table 1 and Figure 2 demonstrate this in a finite
setting for the blocks signal, introduced by [10].

Theorem 4. Suppose f ∈ L2([0, 1)) is such that #argminH∞
γ (·, f) = 1 for all but

a countable number of γ > 0 and #argminH∞
γ (·, f) ≤ 2 for all γ ≥ 0. Then τ is

uniquely determined by (7). Moreover,

τ̂n −−−−→
n→∞

τ P-a.s.

holds both in D([0,∞), D([0, 1))) and D([0,∞), L2([0, 1))).



Scale space consistency of regressograms 71

Fig 2. Comparison of scale spaces. The “Blocks” data of [11] sampled at 64 points (dots) are
compared with the different parts of the scale space derived both from the data (black) and the
original signal (grey), starting with γ = ∞ and lowering its value from left to right and top to
bottom. Note that for the original sampling rate of 2048 the scale spaces are virtually identical.
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Table 1

Comparison of scale spaces. For the “Blocks” data of [10] sampled in 64 points with a signal to
noise ratio of 7, the eleven largest γ values (see Lemma 4) for the deterministic signal (bottom)

and the noisy signal (top) are compared. The last two values of the bottom row are equal to
zero, since there are only nine ways to reconstruct the deterministic signal

852 217 173 148 108 99.8 55.9 46.6 5.36 4.62 2.29
885 249 159 142 100 99.1 80.2 41.3 38.9 0 0

Fig 3. Scale spaces of a sample function (grey line). The black lines show all reconstructions of
the sample function for varying γ.

Discussion. The scale space of a penalized estimator with hard thresholding
type penalties generally does not have the same nice properties as its counterparts
stemming from an l2- or l1-type penalty. In our case the function value at some
point of the reconstruction does not change continuously or monotonically in the
smoothing parameter. Moreover, the set of jumps of a best reconstruction with k
partitions is not necessarily contained in the set of jumps of a best reconstruction
with k′ partitions for k < k′, see Figure 3. This leads to increased computational
costs, as greedy algorithms in general do not yield an optimal solution. Indeed, one
needs only O(n log n) steps to compute the estimate for a given γ if the penalty is
of l1 type as in locally adaptive regression splines by [16], compared to O(n2) steps
for the Jplse.

We mention, that penalizing the number of jumps corresponds to an L0-penalty
and is a limiting case of the [20] functional, when the dimension of the signal (image)
is d = 1 [27], and results in “hard segmentation” of the data [24].

4. Proofs

Some additional notation. Throughout this section, we shorten J(f̂n) to Jn.
We set Sn([0, 1)) = ιn(Rn), Bn = σ(Sn([0, 1))). Observe that ιn(f̄n) is just the
conditional expectation EU0,1(f |Bn), denoting the uniform distribution on [0, 1) by
U0,1. Similarly, for any finite J ⊂ (0, 1) define BJ = σ({[a, b) : a, b ∈ J ∪ {0, 1}})
and the partition PJ = {[a, b) : a, b ∈ J ∪ {0, 1}, (a, b) ∩ J = ∅}. For our proofs it
is convenient to formulate all minimization procedures on L2([0, 1)). Therefore we
introduce the following functionals H̃∞

γ , H̃γ : L2([0, 1))× L2([0, 1)) �−→ R̄, defined
as

H̃γ(g, f) =

{
γ#J(g) + ‖f − g‖2 − ‖f‖2

, if g ∈ Sn([0, 1)),
∞, otherwise,

H̃∞
γ (g, f) = H∞

γ (g, f) − ‖f‖2.



Scale space consistency of regressograms 73

Clearly for each f , H̃∞
γ has the same minimizers as H∞

γ , differing only by a constant.
The following Lemma relates the minimizers of H̃γ and Hγ .

Lemma 5. For all f ∈ L2([0, 1)) and n ∈ N we have u ∈ argminHγ(·, f̄n) if and
only if ιn(u) ∈ argmin H̃γ(·, f). Similarly, u ∈ argminHγ(·, y) for y ∈ R

n if and
only if ιn(u) ∈ argmin H̃γ(·, ιn(y)).

Proof. The second assertion follows from the fact that for u, y ∈ R
n

H̃γ(ιn(u), ιn(y)) = Hγ(u, y) − ‖f‖2
.

Further, for u ∈ R
n we have 〈ιn(f̄n) − f, ιn(f̄n) − ιn(u)〉 = 0 which gives

H̃γ(ιn(u), f) = γ#J(u) + ‖f − g‖2 − ‖f‖2

= γ#J(u) +
∥∥ιn(f̄n) − ιn(u)

∥∥2 +
∥∥f − ιn(f̄n)

∥∥2 − ‖f‖2

= Hγ(u, f̄n) + constf,n

what completes the proof.

The minimizers g ∈ S([0, 1)) of H̃γ(·, f) and H̃∞
γ (·, f) for γ > 0 are determined

by their jump set J(g) through the formula g = EU0,1(f |BJ(g)). In the sequel, we
abbreviate

µI(f) = �(I)−1

∫
I

f(u) du

to denote the mean of f on some interval I. In addition, we will use the abbreviation
fJ := EU0,1(f |BJ), such that for any partition PJ of [0, 1)

fJ =
∑

I∈PJ

µI(f)1I .

Further, we extend the noise in (1) to L2([0, 1)) by

ξn = ιn((ξ1,n, . . . , ξn,n)).

4.1. Technical tools

We start by giving estimates on the behavior of (ξn)J =
∑

I∈PJ
µI(ξn)1I .

Lemma 6. Assume (ξi,n)n∈N,1≤i≤n satisfies (A). Then P-almost surely for all in-
tervals I ⊂ [0, 1) and all n ∈ N

µI(ξn)2 ≤ βn

n�(I)
.

Proof. For intervals of the type [(i− 1)/n, j/n) with i ≤ j ∈ N the claim is a direct
consequence of (4). For general intervals, [(i+p1)/n, (j−p2)/n) with p1, p2 ∈ [0, 1],
we have to show that

(p1 · ξi,n + ξi+1,n + · · · + ξj−1,n + p2 · ξj,n)2 − βn(p1 + p2 + j − i − 1) ≤ 0.

The left expression is convex over [0, 1]2 if it is considered as function in (p1, p2).
Hence it attains its maximum in an extreme point of [0, 1]2.
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Lemma 7. There is a set of P-probability one on which for all sequences (Jn)n∈N

of finite sets in (0, 1) the relation limn→∞ βn#Jn/n = 0 implies

(ξn)Jn

L2([0,1))−−−−−→
n→∞

0.

Proof. By Lemma 6 we find

(8) ‖(ξn)Jn‖2 =
∑

I∈PJn

�(I)µI(ξn)2 ≤ βn

n
(#Jn + 1),

This immediately gives the assertion.

Now we wish to show that the functionals epi-converge (see section 4.4). To this
end we need two more results.

Lemma 8. Let (Jn)n∈N be a sequence of closed subsets in (0, 1) which satisfies the
relation limn→∞ βn#Jn/n = 0. For (gn)n∈N ⊂ L2([0, 1)) with ‖gn − g‖ −−−−→

n→∞
0,

where gn is BJn measurable, we have almost surely

‖f + ξn − gn‖2 − ‖f + ξn‖2 −−−−→
n→∞

‖f − g‖2 − ‖f‖2 .

Proof. First observe that

‖f + ξn − gn‖2 − ‖f + ξn‖2 = ‖gn‖2 − 2〈f, gn〉 − 2〈ξn, gn〉
= ‖gn‖2 − 2〈f, gn〉 − 2〈(ξn)Jn , gn〉 .

Since the sequence (‖gn‖)n∈N is bounded we can use Lemma 7 to deduce

〈(ξn)Jn , gn〉 P-a.s.−−−−→
n→∞

0.

This completes the proof.

Before stating the next result, we recall the definition of the Hausdorff metric
ρH on the space of closed subsets CL(Θ) of a compact metric space (Θ, ρ). For
Θ′ ⊆ Θ � ϑ we set

dist(ϑ, Θ′) = inf{ρ(ϑ, ϑ′) : ϑ′ ∈ Θ′}.

Define

ρH(A, B) =




max{supx∈A dist(x, B), supy∈B dist(y, A)}, A, B �= ∅,

1, A �= B = ∅,

0, A = B = ∅ ,

With this metric, CL(Θ) is again compact for compact Θ [19, see].

Lemma 9. The map

L2([0, 1)) � g �→
{

#J(g), g ∈ S([0, 1))
∞, g �∈ S([0, 1)) ∈ N ∪ {0,∞}

is lower semi-continuous, meaning the set {g ∈ S([0, 1)) : #J(g) ≤ N} is closed for
all N ∈ N ∪ {0}.
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Proof. Suppose that ‖gn − g‖ −−−−→
n→∞

0 with #J(gn) ≤ N < #J(g). Using compact-

ness of the space of closed subsets CL([0, 1]) and turning possibly to a subsequence,
we could arrange that J(gn) ∪ {0, 1} −−−−→

n→∞
J ∪ {0, 1} for some closed J ⊂ (0, 1),

where convergence is understood in Hausdorff metric ρH . Since the cardinality is
lower semi-continuous with respect to the Hausdorff metric, J must be finite. We
conclude for (s, t) ∩ J = ∅ and ε > 0 that (s + ε, t − ε) ∩ J(gn) = ∅ eventually,
i.e. gn is constant on (s + ε, t − ε). Next we observe that gn1(s+ε,t−ε) converges
towards g1(s+ε,t−ε) (in L2([0, 1))) what implies that g is constant on (s + ε, t − ε).
Since ε > 0 was arbitrary, we derive that g is constant on (s, t). Consequently, g is
in S([0, 1)) and J(g) ⊆ J . Using again lower semi-continuity of the cardinality in
the space of compact subsets of [0, 1] shows that

#J(g) > N ≥ lim sup
n

#J(gn) ≥ lim inf
n

#J(gn) ≥ #J ≥ #J(g).

This contradiction completes the proof.

Now we can state the epi-convergence of H̃γn as function on L2([0, 1)).

Lemma 10. For all sequences (γn)n∈N satisfying (H) we have

H̃γn(·, f + ξn)
epi−−−−→

n→∞
H̃∞

γ (·, f)

almost surely. Here H̃γn , H̃∞
γ are considered as functionals on L2([0, 1)).

Proof. We have to show that on a set with probability one we have

(i) If gn −−−−→
n→∞

g then lim infn→∞ H̃γn(gn, f + ξn) ≥ H̃∞
γ (g, f).

(ii) For all g ∈ L2([0, 1)), there exists a sequence (gn)n∈N ⊂ L2([0, 1)), gn −−−−→
n→∞

g

with lim supn→∞ H̃γn(gn, f + ξn) ≤ H̃∞
γ (g, f).

To this end, we fix the set where the assertions of Lemmas 7 and 8 hold simultane-
ously.

Ad 4.1: Without loss of generality, we may assume that Hγn(gn, f +ξn) converges
in R ∪ ∞. If gn /∈ Sn([0, 1)) for infinitely many n or #J(gn) > H̃∞

γ (g, f)/γn the
relation 4.1 is trivially fulfilled. Otherwise, we obtain

lim sup
n→∞

βn

n
#J(gn) ≤ lim sup

n→∞

βn

nγn
H̃∞

γ (g, f) = 0.

Hence we can apply Lemma 8. Together with Lemma 9 we obtain P-a.s.

lim inf
n→∞

H̃γn(gn, f + ξn)

≥ lim inf
n→∞

γnJ(gn) + lim inf
n→∞

(‖f + ξn − gn‖2 − ‖f + ξn‖2)

≥ γJ(g) + (‖f − g‖2 − ‖f‖2) = H̃∞
γ (g, f).

Ad 4.1: If g /∈ S([0, 1)) and γ > 0 there is nothing to prove. If γ = 0 and still
g /∈ S([0, 1)), choose gn as a best L2-approximation of g in Sn([0, 1)) with at most
1/

√
γn jumps.

We claim that ‖gn − g‖ → 0 as n → ∞. For that goal, let g̃n,k denote a best
approximation of g in {f ∈ Sn([0, 1)) : #J(f) ≤ k} and g̃k one in {f ∈ S([0, 1)) :
#J(f) ≤ k}.
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Moreover, for every n, k let Jk
n ⊂ (0, 1) be a perturbation of J(g̃k), with nJk

n ∈ N,
#Jk

n = #J(g̃k) and ρH(Jk
n , J(g̃k)) ≤ 1/n. Denote g′n,k = g̃k ◦ λn,k where λn,k ∈ Λ1

fulfills λn,k(Jk
n) = J(g̃k). Since (a, b) �→ 1[a,b) is continuous in L2([0, 1)), we obtain

readily ‖g′n,k − g̃k‖ → 0. This implies for any k ∈ N

lim sup
n→∞

‖gn − g‖ ≤ lim sup
n→∞

‖g̃n,k − g‖ ≤ lim sup
n→∞

∥∥g′n,k − g
∥∥ = ‖g̃k − g‖ .

Since the right hand side can be made arbitrary small by choosing k, gn converges
to g. Then Lemma 8 yields 4.1.

If γ > 0 and g ∈ S([0, 1)), gn is chosen as a best approximation of g in Sn([0, 1))
with at most #J(g) jumps. Finally, in order to obtain 4.1, argue as before.

To deduce consistency with the help of epi-convergence, one needs to show that
the minimizers are contained in a compact set. The following lemma will be applied
to this end.

Lemma 11. Assume (Θ, ρ) is a metric space. A subset A ⊂ D([0,∞), Θ) is rela-
tively compact if the following two conditions hold

(B1) For all t ∈ R+ there is a compact Kt ⊆ Θ such that

g(t) ∈ Kt, (for all g ∈ A).

(B2) For all T > 0 and all ε > 0 there exists a δ > 0 such that for all g ∈ A there
is a step function gε ∈ S([0, T ), Θ) such that

sup{ρ(g(t), gε(t)) : t ∈ [0, T )} < ε and mpl(gε) ≥ δ ,

where mpl is the minimum distance between two jumps of f ∈ S([0, T ))

mpl(f) := min{|s − t| : s �= t ∈ J(f) ∪ {0, T}}.

A subset A ⊂ D([0, 1), Θ) is relative compact if the following two conditions hold

(C1) For all t ∈ [0, 1] there is a compact Kt ⊆ Θ such that

g(t) ∈ Kt (for all g ∈ A).

(C2) For all ε > 0 there exists a δ > 0 such that for all g ∈ A there is a step
function gε ∈ S([0, 1), Θ) such that

sup{ρ(g(t), gε(t)) : t ∈ [0, 1]} < ε and mpl(gε) ≥ δ .

Proof. We prove only the first assertion, as the proof of the second assertion can
be carried out in the same manner.

According to [12], Theorem 6.3, it is enough to show that (B2) implies

lim
δ→0

sup
g∈A

wg(δ, T ) = 0

where

wg(δ, T ) = inf
{

max
1≤i≤v

sup
s,t∈[ti−1,ti)

ρ(g(s), g(t)) : {t1, . . . , tv−1} ⊂ (0, T ),

t0 = 0, tv = T, |ti − tj | > δ

}
.
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So, fix T > 0, ε > 0 and choose δ from (B2). Then we set for g ∈ A {t0, . . . , tv} =
J(gε)∪{0, T}. Clearly, mpl(gε) > δ implies |ti−tj | > δ for all i �= j. For neighboring
ti−1, ti ∈ J(gε) ∪ {0, T} and s, t ∈ [ti−1, ti) we derive

ρ(g(s), g(t)) ≤ ρ(g(s), gε(s)) + ρ(gε(s), gε(t)) + ρ(gε(t), g(t)) < ε + 0 + ε = 2ε.

This establishes the above condition and completes the proof.

In the context of proving compactness we will also need the following result.

Lemma 12. For any f ∈ L2([0, 1)) the set {fJ : J ⊂ (0, 1), #J < ∞} is
relatively compact in L2([0, 1)).

Proof. The proof is done in several steps.
1. Since (s, t) �→ 1[s,t) is continuous,{

M∑
i=1

αi1Ii : |αi| ≤ z, Ii ⊆ [0, 1) interval

}

is the continuous image of a compact set and hence compact for all M ∈ N and
z > 0.

2. If f = 1I for some interval I, we obtain for any J ⊂ [0, 1) that fJ is a linear
combination of at most three different indicator functions.

3. If f =
∑M

i=1 αi1Ii is a step function and J arbitrary then fJ =
∑M ′

j=1 βj1I′
j

holds by 2. for some M ′ ≤ 3M . Using

βj = µI′
j
(f) ≤ max

i=1,...,M
|αi|

as well as 1., we get that {fJ : J ⊂ [0, 1)} is relatively compact for step functions
f .

4. Suppose f ∈ L2([0, 1)) is arbitrary and ε > 0. We want to show that we
can cover {fJ : J ⊂ [0, 1)} by finitely many ε-balls. Fix a step function g such
that ‖f − g‖ < ε/2. By the Jensen Inequality for conditional expectations, we
get ‖fJ − gJ‖ < ε/2 for all finite J ⊂ [0, 1). Further, by 3., there are finite sets
J1, . . . , Jp ⊂ [0, 1) with p < ∞ such that minl=1,...,p ‖gJ − gJl

‖ < ε/2 for all finite
J ⊂ [0, 1). This implies

min
l=1,...,p

‖fJ − gJi‖ ≤ min
l=1,...,p

‖gJ − gJl
‖ + ‖fJ − gJ‖ < ε

and the proof is complete.

4.2. Behavior of the partial sum process

Proof of Lemma 1. The following Markov inequality is standard for triangular ar-
rays fulfilling condition (A), [21], Section III, §4, and all numbers µi, i = 1, . . . , n:

P(|
n∑

i=1

µiξi,n| ≥ z) ≤ 2 exp
( −z2

4αnζ
∑

i µ2
i

)
(for all z ∈ R).

From this, we derive for z2 > 12α that∑
n∈N

∑
1≤i≤j≤n

P(|ξi,n + · · · + ξj,n| ≥ z
√

j − i + 1
√

nζ log n)

≤ 2
∑
n∈N

n2e−
z2 log n

4α = 2
∑

n

n− z2−8α
4α < ∞.
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Hence, for ε > 0 we have with probability one that

max
1≤i≤j≤n

(ξi,n + · · · + ξj,n)2

(j − i + 1)
≥ (12 + ε)αnζ log n

only finitely often.

For the proof of Lemma 2, we need an auxiliary lemma. Denote by

Dn =
{
(i, j) : 1 ≤ i ≤ j ≤ n such that i = k2l, j = (k + 1)2l

for some l, k ∈ {0, 1, 2, . . .}
}

the set of all pairs (i, j) which are endpoints of dyadic intervals contained in
{1, . . . , n}.
Lemma 13. Assume x ∈ R

n such that

(9) max
(i,j)∈Dn

|xi + · · · + xj |√
j − i + 1

≤ c

for some c > 0. Then

max
1≤i≤j≤n

|xi + · · · + xj |√
j − i + 1

≤ (2 +
√

2)c .

Proof. Without loss of generality we may assume that n = 2m for some m ∈ N

(and add some zeros otherwise). First, we prove by induction on m that (9) implies

(10) max
1≤j≤n

|x1 + · · · + xj |√
j

≤ (1 +
√

2)c .

For m = 0 there is nothing to prove. Now assume that the statement is true for m.
Let 2m < j ≤ 2m+1. Note that

|x1 + · · · + xj |√
j

≤
√

2m

√
j

|x1 + · · · + x2m |√
2m

+
√

j − 2m

√
j

|x2m+1 + · · · + xj |√
j − 2m

.

Apply the induction hypothesis to the second summand to obtain

|x1 + · · · + xj |√
j

≤
(√

2m + (1 +
√

2)
√

j − 2m
)

√
j

c .

For 2m + 1 ≤ j ≤ 2m+1 the expression on the right hand side is maximal for
j = 2m+1 with maximum (1 +

√
2)c. Hence the statement holds also for m + 1 and

we have shown that (9) implies (10).
The claim is again proven by induction on m. For m = 0 there is nothing to prove.

Assume that the statement is true for m. If i ≤ j ≤ 2m or 2m < i ≤ j ≤ 2m+1 the
statement follows by application of the induction hypotheses to (x1, . . . , x2m) and
(x2m+1, . . . , x2m+1), respectively. Now suppose i < 2m < j. Then

|xi + · · · + xj |√
j − i + 1

≤
√

2m − i + 1√
j − i + 1

|xi + · · · + x2m |√
2m − i + 1

+
√

j − 2m

√
j − i + 1

|x2m+1 + · · · + xj |√
j − 2m
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Application of (10) to x′ = (x2m , x2m−1, . . . , x1) and x̃ = (x2m+1, . . . , x2m+1) then
gives

|xi + · · · + xj |√
j − i + 1

≤
√

2m − i + 1 +
√

j − 2m

√
j − i + 1

(1 +
√

2)c ≤
√

2(1 +
√

2)c .

Proof of Lemma 2. [8] show that for m ≥ 1 and some constant Cm depending on
m only

E

( |ξi,n + · · · + ξj,n|2m

(j − i + 1)m

)
≤ Cm

E|ξi,n|2m + · · · + E|ξj,n|2m

j − i + 1
.

The Markov inequality then yields for any z > 0 and all 1 ≤ i ≤ j ≤ n

P

( |ξi,n + · · · + ξj,n|√
j − i + 1

≥ z
)
≤

Cm supi,n E|ξi,n|2m

z2m
.

Since there are at most 2n dyadic intervals contained in {1, . . . , n}, we obtain by
Lemma 13 for any C > 0 that

∑
n∈N

∑
1≤i≤j≤n

P

( |ξi,n + · · · + ξj,n|√
j − i + 1

≥ C(n log n)1/m
)

≤
∑
n∈N

∑
(i,j)∈Dn

P

( |ξi,n + · · · + ξj,n|√
j − i + 1

≥ (2 +
√

2)C(n log n)1/m
)

≤
Cm supi,n E|ξi,n|2m

(2 +
√

2)2mC2m

∑
n∈N

2n

n2 log2 n
< ∞.

The claim follows by application of the Borel–Cantelli lemma.

4.3. Consistency of the estimator

The proofs in this section use the concept of epi-convergence. It is introduced in
Appendix.

Proof of Lemma 3. For γ = 0 there is nothing to prove. Assume γ > 0 and g ∈
S([0, 1)) with #J(g) > ‖f‖2/γ. This yields

H∞
γ (0, f) = ‖f‖2 < H∞

γ (g, f) .

Moreover, observe that for g ∈ S([0, 1)) we have H∞
γ (g, f) ≥ H∞

γ (fJ(g), f). Thus,
it is enough to regard the set {fJ : #J ≤ ‖f‖2/γ}, which is relatively compact in
L2([0, 1)) by Lemma 12. This proves the existence of a minimizer.

Proof of Theorem 1 and Theorem 2. By the reformulation of the minimizers in
Lemma 5, Lemma 10 and Theorem 5 (see Appendix) it is enough to prove that
almost surely there is a compact set containing⋃

n∈N

argmin H̃γn(·, f + ξn) .

First note that all fn ∈ argmin H̃γn(·, f + ξn) have the form (f + ξn)Jn for some
(random) sets Jn. Comparing H̃γn(fn, f + ξn) with H̃γn(0, f + ξn) = 0, we obtain
the a priori estimate

γn#Jn ≤ ‖(f + ξn)Jn‖
2 ≤ 2‖f‖2 + 2 ‖(ξn)Jn‖

2 ≤ 2‖f‖2 +
2βn

n
(#Jn + 1)
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for all n ∈ N. Since γn > 4βn

n eventually, we find P-a.s.

#Jn ≤
2‖f‖2 + 2βn

n

γn − 2βn

n

= O(γ−1
n ).

Application of Lemma 7 gives limn→∞(ξn)Jn = 0 almost surely. Since by Lemma 12,
{fJn : n ∈ N} is relatively compact in L2([0, 1)), relative compactness of the set⋃

n∈N
argmin H̃γn(·, f + ξn) follows immediately. This completes the proofs.

Proof of Theorem 3, part (i) . Theorem 1 and Lemma 9 imply

lim inf
n→∞

#Jn ≥ #J(fγ) .

Suppose lim supn→∞ #Jn ≥ #J(fγ) + 1. Let fγ,n be an approximation of fγ from
Sn([0, 1)) with the same number of jumps as fγ . Then we could arrange fγ,n −−−−→

n→∞
fγ such that limn→∞ H̃γ(fγ,n, f + ξn) = H̃∞

γ (fγ , f). Moreover, we know

lim sup
n→∞

H̃γ(f̂n, f + ξn) ≥ γ + H̃∞
γ (fγ , f) = γ + lim

n→∞
H̃γ(fγ,n, f + ξn)

which contradicts that f̂n is a minimizer of H̃γ(·, f + ξn) for all n. Therefore,
#Jn = #J(fγ) eventually.

Next, chose by compactness a subsequence such that Jn ∪ {0, 1} converges in
ρH . Then, by Lemma 9, the limit must be J(fγ) ∪ {0, 1}. Consequently, the whole
sequence (Jn)n∈N converges to J(fγ) in the Hausdorff metric.

Thus eventually, there is a 1-1 correspondence between PJn and PJ(fγ) such that
for each [s, t) ∈ PJ(fγ) there are [sn, tn) ∈ PJn with

sn −−−−→
n→∞

s and tn −−−−→
n→∞

t .

By Lemma 6 and continuity of (s, t) �→ 1[s,t), we find

µ[sn,tn)(f + ξn) −−−−→
n→∞

µ[s,t)(f) .

Construct λn ∈ Λ1 linearly interpolating λn(sn) = s. Then

L(λn) −−−−→
n→∞

1

as well as

‖f̂n − f ◦ λn‖∞ = max
I∈PJ(fγ )

|µλ−1(I)(f + ξn) − µI(f)| −−−−→
n→∞

0

which completes the proof.

Proof of Theorem 3, part (ii). The proof can be carried out in the same manner as
the proof of Theorem 4, part (ii) in [2]. The only difference is, that it is necessary
to attend the slightly different rates of the partial sum process (4).
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4.4. Convergence of scale spaces

Proof of Lemma 4. It is clear, that each g ∈ argminH∞
γ (·, f) is determined by its

jump set. Further, if g1, g2 ∈ S([0, 1)) with #J(g1) = #J(g2) and ‖f−g1‖ = ‖f−g2‖
then g1 is a minimizer of H∞

γ (·, f) if and only if g2 is.
Since H∞

γ (0, f) = ‖f‖2 we have that γ ∈ [ν,∞) implies J(g) ≤ ‖f‖2/ν, for a
minimizer g of H∞

γ (·, f). Hence on [ν,∞) we have that

minH∞
γ (·, f) = min{kγ + ∆k(f) : k ≤ ‖f‖2/ν}

with ∆k(f) defined by

∆k(f) := inf{‖g − f‖ : g ∈ S([0, 1)), #J(g) ≤ k} .

For each ν the map γ �→ minH∞
γ (·, f) is thus a minimum of a finite collection of

linear functions with pairwise different slopes on [ν,∞). If there are different k, k′

and γ with kγ+hk = k′γ+hk′ it follows γ = (hk′−hk)/(k−k′). From this it follows
that there are only finitely many γ where #{k : kλ + ∆k(f) = minH∞

γ (·, f)} >
1. Further, argminH∞

γ (·, y) is completely determined by the k which realize this
minimum. Call those γ, for which different k realize the minimum, changepoints
of γ �→ min H∞

γ (·, f). Since the above holds true for each ν > 0, there are only
countably many changepoints in [0,∞). This completes the proof.

Proof of Theorem 4. It is easy to see that the assumptions imply J(τ) = {γm : m =
1, . . . , m(x)} for the sequence (γm)m(x)

m=0 ⊂ R∪∞ of Lemma 4. Since the scale space
τ is uniquely determined by its jump points, this proves the uniqueness claim.

For the proof of the almost sure convergence, note that Theorem 1 and Theo-
rem 3, part (i) show that τ̂n(ζ) →n→∞ τ(ζ) if ζ is a point of continuity of τ , i.e.
# argminH∞

1/ζ(·, f) = 1. Convergence in all continuity points together with relative
compactness of the sequence implies convergence in the Skorokhod topology. Hence,
it is enough to show that {τ̂n : n ∈ N} is relatively compact.

To this end, we will use Lemma 11. In the proof of Theorem 1 it was shown,
that the sequence (Tγ(Yn))n∈N is relatively compact in L2(0, 1). To prove relative
compactness in D([0, 1)) we follow the lines of the proof of Theorem 3, part (i).
Similarly we find that

lim sup
n→∞

#Jn ≤ max
g∈argmin H∞

1/ζ
(·,f)

#J(g) .

For each subsequence of (Tγ(Yn))n∈N, consider the subsequence of corresponding
jump sets. By compactness of CL([0, 1]) we choose a converging sub-subsequence
and argue as in the proof mentioned above that the corresponding minimizers con-
verge to a limit in argminH∞

1/ζ(·, f). Thus we have verified condition (B1).
For the proof of (B2), we will show by contradiction that for all T > 0 we have

inf{mpl(τ̂n|[0,T ]) : n ∈ N} > 0.

This, obviously, would imply (B2). Observe that τ̂n jumps in ζ only if there
are two jump sets J �= J ′ such that H1/ζ((Yn)J , Yn) = H1/ζ((Yn)J ′ , Yn) and
H1/ζ((Yn)J , Yn) ≤ H1/ζ((Yn)J ′′ , Yn) for all J ′′.

If (B2) is not fulfilled for (τn)n∈N, we can switch by compactness to a subsequence
and find sequences (ζ1

n)n∈N, (ζ2
n)n∈N with ζ1

n, ζ2
n ∈ J(τ̂n), ζ1

n < ζ2
n and ζ1

n −−−−→
n→∞

ζ,

ζ2
n −−−−→

n→∞
ζ for some ζ ≥ 0. Choosing again a subsequence, we could assume that the
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jump sets J1
n, J2

n, J3
n of minimizers f̂k

n ∈ ιn(argminHγn(·, Yn)) for some sequences
γ1

n − 1/ζ1
n ↓ 0, γ2

n ∈ (1/ζ2
n, 1/ζ1

n) and γ3
n − 1/ζ2

n ↑ 0 are constant and (f̂k
n)n∈N,

k = 1, 2, 3, converge. Further, we know from this choice of γk
n and Lemma 4 that

#J1
n > #J2

n > #J3
n. This implies

(11) γ1
n + γ2

n + ‖ιn(Yn) − f̂1
n‖2 < γ2

n + ‖ιn(Yn) − f̂2
n‖2 < ‖ιn(Yn) − f̂3

n‖2.

The same arguments as in Theorem 1 and Theorem 3, part (i) respectively, yield
{limn→∞ f̂k

n : k = 1, 2, 3} ⊆ argminH∞
1/ζ(·, f). Since (11) holds for all n, the limits

are pairwise different. This contradicts #argminH∞
1/ζ(·, x) ≤ 2 and proves (B2).

Thus {τ̂n : n ∈ N} is relatively compact in D([0,∞), D([0, 1))) as well as in
D([0,∞), L2[0, 1]) and the proof is complete.

Appendix: Epi-Convergence

Instead of standard techniques from penalized maximum likelihood regression, we
use the concept of epi-convergence (see for example [5, 13]). This allows for simple
formulation and more structured proofs. The main arguments to derive consistency
of estimates which are (approximate) minimizers for a sequence of functionals can
briefly be summarized by

epi-convergence + compactness + uniqueness a.s. ⇒ strong consistency.

We give here the definition of epi-(or Γ-)convergence together with the results from
variational analysis which are relevant for the subsequent proofs.

Definition 1. Let Fn : Θ �−→ R ∪ ∞, n = 1, . . . ,∞ be numerical functions on a
metric space (Θ, ρ). (Fn)n∈N epi-converges to F∞ (Symbol Fn

epi−−−−→
n→∞

F∞) if

(i) for all ϑ ∈ Θ, and sequences (ϑn)n∈N with ϑn −−−−→
n→∞

ϑ

F∞(ϑ) ≤ lim inf
n→∞

Fn(ϑn)

(ii) for all ϑ ∈ Θ there exists a sequence (ϑn)n∈N with ϑn −−−−→
n→∞

ϑ such that

(12) F∞(ϑ) ≥ lim sup
n→∞

Fn(ϑn)

The main, useful conclusions from epi-convergence are given by the following
theorem.

Theorem 5 ([1], Theorem 5.3.6). Suppose Fn
epi−−−−→

n→∞
F∞.

(i) For any converging sequence (ϑn)n∈N, ϑn ∈ argminFn, it holds necessarily
limn→∞ ϑn ∈ argminF∞.

(ii) If there is a compact set K ⊂ Θ such that ∅ �= argminFn ⊂ K for large
enough n then argminF∞ �= ∅ and

dist(ϑn, argminF∞) −−−−→
n→∞

0

for any sequence (ϑn)n∈N, ϑn ∈ argminFn.
(iii) If, additionally, argminF∞ is a singleton {ϑ} then

ϑn −−−−→
n→∞

ϑ

for any sequence (ϑn)n∈N, ϑn ∈ argminFn.
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