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Statistical modeling for experiments with

sliding levels

Shao-Wei Cheng1, C. F. J. Wu2 and Longcheen Huwang3
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Abstract: Design of experiment with related factors can be implemented
by using the technique of sliding levels. Taguchi (1987) proposed an analy-
sis strategy by re-centering and re-scaling the slid factors. Hamada and Wu
(1995) showed via counter examples that in many cases the interactions cannot
be completely eliminated by Taguchi’s strategy. They proposed an alternative
method in which the slid factors are modeled by nested effects. In this work
we show the inadequacy of both methods when the objective is response pre-
diction. We propose an analysis method based on a response surface model,
and demonstrate its superiority for prediction. We also study the relationships
between these three modeling strategies.

1. Introduction

In many investigations, the experimenters can choose an appropriate interval as
the experimental range for each factor. The overall experimental region is then the
cube formed by the tensor product of these intervals. Such an experimental region
is called regular. However, when some of the factors are related, an appropriate
experimental region becomes irregular and thus cannot be constructed in the usual
manner. Factors are called related when the desirable experimental region of some
factors depends on the level settings of other factors. Design of experiments with
related factors can be implemented by using the technique of sliding levels proposed
by Taguchi [7]. It has been used in practice for a long time but has received scant
attention in the statistical literature. Some examples can be found in [2, 6, 7].
Li et al. [4] proposed a two-stage strategy for the sliding-level experiments whose
desriable experimental region is unknown and needs to be explored during the
experiment. Here the use of sliding is more complicated due to its engineering
needs.

In this article we study the situations in which only one factor is chosen to be slid.
This article is organized as follows. In Section 2, we will review the existing work
on the sliding level technique and show the inadequacy of these methods when the
objective of the experiment is response prediction. In Section 3, we will propose an
analysis method based on a response surface model, and demonstrate its superiority
for prediction. In Section 4, an illustration with a welding experiment will be given.
In Section 5, some results are presented based on a comparison between the response
surface approach and Taguchi’s approach. A summary is given in the last section.
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2. Existing approaches

Taguchi [7] justified the use of sliding levels by the rationales of bad region avoidance
and interaction elimination. The analysis strategy in his approach for sliding levels
can be interpreted as a re-centering and re-scaling (RCRS) transformation, which
transforms an irregular experimental region into a regular one as shown in Fig 1. In
data analysis, this transformation is essentially to code the factor levels by regarding
the slid factor as a non-slid factor. For example, (+1, −1) is used for the conditional
low and high levels respectively in a two-level slid factors, and (−1, 0, +1) for the
conditional low, median, and high levels respectively in a three-level slid factors
with equally spaced levels. Consider two factors A and B, in which there are several
sliding levels for B at each level of A. It is easy to show that an interaction in the
original factor space is eliminated after RCRS only if the relationship between the
mean response E(y) and factors A and B satisfies the relationship:

(1) E(y) = g1(xA) + g2

[
xB − cB(xA)

rB(xA)

]
,

where g1 and g2 are two arbitrary functions and the c’s and r’s represent the
centering and scaling constants with those for factor B depending on factor A.
Furthermore, to eliminate the interaction between A and B for mean response
satisfying (1), a proper choice of sliding levels based on c’s and r’s is required. As
pointed out via a counter example by Hamada and Wu [3], inadequately locating
the sliding levels will not remove the interaction. Similarly, an inadequate choice of
scale will not eliminate the interaction neither.

One can infer that the sliding levels must be chosen properly in order to elim-
inate a potentially removable interaction. To achieve this, one has to know the
exact relationship between the factors and the mean response E(y). Because this
relationship is not available, an experiment needs to be carried out. Therefore the
advantage of interaction elimination by using sliding levels is questionable. Even
though the related factors’ interactions can be removed by proper centering and
scaling, important information like robustness may be masked (see [3], for more
details).

Hamada and Wu [3] proposed a nested-effects modeling (NEM) approach by using
a regression model with nested effects. Because the actual settings of the slid factor
are different at each level combination of its related factors, sliding-levels designs

Fig 1. Re-centering and re-scaling transformation of experimental region.
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can be viewed as nested designs. Hence, one can model the effect of the nested (slid)
factor separately at each level combination of its related factors, i.e., the effects of
the slid factor are defined conditional on the level combinations of its related factor.
Consider the case of two related factors where factor B’s levels depend on A’s. The
factor A can be either qualitative or quantitative. For qualitative A, Hamada and
Wu [3] proposed analyzing the effect of B at each level of A. If B is quantitative
with more than two levels, the linear and quadratic effects of B at the ith level of
A (denoted by Bl|Ai and Bq|Ai) should be analyzed. Furthermore, the effects of
factor A are analyzed as well. For instance, if A is qualitative with three levels, the
two contrasts A1,2 and A1,3 can be considered, where Ai,j represents the contrast
between levels i and j of A, i.e., it denotes the difference between the average
responses over the conditional levels of B at level i of A and those at level j of A.
Because the levels of B vary with the level of A, this is different from the usual
meaning of Ai,j in factorial designs with regular experimental region, where the
same set of levels of B is used for i and j. If A is quantitative, the linear and
quadratic effects of A (i.e., Al and Aq in the linear-quadratic system defined in [8])
should be substituted for A1,2 and A1,3. The same reasoning will show that the
meanings of Al and Aq are again different from the usual ones.

The analysis using a regression model with nested effects resolves the problem
that the sliding-levels design may not eliminate the interaction between related
factors. It also provides more insight into the response-factor relationship and di-
rectly accounts for the relationship between related factors, which can be used to
choose optimum factor levels. However, as far as response prediction is concerned,
the nested effects analysis is incapable of accomplishing the task for quantitative A.

When A is a quantitative factor, we may need to predict the response at a setting
whose value of A, say x∗

A, is not included in the experimental plan. To achieve this,
we need to have a fitted model of B at A = x∗

A. However, such a model is not
available in the NEM approach because an NEM offers fitted models of B only
for each levels of A and x∗

A is not one of the levels in the experiment. Therefore,
response prediction at x∗

A cannot be achieved in an NEM approach. Because the
effects of B are defined and analyzed conditional on A in an NEM, A is treated like
a qualitative factor in the analysis about B. This results in the difficulty of response
prediction at x∗

A. Turning to the RCRS approach for performing prediction, we have
to know the centering and scaling constants of B at x∗

A, i.e., cB(x∗
A) and rB(x∗

A),
so that B can be appropriately transformed at A = x∗

A before substituting into
the fitted RCRS model. However, both cB(x∗

A) and rB(x∗
A) may not be available to

the investigators. In the next section, we shall propose an analysis method based
on the response surface methodology and demonstrates its superiority for response
prediction over the two existing approaches.

3. An analysis strategy based on response surface modeling

Response surface modeling (RSM) is an effective tool for building empirical models
for the input and output variables in an experiment. In RSM, a true model is often
expressed as y = f(x1, x2, . . . , xk)+ε, where y is the observed response, f a function
of k quantitative factors x1, x2, . . ., xk, and ε an error term. For simplicity, the lowest
level of a factor is coded as −1 and the highest level as +1. The function f represents
the response surface, which depicts the true relationship between the response and
factors. Because the form of f is often unknown, RSM replaces and approximates
f by a polynomial model of degree d in the xi’s. In practical applications, d is often
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chosen to be one or two, and three when the response surface is expected to be more
complicated and there are sufficient degrees of freedom. Fourth and higher degree
polynomials are rarely used because they are not as effective as semi-parametric
or nonparametric models. Further discussion on the response surface methodology
can be found in [1] and [5].

In a sliding-level experiment, the adequate experimental region, denoted by RE ,
usually has an irregular shape in contrast to the regular region in conventional
factorial experiments. In such circumstances, the RSM can still be applied by first
finding a cuboidal region that covers exactly the RE as follows. For each factor, let
its lowest actual setting be coded as −1 and the highest actual setting as +1. Other
settings of the factor is then proportionally coded according to their distances from
the lowest one. In this coding, the cuboidal region [−1, +1]k is the smallest cube to
cover the RE . We call [−1, +1]k the modeling region and denote it by RM . The RSM
can then be applied in the modeling region to develop an empirical model. Unlike
factorial designs with regular experimental region, the design points in a sliding-level
experiment do not spread uniformly on the whole modeling region. Because there
are no design points located in RM\RE , we have no information about the response
surface over RM\RE . Therefore, the fitted model may fit well only in RE , but not in
the whole RM . Another issue concerns the choice of appropriate polynomial models
for the approximation of the true response surface. For sliding-level experiments,
should we still use a dth-order polynomial model? This will be further explained
later. When a fitted model is obtained, prediction can be easily done in the RSM
approach. Its prediction is an interpolation in RE but an extrapolation in RM\RE .
An illustration of the RSM strategy will be given in Section 4.

Consider a nine-run experiment with factors A and B, in which A has three
levels and conditional on each level of A, B has three sliding levels. The NEM for
the experiment can be written as:

(2) f(B|Ai) = bi
0 + bi

l(Bl|Ai) + bi
q(Bq|Ai), i = −1, 0, 1,

where bi
0, bi

l and bi
q are the conditional constant, linear, and quadratic main effects

of B given A = i. Because A has three levels, the NEM has nine effects and therefore
is saturated. On the other hand, a second-order RSM model for the experiment has
only six effects. Because the NEM is saturated, it is clear that the RSM model is
a submodel of the NEM. In other words, we can impose some constraints on the
parameters of the NEM to obtain the RSM model. To find these constraints, we
re-parameterize the NEM in (2) in terms of the coding based on the RSM as follows:

(3) f(xB |xA) = αxA
+ βxA

xB + γxA
x2

B , xA = −1, 0, 1,

where xB is coded according to the RSM approach but nested on xA, and αxA
, βxA

,
and γxA

are the zero-order, first-order, and second-order effects of B conditional on
A = xA, respectively. Note that for xA = i, xB is a linear transformation of Bl|Ai,
and x2

B is a linear combination of 1, Bl|Ai, and Bq|Ai. By equating the NEM in
(3) and the following second-order RSM model:

(4) f(xA, xB) ≈ λ0 + λ1xA + λ2xB + λ11x
2
A + λ22x

2
B + λ12xAxB ,

we obtain the following relationships:

αxA
= λ0 + λ1xA + λ11x

2
A,

βxA
= λ2 + λ12xA,(5)

γxA
= λ22.
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The equations in (5) indicate that the three conditional second-order effects of B
(i.e., γi’s) must be identical in the second-order RSM model, which save two degrees
of freedom; the three conditional first-order effects of B (i.e., βxA

’s) must satisfy a
linear constraint, which save one degree of freedom. The saving of three degrees of
freedom explains why the RSM model has three parameters fewer than the NEM.

If the restrictions on βxA
’s and γxA

’s in (5) are considered to be too rigid, we
can add more parameters in the RSM model so that the corresponding βxA

’s and
γxA

’s can be free of the constraints as shown by the following relationships:

αxA
= λ0 + λ1xA + λ11x

2
A,

βxA
= λ2 + λ12xA + λ112x

2
A,(6)

γxA
= λ22 + λ122xA + λ1122x

2
A.

The resulting RSM model will be:

f(xA, xB) ≈ λ0 + λ1xA + λ11x
2
A

+ (λ2 + λ12xA + λ112x
2
A)xB

+ (λ22 + λ122xA + λ1122x
2
A)x2

B

= λ0 + λ1xA + λ2xB + λ12xAxB + λ11x
2
A + λ22x

2
B

+ λ112x
2
AxB + λ122xAx2

B + λ1122x
2
Ax2

B .

By adding three higher-order effects x2
AxB , xAx2

B , and x2
Ax2

B in the model (4), the
RSM model has the same number of parameters and same capacity of estimation
as the saturated NEM.

From the previous explanation, it is observed that the conventional RSM ap-
proach of using a dth-order model can be inappropriate for data from sliding-level
experiments. For example, if a second-order model is adopted, some implicit con-
straints that can be impractical are placed on βxA

’s and γxA
’s. However, if the

experimenter would like to use a more complicated model, such as a third-order
model, there are not enough degrees of freedom for estimating all parameters.

Another interesting observation about the relationship between NEM and RSM
model can be obtained from the equations in (6). Consider, for example, the three
conditional zero-order effects, αxA

’s. They are individually estimated at each level
of A. From (6), αxA

’s can be expressed as a quadratic polynomial of xA with
coefficients from parameters in the RSM model. To estimate these parameters, we
can first estimate the αxA

’s, denoted by α̂xA
, by least squares and then solve the

equations α̂xA
= λ0 + λ1xA + λ11x

2
A, for xA = −1, 0, 1, to obtain λ̂0, λ̂1, and

λ̂11. In other words, for x∗
A which is not in {−1, 0, 1}, we can predict αx∗

A
by using

λ̂0+ λ̂1x
∗
A + λ̂11(x∗

A)2. The same procedure can be applied to βxA
’s and γxA

’s in (6).
It is then clear why and how the RSM model can be used for prediction. Suppose

that we want to predict the value of E(y) at (x∗
A, x∗

B), where x∗
A is not included

in the experimental plan. From the argument given in Section 2, the NEM cannot
be used for prediction at x∗

A because no data are collected at x∗
A for estimating the

conditional effects αx∗
A
, βx∗

A
, and γx∗

A
. However, the RSM model treats αxA

, βxA
,

and γxA
as continuous (second-order) polynomials over xA. From this viewpoint

and (6), the predicted value of E(y) at (x∗
A, x∗

B) is simply α̂x∗
A
+β̂x∗

A
x∗

B+γ̂x∗
A
x∗

B
2,

where α̂x∗
A
, β̂x∗

A
, and γ̂x∗

A
are obtained by substituting x∗

A into the right hand side
expressions in (6) with λ’s replaced by λ̂’s. Note that in the prediction procedure
using RSM approach, the αxA

, βxA
, and γxA

are assumed to be continuous functions
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over xA and their changes over xA are assumed to follow the quadratic polynomials
in (6). These assumptions explain why prediction is feasible in the RSM, but not
in the NEM. In other words, the RSM approach regards the three levels of A as
quantitative and utilizes some continuity assumptions on A for prediction. When
similar assumptions are imposed on an NEM, prediction using NEM can be feasible.

We will show in Sections 4 and 5 that the RSM model for sliding-level experiment
can suffer from severe collinearity between the effects of the slid factor and the
effects of its related factors. The RSM model is therefore not a good choice for the
purpose of identifying important effects, especially when it is required to perform
model selection, such as forward selection or Cp. In these circumstances, we can
adopt the following hybrid strategy that combines NEM and RSM as follows.

(i) It starts from a NEM, which has better orthogonality between effects in the
models.

(ii) After important effects are identified, we can translate the fitted NEM into an
RSM model through equations that relate the parameters in the two mod-
els (such as (6)). The resulting RSM model can then be used for response
prediction.

4. Illustration: a welding experiment

We illustrate the three modeling strategies and compare their results by using data
from a welding experiment reported in Chen, Ciscon, and Ratkus [2]. There are
eight factors in the experiment: pulse rate (A), weld time (B), cool time (C), hold
time (D), squeeze time (E), air pressure (F ), current percentage (G), tip size (H).
Among them, the pulse rate and the weld time are related factors, i.e., for lower
pulse rate, the adequate weld time should be set longer in order to produce weld
points with acceptable quality. An 18-run orthogonal array, OA(18, 2137), with a
slight modification was adopted to study the eight factors. The planning matrix
of these factors are given in Table 1 (unfortunately, the units of these factors was
not reported). Factors A and H have two levels and other factors have three levels.
Note that the column H in Table 1 is obtained by collapsing a three-level factor

Table 1

Planning matrix of the welding experiment

A B C D E F G H
2 low 6 10 15 50 85 3/8
2 low 12 18 20 55 90 1/4
2 low 18 26 25 60 95 3/8
2 median 6 10 20 55 95 3/8
2 median 12 18 25 60 85 3/8
2 median 18 26 15 50 90 1/4
2 high 6 18 15 60 90 3/8
2 high 12 26 20 50 95 3/8
2 high 18 10 25 55 85 1/4
4 low 6 26 25 55 90 3/8
4 low 12 10 15 60 95 1/4
4 low 18 18 20 50 85 3/8
4 median 6 18 25 50 95 1/4
4 median 12 26 15 55 85 3/8
4 median 18 10 20 60 90 3/8
4 high 6 26 20 60 85 1/4
4 high 12 10 25 50 90 3/8
4 high 18 18 15 55 95 3/8
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Table 2

Actual settings of pulse rate and weld time

weld time

pulse rate low median high
2 32 36 40
4 18 22 26

20 25 30 35 40

2.
0

2.
5

3.
0

3.
5

4.
0

weld time

pu
ls

e 
ra

te

Fig 2. Adequate experimental region of pulse rate and weld time.

in the OA(18, 2137) to a two-level factor (see Wu and Hamada, [8], Section 7.8).
The actual settings of low, median, and high levels in the column B depend on the
levels of A as shown in Table 2. We regard the area enclosed by solid lines in Fig 2
as the adequate experimental region, i.e., RE .

The main difference between the three modeling techniques is reflected in the
effect coding of the slid factor B. For the RCRS model, because the RE is trans-
formed into a square after re-centering and re-scaling, the effect coding of B is the
same as in a non-slid factor. Therefore, by applying the linear-quadratic system in
[8], Section 5.6, the linear effect of B codes the low, median, and high levels as −1,
0, and 1, respectively, and the quadratic effect of B as 1, −2, 1, respectively. They
are shown in the columns labeled by Bl and Bq of Table 3. Note that, although
we still call Bl and Bq the main effects of B, they are no longer the main effects
of weld time. Instead, the B after RCRS represents a new factor which is a linear
combination of weld time and pulse rate. For example, from Bl = −1 in Table 3,
we can see that the low level of the new factor is the left hand side boundary of RE

in Fig 2 (i.e., the straight line that links the point (weld time, pulse rate)=(32, 2)
and the point (weld time, pulse rate)=(18, 4)) and from Bl = 1 the high level is the
right hand side boundary. For the NEM approach, the effects of B are conditional
on the levels of A. For each level of A, the linear-quadratic system is applied to
generate the Bl|A1, Bq|A1, Bl|A2, and Bq|A2 as shown in Table 3. For the RSM
approach, because the lowest actual setting of B is 18 and the highest actual setting
is 40, we code 18 as −1 and 40 as +1, and the other settings, 22, 26, 32, and 36,
are proportionally coded as − 7

11 , − 3
11 , 3

11 , and 7
11 , respectively. These are shown in

the column labeled as xB in Table 3. The x2
B is the componentwise square of xB .

In the data analysis, we consider the models that contain all main effects of
factors C-H and five effects generated from factors A and B. For the RCRS, the
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Table 3

Effect coding of pulse rate and weld time for the three modeling techniques

factors RCRS NEM RSM

A B Al Bl Bq Al Bl|A1 Bq |A1 Bl|A2 Bq |A2 xA xB x2
B

2 low(32) −1 −1 1 −1 −1 1 0 0 −1 0.273 0.074
2 median(36) −1 0 −2 −1 0 −2 0 0 −1 0.636 0.405
2 high(40) −1 1 1 −1 1 1 0 0 −1 1 1
4 low(18) 1 −1 1 1 0 0 −1 1 1 −1 1
4 median(22) 1 0 −2 1 0 0 0 −2 1 −0.636 0.405
4 high(26) 1 1 1 1 0 0 1 1 1 −0.273 0.074

five effects are Al, Bl, Bq, AlBl, and AlBq, where AlBl and AlBq are interactions
generated by the componentwise multiplication of Al and Bl, and Al and Bq, re-
spectively. For the NEM, the five effects are Al, Bl|A1, Bq|A1, Bl|A2, and Bq|A2.
For the RSM, the five effects are xA, xB , x2

B , xAxB , and xAx2
B , where xAxB and

xAx2
B are interactions generated by the componentwise multiplication of xA and

xB , and xA and x2
B , respectively. Although the five effects are coded in different

ways for each modeling technique, the vector spaces spanned by any set of the five
effects are identical. Consequently, the effects of factors C-H will have the same
analysis results in the three models. Because of this reason, we only give the analy-
sis results of the five effects generated by A and B, which include their estimated
values, t-values, and p-values, under the RCRS, the NEM, and the RSM, in Ta-
bles 4, 5, and 6, respectively. From these tables, we have some interesting findings
presented in the following.

1. The Bl|A1 and Bl|A2 are the linear effects of B conditional on two different
levels of A. In Table 5, we find that the two conditional effects have different
magnitudes. When the pulse rate is 2, the weld time has a strong linear ef-
fect (significant Bl|A1). When the pulse rate is changed to 4, the linear effect
of weld time (Bl|A2) is insignificant. After re-centering and re-scaling, these
two effects are transformed into two parameters, Bl and AlBl, in Table 4.
The Bl represents the average of the two conditional linear effects (78.96 =
((−23.75) + 181.67)/2) and the interaction AlBl represents the difference be-
tween the two conditional linear effects (−102.71 = ((−23.75)−181.67)/2). It
is then clear why Bl and AlBl are both significant. The same argument can
be applied to Bq|A1 and Bq|A2 in Table 5 and Bq and AlBq in Table 4. Be-
cause Bq|A1 and Bq|A2 has rather similar magnitudes (−27.92 and −41.67),
it explains why their difference (i.e., AlBq) is insignificant.

2. By comparing xA in Table 6 and Al in Tables 4 and 5, we find surprisingly
that Al is significant while xA is insignificant even though Al and xA have the
same coding in Table 3. By a further investigation of the correlations between
the estimated effects (given in Table 7), it is seen that the insignificance of xA

is caused by the severe collinearity between xA and xB . It also results in the
other three high correlations in Table 7 because other effects are also defined
by xA and xB . Note that in the planning matrix in Table 1, all effects in
the models based on the RCRS and the NEM are mutually orthogonal. The
appearance of severe collinearity will be further explained in Section 5.
Suppose that severe collinearity is a serious concern but analysis based on
RCRS or NEM is not an option to the investigators. A possible choice for
reducing the collinearity might be to transform the variables. For example,
after replacing weld time in Table 1 by a new variable, pulse rate times weld
time, the RSM model will exhibit less correlation between the parameter
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Table 4

Analysis based on RCRS

value t-value p-value
Al −81.04 −6.20 0.00
Bl 78.96 4.93 0.00
Bq −34.79 −3.76 0.00

AlBl −102.71 −6.42 0.00
AlBq −6.88 −0.74 0.46

Table 5

Analysis based on NEM

value t-value p-value
Al −81.04 −6.20 0.00

Bl|A1 181.67 8.03 0.00
Bq |A1 −27.92 −2.14 0.04
Bl|A2 −23.75 −1.05 0.30
Bq |A2 −41.67 −3.19 0.00

Table 6

Analysis based on RSM

value t-value p-value
xA 7.72 0.11 0.92
xB 18.62 0.07 0.95
x2

B −789.34 −3.76 0.00
xAxB −1287.06 −4.76 0.00
xAx2

B −155.98 −0.74 0.46

Table 7

Correlation matrix of the estimated effects under the RSM model

xB x2
B xAxB xAx2

B

xA 0.96 0.00 0.00 0.91
xB 0.00 0.00 0.99
x2

B 0.99 0.00
xAxB 0.00

70 80 90 100

2.
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3.
0

3.
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4.
0

weld time * pulse rate
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Fig 3. Transformed experimental region.

estimates because the transformed experimental region (given in Fig 3) is
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more similar to a rectangle than the original experimental region (as shown
in Fig 2).

3. From Table 3, we can understand that for the main effects of the slid factor
(which include Bl and Bq in RCRS, Bl|Ai and Bq|Ai in NEM, and xB and x2

B

in RSM), the coding based on RCRS can best preserve orthogonality property
in a planning matrix, followed by the NEM, and RSM being the worst.

5. Relationship between RCRS and RSM models

To explain the relationship between the RCRS and RSM models, consider an RCRS
model for the nine-run experiment that contains all main effects and a linear-by-
linear interaction as follows:

f(xA, xB) ≈ η0 + η1xA + η11x
2
A + η2

[
xB − mB(xA)

lB(xA)

]
(7)

+ η22

[
xB − mB(xA)

lB(xA)

]2

+ η12xA

[
xB − mB(xA)

lB(xA)

]
,

where mB(xA) and lB(xA) are the center and range, respectively, of the experimen-
tal region chosen for B when A is conditioned on xA. For simplicity, assume that
mB is a linear function of xA, i.e., mB(xA) = s + t xA, and lB is a constant, i.e.,
lB(xA) = r (same shape as Fig 2). By substituting them into (7) and expanding (7)
in a polynomial form, we obtain an RSM model, consisting of the factorial effects
xA, x2

A, xB , x2
B , and xAxB , as follows:

f(xA, xB) ≈
[
η0 + (s2/r2)η22 − (s/r)η2

]
+

[
η1 − (t/r)η2 − (s/r)η12 + (2st/r2)η22

]
xA(8)

+
[
η11 + (t2/r2)η22 − (t/r)η12

]
x2

A +
[
(1/r)η2 − (2s/r2)η22

]
xB

+
[
(1/r2)η22

]
x2

B +
[
(1/r)η12 − (2t/r2)η22

]
xAxB .

Note that in (8), the parameters of factorial effects are functions of η’s and r, s,
and t. The η’s represent the relationship between factors and response in the RCRS
model, and r, s, and t characterize the shape of the irregular experimental region.
The shape has been eliminated in the RCRS model after applying the transforma-
tion xB−mB(xA)

lB(xA) on B. However, mB and lB still affect the polynomial terms of
the RSM model in (8). This example shows that an RSM model for sliding-level
experiments contains two components: a description of the relationship between
factors and response, and a description of the irregular shape of the experimental
region. The two components are intertwined and undistinguishable in the parame-
ters of an RSM model. On the other hand, a fitted model based on RCRS only
contains information on the first component because the irregularity of shape has
been eliminated after re-centering and re-scaling. This observation is supported by
the appearance of strong collinearity between xA and xB in Table 7. Note that after
RCRS, the main effects of A and B (in Table 4) are orthogonal. However, in the
RSM model such strong collinearity inevitably appears because: (i) the parameters
in the RSM model are influenced by the irregular shape of experimental region, and
(ii) the irregular shape (i.e., RE in Fig 2) reflects the fact that B is smaller when
A is larger.

In general, the shape of the chosen experimental region can be arbitrary, and mB

and lB can have more complicated forms than what was assumed above. However,
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similar remarks and conclusions are still applicable.
Suppose that the relationship between mean response and factors A and B satis-

fies (1). When the mB and lB in (7) are appropriately chosen so that the interaction
elimination after RCRS is achieved, the η12 in (7) becomes zero. In this case, the
RCRS model in (7) does not nominally contain an interaction effect, but an inter-
action (i.e., xAxB) is still present in the RSM model (8). The apparent discrepancy
lies in the different approaches they take to handle the irregular shape of the ex-
perimental region. This observation partially supports the interaction elimination
rationale in RCRS from a different perspective. Because the fitted model after
RCRS does not properly take into account the irregular shape of the experimental
region, it can, in most cases, utilize fewer effects than an RSM model to achieve a
comparable coefficient of determination (i.e., R2). Some interaction effects (such as
the xAxB in the case) are not required for the RCRS model.

6. Summary

For the purpose of response prediction for sliding-level experiments, we point out
the shortcomings of two existing approaches, RCRS and NEM, when the related
factors are quantitative. An alternative analysis strategy is proposed based on the
response surface modeling, in which the response prediction can be implemented
in a straightforward manner. Through the comparisons of the three strategies, we
present several interesting conclusions, which lead to better understanding of the
concepts, properties, limitations, and implicit assumptions behind each strategy.
None of the three methods dominates the others in every aspects. The best strategy
for the investigators depends on the information they have about the irregular
region and the objectives of the experiment. Although we do not discuss the design
issues in this article, the choice of the modeling strategy will influence the choice
of the best design. This and other issues in modeling deserve further study.
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