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Nearly-integrable perturbations of the

Lagrange top: applications of

KAM-theory∗
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Groningen University, RWTH Aachen and Groningen University

Abstract: Motivated by the Lagrange top coupled to an oscillator, we consider
the quasi-periodic Hamiltonian Hopf bifurcation. To this end, we develop the
normal linear stability theory of an invariant torus with a generic (i.e., non-
semisimple) normal 1 : −1 resonance. This theory guarantees the persistence of
the invariant torus in the Diophantine case and makes possible a further quasi-
periodic normal form, necessary for investigation of the non-linear dynamics.
As a consequence, we find Cantor families of invariant isotropic tori of all
dimensions suggested by the integrable approximation.

1. The Lagrange top

The Lagrange top is an axially symmetric rigid body in a three dimensional space,
subject to a constant gravitational field such that the base point of the body-
symmetry (or figure) axis is fixed in space, see Figure 1. Mathematically speak-
ing, this is a Hamiltonian system on the tangent bundle TSO(3) of the rota-
tion group SO(3) with the symplectic 2-form σ. This σ is the pull-back of the
canonical 2-form on the co-tangent bundle T ∗SO(3) by the bundle isomorphism
κ̃ : TSO(3) → T ∗SO(3) induced by a non-degenerate left-invariant metric κ on
SO(3), where κ̃(v) = κ(v, ·). The Hamiltonian function H of the Lagrange top is
obtained as the sum of potential and kinetic energy. In the following, we identify
the tangent bundle TSO(3) with the product M = SO(3) × so(3) via the map
vQ ∈ TSO(3) �→ (Q, TIdL−1

Q v) ∈ SO(3) × so(3), where so(3) = TIdSO(3) and
LQ denotes left-translation by Q ∈ SO(3). We assume that the gravitational force
points vertically downwards. Then, the Lagrange top has two rotational symme-
tries: rotations about the figure axis and the vertical axis e3. We let S ⊂ SO(3)
denote the subgroup of rotations preserving the vertical axis e3. Then, for a suitable
choice of the space coordinate system (e1, e2, e3), the two symmetries correspond to
a symplectic right action Φr and to a symplectic left action Φl of the Lie subgroup
S on M . By the Noether Theorem [1, 4], these Hamiltonian symmetries give rise to
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Fig 1. The Lagrange top in the vertical gravitational force field.

integrals Mr and Ml of the Hamiltonian H: the angular momenta along the figure
axis and along the vertical axis, respectively. These integrals induce the so-called
energy-momentum map EM := (Mr,Ml, H) : M → R

3.
The inverse images of the map EM divide the phase space M into invariant sets

of the Hamiltonian system XH associated with H: for a regular value m = (a, b, h) ∈
R3, the set EM−1(m) ⊂ M is an XH -invariant 3-torus; for a critical value m, this
set is a ‘pinched’ 3-torus, a 2-torus or a circle. This division is a singular foliation
of the phase space by XH -invariant tori. This foliation gives rise to a stratification
of the parameter space: the (a, b, h)-space is split into different regions according to
the dimension of the tori EM−1(a, b, h). To describe the stratification, one applies a
regular reduction [1, 28] by the right symmetry Φr to the three-degrees-of-freedom
Hamiltonian H as follows. For a fixed value a, we deduce from H a two-degrees-of-
freedom Hamiltonian Ha on the four-dimensional orbit space Ma = (Mr)−1(a)/S
under the Φr-action. The reduced phase space Ma can be identified with the four-
dimensional submanifold Ra =

{
(u, v) ∈ R

3 × R
3 : u · u = 1, u · v = a

}
, compare

with [13, 16]. This manifold Ra inherits the symplectic 2-form ωa given by

ωa(u, v)
(
(x, y), (p, q)

)
= x̂ · q̂ − ŷ · p̂ + v · (v̂ × p̂), (1.1)

where (x, y) = (x̂ × u, x̂ × v + ŷ) ∈ T(u,v)Ra, (p, q) = (p̂ × u, p̂ × v + q̂) ∈ T(u,v)Ra.
Here · and × denote the standard inner and cross product of R3, respectively. The
reduced Hamiltonian Ha : Ra → R obtains the form

Ha(u, v) =
1
2
v · v + cu3 + ρa2,

where c > 0 and ρ ∈ R. Observe that Pa = (0, 0, 1, 0, 0, a) ∈ Ra is an isolated
equilibrium of Ha. For each a, the point Pa — a relative equilibrium of the full
system H — corresponds to a periodic solution of H, namely a rotation about the
vertical axis.

It is known [13, 17] that a stability transition of the rotations Pa occurs as
the angular momentum value a passes through the critical value a = a0 = 2

√
c.

Physically, this transition is referred to as gyroscopic stabilization of the Lagrange
top. A mathematical explanation for the stabilization is that Floquet matrices Ωa of
the periodic orbits Pa changes from hyperbolic into elliptic as a passes through a0,
see Figure 2. In fact, the Lagrange top undergoes a (non-linear) Hamiltonian Hopf
bifurcation [13, 17]. A brief discussion of this bifurcation is given in Section 2.1



288 H. Broer et al.

Elliptic: a > a0
Resonant: a = a0Hyperbolic: a < a0

i
2
a0

− i
2
a0

Fig 2. Eigenvalue configuration of Floquet matrix Ωa as a passes through a0.
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Fig 3. Sketch of the local stratification by invariant tori near the Hamiltonian Hopf bifurcation
point in the (a, b, h)-space. After a suitable reparametrization, the surface is a piece of the swal-

lowtail catastrophe set [17, 29, 37]. The parameter µ2 is given by a2

4
− c.

below; for an extensive treatment see [29]. Following [13, 17, 29, 30], the local
stratification of the parameter space — associated with the singular foliation by
invariant tori — near the bifurcation point is described by a piece of the swallowtail
catastrophe set from singularity theory [37] as follows. The one-dimensional singular
part of this surface is the stratum associated with the periodic solutions, the regular
part forms the stratum of 2-tori and the open region above the surface is the stratum
of Lagrangian 3-tori, compare with Figure 3.

We are interested in a perturbation problem where the Lagrange top is weakly
coupled to an oscillator with multiple frequencies, e.g., the base point of the top is
coupled to a vertically vibrating table-surface by a massless spring, see Figure 4.
In this example, the spring constant, say ε, plays the role of the perturbation
parameter.
More generally, we consider the Hamiltonian perturbation Hε of the form

Hε = H + G + εF, (1.2)

where H and G are the Hamiltonians of the Lagrange top and of the quasi-periodic
oscillator, respectively. Here the function F depends on the coupling between the
top and the oscillator. We assume that the quasi-periodic oscillator has n ≥ 1 fre-
quencies and is Liouville-integrable [1, 4]. Then, the unperturbed integrable Hamil-
tonian H0 = H + G contains invariant (n + 1)-, (n + 2)- and (n + 3)-tori. Near
gyroscopic stabilization of the Lagrange top, this Hamiltonian H0 gives a similar



Nearly-integrable perturbations of the Lagrange top 289

Fig 4. The Lagrange top coupled with a vibrating table-surface by a spring.

(local) stratification by tori as sketched in Figure 3 in a parameter space, but with
invariant (n + 1)-, (n + 2)- and (n + 3)-tori, for details see [7]. Our concern is with
the fate of these invariant tori for small but non-zero ε.

By KAM theory [2, 10, 12, 27, 33, 35, 39], the ‘majority’ of the invariant tori from
the local stratification survives small perturbations. They form Whitney-smooth
Cantor families, parametrized over domains with positive measure. The purpose
of the present paper is to describe the persisting families of tori in terms of a
quasi-periodic Hamiltonian Hopf bifurcation [7, 10]. From [13, 17] it is known that
the Lagrangian torus bundle in the unperturbed Lagrangian top contains non-
trivial monodromy. More precisely, we consider the local stratification by tori as
sketched in Figure 3. Let D be a punctured disk in the stratum of Lagrangian 3-tori
which transversally intersects the ‘thread’ (the 1-dimensional curve associated with
unstable periodic solutions). Then, the Lagrangian torus bundle with the boundary
∂D ∼= S1 as the base space is non-trivial. From this we conclude that the Lagrangian
(n+2)-torus bundle of the unperturbed Hamiltonian H0 has non-trivial monodromy.
We like to mention that, in view of the global KAM theory [6], there exists a
proper extension of the non-trivial monodromy in the integrable Lagrangian torus
bundle, to the nearly-integrable one. In this sense, we may say that the non-trivial
monodromy, that goes with the Hamiltonian Hopf bifurcation and is centered at
the thread, survives a small non-integrable perturbation.

2. Hamiltonian Hopf bifurcations of equilibria, periodic and
quasi-periodic solutions

The above persistence problem is part of a more general study of a quasi-periodic
Hamiltonian Hopf bifurcation to be discussed in Section 2.2 below. This quasi-
periodic bifurcation can be considered as a natural extention of the Hamiltonian
Hopf bifurcation of equilibria [29]. Let us first recall certain facts about the latter.

2.1. The Hamiltonian Hopf bifurcation of equilibria

We consider a two-degrees-of-freedom Hamiltonian on R
4 = {z1, z2, z3, z4} with

the standard symplectic 2-form dz1 ∧ dz3 + dz2 ∧ dz4. Let Ĥ = Ĥµ be a family
of Hamiltonian functions with the origin as an equilibrium. Assume that for µ =
µ0, the linearized Hamiltonian system (at the origin) has a double pair of purely
imaginary eigenvalues with a non-trivial nilpotent part.1 Moreover, as µ passes

1In this case, we say that the Hamiltonian Ĥ is in generic or (non-semisimple) 1 : −1 resonance
at the origin for µ = µ0. Notice that the linear part at the origin is indefinite.
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through the value µ0, the eigenvalues of the linear part (at the origin) behave as
follows: as µ increases a complex quartet moves towards the imaginary axis, meeting
there for µ = µ0 and splitting into two distinct purely imaginary pairs for µ > µ0,
compare with Figure 2. This bifurcation is referred to as a generic Hamiltonian Hopf
bifurcation, provided that a certain generic condition on the higher order terms is
met.

More precisely, we normalize the Hamiltonian Ĥ with respect to the quadratic
part of Ĥ. This gives us the Birkhoff normal form

Ĥ = (ν1(µ) + λ0)S + N + ν2(µ)M + b1(µ)M2

+ b2(µ)SM + b3(µ)S2 + h.o.t., (2.1)

where M = 1
2 (z2

1 + z2
2), S = z1z4 − z2z3 and N = 1

2 (z2
3 + z2

4), see [24, 29, 30].
Here λ0 
= 0, and ν1(0) = 0 = ν2(0). The generic condition now requires that
∂ν2
∂µ (µ0) 
= 0 and b1(µ0) 
= 0. We focus on the supercritical case where b1(µ0) > 0.

We may assume that Ĥ is invariant under the S
1-action generated by the flow of

the semi-simple quadratic part S, since this symmetry can be pushed through the
normal form (2.1) up to an arbitrary order [29]. Then, the periodic solutions of
Ĥ are given by the singularities of the energy-momentum map (Ĥ, S). Following
[29], this map has a (singularity theoretical) normal form (G, S) where G = N +
δ(µ)M +M2. Indeed, the maps (Ĥ, S) and (G, S) are locally left-right equivalent by
an S

1-equivariant origin-preserving diffeomorphism on R
4 and an origin-preserving

diffeomorphism on R
2. As a result, the set of critical values C of (G, S), considered as

the graph over the parameter µ, is diffeomorphic to that of (Ĥ, S), which is a piece
of swallowtail surface [37] in the (δ, S, G)-space. This critical set C determines the
local stratification by leaves of (G, S) near the bifurcation point in the parameter
space: strata of equilibria, periodic orbits and 2-tori. This stratification corresponds
to the situation as sketched in Figure 3, when replacing periodic solutions, 2-tori
and 3-tori by equilibria, periodic orbits and 2-tori, respectively.

Remarks 2.1.

1. The above discussion also applies for the situation where µ is a multi-
parameter [30].

2. In the case where the Hamiltonian Ĥ is not S
1-symmetric, one first applies

a Liapounov-Schmidt reduction to obtain an S
1-symmetric Hamiltonian H

which has the same normal form as Ĥ up to arbitrary order [29, 30, 42]. This
reduction relates the periodic solutions of Ĥ to that of H in a diffeomorphic
way.

2.2. The Hamiltonian Hopf bifurcation of (quasi-) periodic solutions

Motivated by the persistence problem of the Lagrange top coupled to an oscillator,
see Section 1, we consider the quasi-periodic dynamics of Hamiltonian systems with
more degrees of freedom near an invariant resonant torus, where our main interest
is with the normal 1 : −1 resonance. More precisely, our phase space M is given
by T

m × R
m × R

4 = {x, y, z} with symplectic 2-form σ =
∑

dxi ∧ dyi +
∑

dzj ∧
dzj+2, where Tm = Rm/(2πZ)m. This space M admits a free Tm-action given by
(θ, (x, y, z)) ∈ T

m × M �→ (θ + x, y, z) ∈ M . A Hamiltonian function is said to be
T

m-symmetric or integrable if it is invariant under this T
m-action, compare with
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[12, 26]. We consider a p-parameter family of integrable Hamiltonian functions

H(x, y, z; ν) = 〈ω(ν), y〉 +
1
2
〈Jz,Ω(ν)z〉 + h.o.t. , (2.2)

where ν ∈ R
p is the parameter, ω(ν) ∈ R

n, Ω(ν) ∈ sp(4, R) and J is the standard
symplectic 4×4-matrix. By T

m-symmetry all higher order terms are x-independent.
Then the union T =

⋃
ν Tν ⊆ M ×R

p, where Tν = {(x, y, z, ν) : (y, z) = (0, 0)}, is a
p-parameter family of invariant m-tori of H parametrized by ν. Let the torus Tν0 be
in generic normal 1 : −1 resonance, meaning that the Floquet matrix Ω(ν0) at Tν0

has a double pair of purely imaginary eigenvalues with a non-trivial nilpotent part.
Note that for m = 0 we arrive at the setting of the equilibria case [29], compare
with Section 2.1. For m = 1, the invariant submanifolds Tν are periodic solutions
of the Hamiltonian H. For this reason, we speak of the periodic case. Similarly, we
refer to our present setting with m ≥ 2 as the quasi-periodic case.

Let us consider the local (quasi-)periodic dynamics of the family H with m ≥ 1
near the resonant torus Tν0 . To this end, we first reduce the Hamiltonian H by
the T

m-symmetry as follows. For a small fixed value α ∈ R
m, we obtain from the

Hamiltonian H a two-degrees-of-freedom Hα defined on the space Mα = (M/T
m)∩

{y = α}, where M/T
m denotes the orbit space of the T

m-action. More explicitly,
we obtain Hα(z; ν) = H(x, α, z; ν), by identifying Mα with R4 = {z1, z2, z3, z4}.

We may assume that the reduced Hamiltonian Hα is in normal form with re-
spect to the S

1-symmetry generated by the semi-simple part of the quadratic term
1
2 〈Jz,Ω(ν0)z〉 [29]. Then, the full Hamiltonian H is invariant under this circle-
action. We say that the full Hamiltonian H undergoes a generic periodic (m = 1)
or quasi-periodic (m ≥ 2) Hamiltonian Hopf bifurcation at ν = ν0, if the reduced
two-degrees-of-freedom system Hα has a generic Hamiltonian Hopf bifurcation, see
Section 2 and Remark 2.1. As before we restrict to the supercritical case. In the
following, we focus on the quasi-periodic case where m ≥ 2. For a treatment of
the periodic case see [34]. Applying the local analysis of Section 2.1 to the reduced
Hamiltonian Hα, we conclude that the local torus foliation of M near the resonant
torus Tν0 defines a local stratification in a parameter space by m-, (m + 1)- and
(m+2)-tori of the full system H. This stratification is sketched in Figure 5, compare
with Figure 3. Notice that the resonant torus Tν0 corresponds to the quasi-periodic
Hamiltonian Hopf bifurcation point.

Our main goal is to investigate the persistence of the invariant m-, (m + 1)-
and (m + 2)-tori from the local stratification as in Figure 5(a), when the inte-
grable Hamiltonian H is perturbed into a nearly-integrable (i.e., not necessarily
T

m-symmetric) one. Observe that in the example of the Lagrange top coupled with
a quasi-periodic oscillator one has m = n + 1, see Section 1. In the sequel we ex-
amine the persistence of the p-parameter family T =

⋃
ν Tν of invariant m-tori.

This family consists of elliptic, hyperbolic tori and the resonant torus Tν0 , compare
with Figure 5(a). The ‘standard’ KAM theory [2, 12, 26, 31–33, 35, 36, 39] yields
persistence only for subfamilies of the family T , containing elliptic or hyperbolic
tori. The problem is that the resonant torus Tν0 gives rise to multiple Floquet ex-
ponents, compare with Figure 2. To deal with this problem, we develop a normal
linear stability theorem [10], as an extension of the ‘standard’ KAM theory. The
persistence of the (m + 1)- and (m + 2)-tori will be discussed in Section 4.



292 H. Broer et al.

at thread: normally
hyperbolic m-tori

at surface: elliptic (m+1)-tori

above surface: Lagrangian (m+2)-tori

at crease: normally
elliptic m-tori

quasi-periodic Hamiltonian Hopf bifurcation
point (normally resonant 1:-1 torus)µ2

(a) Unperturbed situation

Cantor family of
elliptic (m+1)-tori

Cantor family of
Lagrangian (m+2)-tori

Cantor family of m-tori

(b) Perturbed situation

Fig 5. (a) Singular foliation by invariant tori of unperturbed integrable Hamiltonian H near the
resonant torus in the supercritical case; (b) sketch of the Cantor families of surviving Diophantine

invariant tori in the singular foliation of the perturbed, nearly-integrable Hamiltonian H̃.
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3. The quasi-periodic Hamiltonian Hopf bifurcation: persistence of the
m-tori

In this section we develop the normal linear stability theory, needed for the persis-
tent m-tori [10]. This theory also allows us to obtain a further quasi-periodic normal
form of perturbations, necessary for investigation of the non-linear nearly-integrable
dynamics.

3.1. Normal linear stability: a part of KAM theory

Let us consider a general p-parameter family K = Kν of integrable real-analytic
Hamiltonian functions on the phase space M = T

m × R
m × R

2q = {x, y, z} with
the symplectic 2-form

∑m
i=1 dxi ∧ dyi +

∑q
j=1 dzj ∧ dzj+2. We assume that the

Hamiltonian vector field X = XK associated with K is of the form

Xν(x, y, z) = [ω(ν) + O(|y| , |z|)] ∂

∂x
+ [Ω(ν)z + O(|y| , |z|2)] ∂

∂z
, (3.1)

where ω(ν) ∈ R
m and Ω(ν) ∈ sp(2q, R). Then, the torus family T = ∪νTν , where

Tν = {((x, y, z), ν) ∈ M × R
p : (y, z) = (0, 0)} ,

is an XK-invariant submanifold. Note that the integrable Hamiltonian H given by
(2.2) is a special form of the family K. A typical KAM-stability question is con-
cerned with the persistence of the invariant submanifold T under small perturbation
of the integrable Hamiltonian family K. We refer to Ω(ν) as the Floquet (or normal)
matrix of the torus Tν . The ‘standard’ KAM theory [2, 12, 26, 27, 31–33, 35, 36, 39]
asserts that the ‘majority’ of these invariant tori survives small perturbations, pro-
vided that the unperturbed family satisfies the following conditions:

(a) the Floquet exponents of the torus Tν0 (i.e., the eigenvalues of Ω(ν0)) are
simple;

(b) the matrix Ω(ν0) is non-singular;
(c) the product map ω×Ω : R

p → R
m×sp(2q, R) is transversal to the submanifold

{ω(ν0)}×Orbit Ω(ν0), where Orbit Ω(ν0) denotes the similarity class of Ω(ν0)
by the linear symplectic group;

(d) the internal and normal frequencies satisfy Diophantine conditions.

Let us be more specific about these assumptions. The internal frequencies of the
invariant torus Tν are given by ω(ν) = (ω1(ν), . . . , ωm(ν)), and the normal frequen-
cies consist of the positive imaginary parts of the eigenvalues of Ω(ν). Conditions
(a) and (b) require that the eigenvalues of Ω0 = Ω(ν0) have distinct non-zero eigen-
values. Condition (c) means that the map ω is submersive at ν = ν0 and the map Ω
is a versal unfolding of Ω0 (in the sense of [3, 22]) simultaneously. The Hamiltonian
K is said to be non-degenerate at the torus Tν0 , if it meets conditions (b) and (c).

Remark 3.1. The non-degeneracy has the following geometrical interpretation:
the normal linear part NXν = ω(ν) ∂

∂x + Ω(ν)z ∂
∂z is transversal to the conjugacy

class of NX0 within the space of normally affine Hamiltonian vector fields as in
[3, 10, 22].

Denoted by ωN (ν) = (ωN
1 (ν), . . . , ωN

r (ν)) — called the normal frequencies of the
torus Tν — condition (d) is formulated as follows: for a constant τ > m − 1 and a
parameter γ > 0, we have that∣∣〈ω(ν), k〉 + 〈ωN (ν), �〉

∣∣ ≥ γ |k|−τ
, (3.2)
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for all k ∈ Z
m\{0} and for all � ∈ Z

2, where |�1|+· · ·+|�r| ≤ 2. Due to the simpleness
assumption (a), the number r of the normal frequencies is independent of ν, for ν
sufficiently close to ν0, compare with [12, 26]. The map F : ν �→ (ω(ν), ωN (ν))
is called the frequency map. We denote by Γτ,γ(U) the set of parameters ν ∈ U
such that F(ν) satisfy the non-resonant condition (3.2). Also we need the subset
Γτ,γ(U ′), where the set U ′ ⊂ U is given by

U ′ =
{
ν ∈ U : dist.

(
(ω(ν), ωN (ν)), ∂F(U)

)
> γ

}
. (3.3)

Observe that for γ sufficiently small, the set U ′ is still an non-empty open neigh-
bourhood of ν0 and that Γτ,γ(U ′) ⊂ U ′ ⊂ U contains a ‘Cantor set’ of Diophantine
frequencies with positive measure.

Remarks 3.2.

– Condition (a) ensures that the Floquet matrices Ω(ν) are semi-simple and
that the normal frequencies (after a suitable reparametrization) depend on
parameters in an affine way.

– Let Λ be the set of (ω, ωN ) ∈ Rm × Rr satisfying the Diophantine conditions
(3.2). Then Λ is a nowhere dense, uncountable union of closed half lines. The
intersection Λ ∩ S

m+r−1 with the unit sphere of R
m × R

r is a closed set,
which by Cantor-Bendixson theorem [25] is the union of a perfect set P and
a countable set. Note that the complement of Λ∩ S

m+r−1 contains the dense
set of resonant vectors (ω, ωN ). Since all points of Λ are separated by the
resonant hyperplanes, this perfect set P is totally disconnected and hence a
Cantor set. In S

m+r−1 this Cantor set tends to full Lebesgue measure as γ ↓ 0.
We refer to the set of frequencies (ω(ν), ωN (ν)) satisfying (3.2) as a ‘Cantor
set’ — a foliation of manifolds over a Cantor set.

Though condition (a) is generic,2 it excludes certain interesting examples like
the quasi-periodic Hamiltonian Hopf bifurcation, as it occurs in the example of the
Lagrange top coupled to a quasi-periodic oscillator. Indeed, such systems have a
Floquet matrix with multiple eigenvalues, compare with Figure 2. To deal with this
problem, we have to drop the simpleness assumption. Instead we impose a Hölder
condition on the spectra Spec Ω(ν) of the matrices Ω(ν) as follows. Let U ⊂ R

p be
a small neighbourhood of ν0. Suppose that Ω has a holomorphic extension to the
complex domain

U + r0 = {ν̃ ∈ C
p : ∃ ν ∈ U such that |ν − ν̃| ≤ r0} ⊂ C

p (3.4)

for a certain constant r0 > 0. We say that Ω(ν) is (θ, r0)-Hölder, if there exist
positive constants θ and L such that the following holds: for any ν̃ ∈ U + r0, ν ∈ U
and for any λ̃ ∈ Spec Ω(ν̃), there exist a λ ∈ Spec Ω(ν) such that

∣∣∣Im λ − Im λ̃
∣∣∣ ≤ L |ν − ν̃|θ , (3.5)

where Im denotes the imaginary part. The condition (3.5) holds in particular for
matrices with simple eigenvalues. As an extension of the ‘standard’ KAM theory,
we have the following.

Theorem 3.3 (Normal linear stability [10]). Let K = Kν be a p-parameter
real-analytic family of integrable Hamiltonians with the corresponding Hamiltonian

2The set of simple matrices is dense and open in the matrix space gl(2q, R).
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vector fields given by (3.1). Suppose that K satisfies the non-degeneracy conditions
(b) and (c). Also assume that the matrix family Ω(ν) is (θ, r0)-Hölder, see (3.5).
Then, for γ > 0 sufficiently small and for any real-analytic Hamiltonian family K̃
sufficiently close to K in the compact-open topology on complex analytic extensions,
there exists a domain U around ν0 ∈ R

p and a map

Φ : M × U → M × R
p,

defined near the torus Tν0 , such that,

i. Φ is a C∞-near-the-identity diffeomorphism onto its image;
ii. The image of the Diophantine tori V =

⋃
ν∈Γτ,γ(U ′)( Tν × {ν} ) under Φ

is K̃-invariant, and the restriction of Φ on V conjugates the quasi-periodic
motions of K to those of K̃;

iii. The restriction Φ|V is symplectic and preserves the (symplectic) normal linear
part3 NX = ω(ν) ∂

∂x + Ω(ν)z ∂
∂z of the Hamiltonian vector field X = XK

associated with K.

We refer to the Diophantine tori V (also its diffeomorphic image Φ(V )) as a
Cantor family of invariant m-tori, as it is parametrized over a ‘Cantor set’. The
stability Theorem 3.3 includes the cases where the Floquet matrix Ω(ν0) is in (non-
semisimple) 1 : −1 resonant, see [10] for details. For the definition of 1 : −1 reso-
nance see Section 2.2. In particular, it is applicable to our persistence problem as
formulated in 2.2, regarding the invariant m-tori with a normally 1 : −1 resonant
torus, compare with Figure 5(a).

Remark 3.4. Theorem 3.3, as is generally the case in the ‘standard’ KAM-theory,
requires the invertibility of the Floquet matrix of the central torus Tν0 . We expect
that this assumption can be relaxed by using an appropriate transversality condi-
tion, compare with Remark 3.1. For recent work in this direction see [9, 43, 44].

3.2. Persistence of m-tori

We return to the setting of Section 2.2. Briefly summarizing, we consider a p-
parameter real-analytic family H = Hν of T

m-symmetric (or integrable) Hamil-
tonian functions on the space M = Tm × Rm × R4 given by (2.2), parametrized
over a small neighbourhood U of ν0. This family has an invariant torus family
T =

⋃
ν Tν , where

Tν = {(x, y, z, ν) ∈ M × R
p : (y, z) = (0, 0)} .

Moreover, the Hamiltonian H undergoes a supercritical quasi-periodic Hamiltonian
Hopf bifurcation at ν = ν0. By T

m-symmetry and an application of [29], near the
normally resonant torus Tν0 there is a local singular foliation by invariant hyper-
bolic and elliptic m-tori, elliptic (m + 1)-tori and Lagrangian (m + 2)-tori of the
Hamiltonian H. The local stratification associated with this foliation in a suitable
parameter space is a piece of swallowtail and is sketched by Figure 5(a). Presently,
we are concerned with the persistence of these m-tori from the local foliation under
perturbation.

By assumption, the central m-torus Tν0 is (normally) generically 1 : −1 resonant.
We also assume that the Hamiltonian H is non-degenerate at the invariant tori Tν0 ,

3For a discussion on symplectic normal linearization, see [12, 26].
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see Section 3.1. As a direct consequence of this non-degeneracy, we need (at least)
m + 2 parameters, that is, p ≥ m + 2. Let X = Xν be the family of Hamiltonian
vector fields corresponding to the Hamiltonian family H = Hν . By the Inverse
Function Theorem and the versality of Ω, after a suitable reparametrization ν �→
(ω, µ, ρ), the family X takes the shape

Xω,µ,ρ = [ω + O(|y| , |z|)] ∂

∂x
+ [Ω(µ)z + O(|y| , |z|2)] ∂

∂z
,

where µ = (µ1(ν), µ2(ν)) ∈ R
2 with (µ1(ν0), µ2(ν0)) = (0, 0) and where Ω(µ) is

given by

Ω(µ) =




0 −λ0 − µ1 1 0
λ0 + µ1 0 0 1
−µ2 0 0 −λ0 − µ1

0 −µ2 λ0 + µ1 0


 . (3.6)

This matrix family is a linear centralizer unfolding4 of Ω(0) in the matrix space
sp(4, R). This shows that the family X = Xν always has two normal frequencies
for all parameters ν sufficiently close to ν0, that is, ωN (ν) ∈ R

2. A geometric
picture of the ‘Cantor set’ Γτ,γ(U) determined by the Diophantine conditions (3.2)
is sketched in Figure 6, where we take ν = (ω, µ, ρ) and ignore the parameter ρ.5

Variation in values of the parameter µ2 gives rise to a quasi-periodic Hamiltonian
bifurcation. For this reason it is called the detuning (or distinguished) parameter
of the bifurcation.

From the normal linear stability Theorem 3.3, we obtain the persistence of the
invariant m-torus family that contains a normally 1 : −1 resonant torus. As a
corollary of Theorem 3.3, we have

Theorem 3.5 (Persistence of Diophantine m-tori). Let H = Hν be a p-
parameter real-analytic family of integrable Hamiltonians given by (2.2). Suppose
that

– The family H is non-degenerate at the invariant torus Tν0 ;
– The torus Tν0 is normally generically 1 : −1 resonant.

Then, for γ sufficiently small and for any p-parameter real-analytic Hamiltonian
family H̃ on (M, σ) sufficiently close to H in the compact-open topology on complex
analytic extensions, there exists a neighbourhood U of ν0 ∈ R

p and a map

Φ : M × U → M × R
p,

defined near the normally resonant tori Tν0 , such that,

i. Φ is a C∞-smooth diffeomorphism onto its image and is a C∞-near the iden-
tity map;

ii. The image Φ(V ), where V = T
m × {(y, z) = (0, 0)} × Γτ,γ(U ′), is a Cantor

family of H̃-invariant Diophantine tori, and the restriction of Φ to V induces
a conjugacy between H and H̃;

iii. The restriction Φ|V is symplectic and preserves the (symplectic) normal linear
part NX = ω(ν) ∂

∂x + Ω(ν)z ∂
∂z of the Hamiltonian vector field X = XH

associated with H.

4This is a linear versal unfolding with minimal number of parameters [3, 22].
5Note that internal as well as normal frequencies are independent of the parameter ρ.



Nearly-integrable perturbations of the Lagrange top 297

µ1

µ2µ2

ωω

(a) ‘Cantor set’ Γτ,γ(U+)

m1

m2

ωω

(b) ‘Cantor set’ Γτ,γ(U−)

m1

m2

ωω

(c) union Γτ,γ(U) = Γτ,γ(U+) ∪ Γτ,γ(U−)

µ2 = 0

µ2 > 0

µ2 < 0

(d) a vertical section in Γτ,γ(U).

Fig 6. Sketch of the ‘Cantor sets’ Γτ,γ(U+) and Γτ,γ(U−) corresponding to µ2 ≥ 0 and µ2 < 0
respectively. The total ‘Cantor set’ Γτ,γ(U) is depicted in (c). The half planes in (b) and (c) give
continua of invariant m-tori. In (d), a section of the ‘Cantor set’ Γτ,γ(U), along the µ2-axis,
is singled out: the above grey region corresponds to a half plane given in (c)—a continuum of
m-tori.

Fig 7. Stratification of the 10-dimensional matrix space sp(4, R). The cone represents the set of
1 : −1 resonant matrices. The subset of semi-simple matrices is given by the vertex of the cone,
while the regular part of the cone contains the generic (or non-semisimple) ones.
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4. The quasi-periodic Hamiltonian Hopf bifurcation: persistence of the
(m + 1)- and (m + 2)-tori

As mentioned before, see Section 2.2, the local torus foliation of the phase space
M near the normally 1 : −1 resonant m-torus Tν0 gives a stratification of a cer-
tain parameter space. This local stratification by tori is described by a piece of
the swallowtail, see Figure 5(a). The smooth part of this surface corresponds to
elliptic (m+1)-tori, while the open region above the surface (excluding the thread)
corresponds to the Lagrangian (m + 2)-tori. The persistence question of these tori
can be answered by the ‘standard’ KAM theory [12, 26, 31–33, 35, 36].

4.1. Elliptic (m + 1)-tori

To examine the persistence of the (m + 1)-tori, we first normalize the nearly-
integrable perturbations of H to obtain a proper integrable-approximation. This
allows us to investigate the existence of invariant elliptic (m + 1)-tori of the per-
turbed Hamiltonian. To enable such a normalization, we need Theorem 3.5.

Let H̃ = H̃ν be a p-parameter real-analytic family of nearly-integrable Hamil-
tonian functions on M = T

m ×R
m ×R

4 = {x, y, z}. We consider the quasi-periodic
dynamics of the Hamiltonian H̃, for H̃ sufficiently close to the integrable family H
given by (2.2). First of all, by Theorem 3.5, the family H̃ possesses a Cantor family
of invariant m-tori. Secondly, the family H̃ has the same normal linear behaviour
as the integrable Hamiltonian H. Moreover, by the Inverse Function Theory and
the versality of Ω, a suitable reparametrization brings the family H̃ into the form

H̃ω,µ,ρ(x, y, z) = 〈ω, y〉 +
1
2
〈Jz,Ω(µ)z〉 + h.o.t. , (4.1)

where the parameters (ω, µ, ρ) are restricted to a ‘Cantor set’ and where the Flo-
quet matrix Ω(µ) is given by (3.6). To investigate the existence of the elliptic
(m+1)-tori in the nearly-integrable family H̃, we need to consider the higher order
terms of the (normalized) Hamiltonian H̃. The idea of normalization is to remove
non-integrable terms from lower order terms by applying suitable coordinate trans-
formations. These transformation are chosen to be the time-1 flows generated by
certain Hamiltonian functions, for details see [7]. Such a normalization leads to the
following:

Theorem 4.1 (Quasi-periodic normal form [7]). Let H = Hν be the real-
analytic family of integrable Hamiltonians given by (2.2). Assume that assumptions
of Theorem 3.3 are satisfied and that the parameter ν = (ω, µ, ρ) ∈ Γτ,γ(U ′), see
Section 3.1, where U is a small neighbourhood of the fixed parameter ν0. Then, for
any real-analytic Hamiltonian family H̃ = H̃ν sufficiently close to H in the compact-
open topology on complex analytic extensions, there exists a family of symplectic
maps

Φ : T
m × R

m × R
4 × U → T

m × R
m × R

4 × R
p

being real-analytic in (x, y, z) and C∞-near-the-identity such that: the Hamiltonian
G = H̃ ◦ Φ is decomposed into the integrable part Gint and a remainder R, where

Gint = 〈ω, y〉 + (λ0 + µ1)S + N + µ2M + 2bM2 + 2c1SM + c2S
2 ,
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with S = z1z4 − z2z3, N = 1
2 (z2

3 + z2
4) and M = 1

2 (z2
1 + z2

2). The remainder R
satisfies

∂q+|p|+|k|R

∂qµ2∂py∂kz
(x, 0, 0, ω, µ1, 0) = 0,

for all indices (q, p, k) ∈ N
3
0 with 2q + 4 |p| + |k| ≤ 4.

For a similar non-linear normal form theory for the non-conservative setting see
[5, 12] and for the Hamiltonian setting see [23]. A special case of Theorem 4.1 with
m = 1 is extensively considered in [34].

Now the integrable truncation Gint contains a family of elliptic (m + 1)-tori
determined by the cubic equation

S2 − 4bM3 − 4µ2M
2 − 4c1SM2 = 0 , (4.2)

where M > 0, compare with [17, 24, 29]. By a rescaling argument, the remainder
R can be considered as perturbation of the integrable Gint. At this point, our
present problem is cast into the form treated in Theorem 2.6 of [11] from which we
conclude that most elliptic (m + 1)-tori of the integrable Hamiltonian Gint survive
the perturbations by R, and are only slightly deformed.

Theorem 4.2 (Persistence of Diophantine elliptic (m + 1)-tori). Let H =
Hν be the real-analytic family of integrable Hamiltonian functions given by (2.2)
such that assumptions from Theorem 3.5 are satisfied. Then, for any real-analytic
Hamiltonian family H̃ = H̃ν sufficiently close to the family H in the compact-open
topology, there exists a map

Φ : T
m × R

m × R
4 × U → T

m+1 × R
m+1 × R

2 × R
p

defined near the normally resonant torus Tν0 such that: Φ is a C∞-near-the-identity
diffeomorphism onto its image and the Hamiltonian H̃ ◦ Φ−1 has a Cantor family
of invariant elliptic (m + 1)-tori.

4.2. Lagrangian (m + 2)-tori

In this section, we investigate the persistence of the Lagrangian (m + 2)-tori of
the integrable Hamiltonian H of the form (2.2). These tori are located in the open
region (excluding the thread) above the swallowtail surface, see Figure 5(a). To this
end, we apply the classical KAM theory [2, 27, 33] and its global version [6]. The
Kolmogorov non-degeneracy condition — required for the KAM theory — on the
Lagrangian tori near the resonant torus is guaranteed by the non-triviality of the
monodromy, compare with [19, 38, 45].

Reconsider the integrable (i.e., T
m-symmetric) Hamiltonian function H of the

form
H(x, y, z, ν) = 〈ω(ν), y〉 +

1
2
〈Jz,Ω(ν)z〉 + F (y, z, ν), (4.3)

on the space M = T
m × R

m × R
4 = {x, y, z}, where F denotes the higher order

terms. The invariant torus Tν0 given by (y, z, ν) = (0, 0, ν0) is generically 1 : −1
resonant, see Section 2.2. We require that the Hessian of the higher order term F
with respect to the variable y is non-vanishing at the torus Tν0 .

As before we may assume that H is invariant under the free S
1-action gener-

ated by the semisimple part of the polynomial 1
2 〈Jz,Ω(ν)z〉, see Section 2.2. By



300 H. Broer et al.

this invariance, the Hamiltonian H is Liouville-integrable with the (m + 2) first
integrals EM = (H, S, y), where S = z1z4 − z2z3. The Lagrangian (m + 2)-tori
of the integrable Hamiltonian H are the regular fibers of the energy-momentum
map EM. Our concern is with the persistence of these Lagrangian tori near the
thread, see Figure 5(a), when H is perturbed into a nearly-integrable Hamiltonian
family H̃. In view of the classical KAM theory [2, 27], most of these Lagrangian
tori survive the perturbation in Whitney-smooth Cantor families. Here we have to
require the Kolmogorov non-degeneracy, which near the thread is a consequence
of the non-trivial monodromy. Indeed, non-degeneracy follows by an application
of [19, 38, 40, 45] to the reduced two-degrees-of-freedom system Hα and the as-
sumption that det ∂2F

∂y2 
= 0 at the resonant torus Tν0 . We first conclude that, for
sufficiently small perturbation, the Lagrangian tori survive in a Whitney-smooth
Cantor family of positive measure [2, 33, 35]. Secondly, the corresponding KAM-
conjugacies, which are only defined on locally trivial sub-bundles, can be glued
together to provide a globally Whitney-smooth conjugacy from the integrable to
the nearly-integrable Cantor torus family [6].

Theorem 4.3 (Persistence of Diophantine Lagrangian (m + 2)-tori). Let
H = Hν be the real-analytic family of Hamiltonians given by (4.3). Suppose that
the Hessian of the higher order term F , see (4.3), with respect to y is non-zero
at the resonant torus Tν0 . Then, there exists a neighbourhood U ⊂ R

p of ν0 such
that for any real-analytic Hamiltonian H̃ sufficiently close to H in the compact-
open topology on complex analytic extensions, the following holds: the perturbed
Hamiltonian H̃ has a Cantor family of invariant (m + 2)-tori; this family is a
C∞-near-the-identity diffeomorphic image of T =

⋃
ν Tν , where ν is restricted to a

‘Cantor set’ (determined by the Diophantine conditions on the internal frequencies);
in these tori, the diffeomorphism conjugates H and H̃.

5. Concluding remarks

We considered a family of T
m-symmetric Hamiltonians on M = T

m×R
m×R

4 that
has a normally 1 : −1 resonant torus. As the parameter varies, the torus changes
from normally hyperbolic into normally elliptic. This generically gives rise to a
quasi-periodic Hamiltonian Hopf bifurcation. Near the normally resonant torus the
phase space M is foliated by hyperbolic and elliptic m-tori, by elliptic (m + 1)-tori
and by Lagrangian (m+2)-tori. This singular torus foliation gives a stratification in
a suitable parameter space: the strata are determined by the dimension of the tori.
The local geometry of this stratification is a piece of swallowtail catastrophe set: the
m-tori are located at the 1-dimensional part of the surface, (m+1)-tori at the regular
part of the surface and (m+2)-tori at the open region above the surface, see Figure
5(a). By KAM-theory [2, 10, 12, 26, 27, 33, 35, 36], these tori survive in Whitney-
smooth Cantor families, under small nearly-integrable perturbations, compare with
Figure 5(b). We remark that this quasi-periodic stability still holds for the case
where the frequencies of the oscillator are kept constant, see [7] for details. In view of
the global KAM theory [6], the non-trivial monodromy in the integrable Lagrangian
torus bundle can be extended to the nearly-integrable case. This may be of interest
for semi-classical quantum mechanics, compare with [14, 15, 18, 20, 21, 41]. An
example of the quasi-periodic Hamiltonian Hopf bifurcation is the Lagrange top
(near gyroscopic stabilization) coupled to a quasi-periodic oscillator, compare with
Section 1.
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Concerning the parameter domains regarding the Diophantine tori of the dif-
ferent dimensions m, m + 1 and m + 2, we expect that these are attached to one
another in a Whitney-smooth way, as suggested by the integrable approximation.
Following [8] we speak of a Cantor stratification. Here the stratum of the (m + 1)-
tori consists of density points of (m + 2)-quasiperiodicity of (2m + 4)-dimensional
Hausdorff measure. Similarly, the stratum of the m-tori consists of density points of
(m+1)-quasiperiodicity of (2m+2)-dimensional Hausdorff measure. Also compare
with [11].

In a general case where the perturbation destroys the whole T
m-symmetry, the

Cantor families of stable KAM-tori always contains continua of tori (the projection
of these continua into the parameter space has no Cantor gaps). We refer to these
projections as continuous structures in the Cantor family of surviving tori. For spe-
cial perturbations where a partial symmetry still remains (e.g., perturbations that
are independent of certain angle variables), we expect extra continuous structures,
for details see [7].

In this paper, we addressed the supercritical case of the quasi-periodic Hamil-
tonian Hopf bifurcation. We expect similar persistence results for the subcritical
case. This is important for a better understanding of the hydrogen atom in crossed
electric and magnetic fields [20, 21], where the subcritical bifurcation occurs. The
singular torus foliation for this case is described by the tail of the swallowtail sur-
face.6 We expect that our approach for the supercritical case also works for the
subcritical case.
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