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Old and new results on normality

Martine Queffélec1

Université Lille1

Abstract: We present a partial survey on normal numbers, including Keane’s
contributions, and with recent developments in different directions.

1. Introduction

A central tool in the papers of Mike Keane is the ingenious and recurrent use
of measure theory (probability and ergodic theory) in the various problems he
investigated, paving the road for successors. So did he with normality, one of his
favorite topics.

Let q ≥ 2 be an integer. A real number θ ∈ I := [0, 1) is said to be normal to
base q, if for every m ≥ 1, every finite word d1d2 . . . dm ∈ {0, 1, . . . , q − 1}m occurs
in the q-adic expansion of θ,

∑
n≥1 εn(θ)q−n, with frequency q−m. This means that

every pattern appears infinitely often with the “good frequency” in the expansion
of x.

A number θ ∈ I is said to be simply normal to base q if this property holds for
m = 1. It is said to be q (absolutely) normal if it is normal to every base q, and it
is simply normal if it is simply normal to every base q.

Normal numbers have been introduced in 1909 by E. Borel in [7], where he proved
that–with respect to Lebesgue measure m–almost every number is normal. In fact,
the digits (εj(θ))j≥1 of θ in base q behave as independent identically distributed
random variables. Borel’s result is thus a consequence of the Strong Law of Large
Numbers, applied for each q to disjoint blocks εkm+1(θ) εkm+2(θ) . . . ε(k+1)m(θ),
k ≥ 0.

Normality to base q can also be defined in terms of dynamics. The q-expansion
of θ is obtained by iterating on θ the q-transformation Tq defined on I by Tq(x) =
qx mod 1; if x0 = x and xn+1 = qxn mod 1 for n ≥ 1, then εn+1(x) = [qxn]. It is
well known that the Lebesgue measure m on I is the unique absolutely continuous
Tq-invariant measure, and that the dynamical system (I, Tq, m) is ergodic. Borel’s
result is thus a consequence of the Birkhoff Ergodic Theorem.

So, normal numbers lie at the junction between two areas of expertise of Mike
Keane, who gave illuminating proofs of both the Strong Law of Large Numbers and
the Birkhoff Ergodic Theorem [19, 22], and wrote

“Measure-preserving transformations are beautiful”

with the evident corollary

“Invariant measures are beautiful!”
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2. Combinatorial point of view

From the definition, explicit q-normal numbers and non-normal numbers can be
exhibited; for example Champernowne’s number [11], whose expansion consists in
concatenating all consecutive words to base q, is q-normal, for example

c2 = 0.0100011011000001010011100101110111 . . .

when q = 2.
However, nobody knows whether classical arithmetical constants such as π, e,√

2, ζ(n), . . . are normal numbers to a fixed base, say q = 2. Even weaker assertions
are unresolved. For example, it is not known whether there exist infinitely many 7s
in the decimal expansion of

√
2; or whether arbitrarily long blocks of zeros appear

in its binary expansion, i.e., lim infn→∞{2n
√

2} = 0?
Returning to Champernowne’s number c2, the question arises whether c2 is nor-

mal to any other base. Even though almost every number is normal to every base
q, no explicit example is known of a number which is both p and q-normal, with
p �= q. It is also not known how can one get the 3-expansion from the 2-expansion
of some irrational number.

A plausible conjecture (suggested by Borel’s work) is that every irrational alge-
braic number is normal. Already a partial answer to this conjecture such as every
irrational algebraic number is simply normal, would be of great interest as we shall
see.

An unsolved question from Mahler [26] is the following. Suppose that α =
∑∞

1
an

2n

and β =
∑∞

1
an

3n are algebraic numbers, with an ∈ {0, 1}. Are α and β necessarily
rational?

If any irrational algebraic number would be simply normal, β must be rational,
and consequently the sequence (an) is ultimately periodic; This would imply that
α is rational as well, thus answering Mahler’s question positively.

In recent investigations on normality, the statistical property of “good frequency”
is replaced by the combinatorial property of “good complexity,” asserting that p(n),
the number of words of length n occurring in the q-expansion of x, is maximal, i.e.,
p(n) = qn, n ≥ 1, leading to the following conjecture.

Conjecture. Every irrational algebraic number has maximal complexity function
p(n).

Using a p-adic version of Roth’s theorem, which appeared in previous work
by Ridout [35], Ferenczi and Mauduit [12] obtained the following description of
a class of transcendental numbers (in a revisited formulation by Adamczewski and
Bugeaud).

Theorem 2.1 (Ferenczi–Mauduit). Let x be an irrational number, whose q-
expansion begins with 0.UnV s

n for every n ≥ 1, with
(i) s > 2;
(ii) |Vn|, the length of the word Vn, is increasing;
(iii) |Un|/|Vn| is bounded.

Then x is a transcendental number.

As a corollary they get the transcendence of Sturmian numbers:
If there exists q such that the expansion of x to base q is a Sturmian sequence

on q letters, then x is a transcendental number.
Remembering that a Sturmian sequence on q letters satisfies p(n) = n + q − 1

for n ≥ 1, this can be viewed as the first result on complexity in this setting:
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Theorem 2.2. If x is an irrational algebraic number, then its complexity function
to base q satisfies

lim inf
n→∞

(p(n) − n) = +∞.

Roughly speaking Theorem 2.1 means that the sequence of digits begins with
arbitrarily long prefixes of the form WnWnW ε

n; but these conditions eliminate some
natural numbers; for example, the Thue-Morse sequence on {0, 1} being without
overlap of size 2 + ε, and the associated Thue-Morse number as well. Involving
a suitable version of the Schmidt Subspace Theorem, which may be considered
as a multi-dimensional extension of previous quoted results by Roth and Ridout,
Adamczewski and Bugeaud [1] improved this theorem by replacing in (i) s > 2 by
s > 1. This proves as a by-result that the Thue-Morse number is transcendental.
As a corollary they get

Theorem 2.3 (Adamcewski–Bugeaud). If x is an irrational algebraic number,
then its complexity function to base q satisfies

lim inf
n→∞

p(n)
n

= +∞.

Thus, every non-periodic sequence with sub-linear complexity gives rise to a
transcendental number; this is the case with generalized Morse sequences [20, 21].

3. Metric point of view

We identify throughout [0, 1) and the circle T = R/Z, and let M(T) be the set of
bounded Borel measures on T.

In this section we turn to the characterization of the sets Nq, of q-normal num-
bers, and of N = ∩qNq as well as their negligible complements, raising many
connected questions.

1. Under what conditions on p and q (if any) does there exist a number normal
to base p but non-normal to base q?

2. In this case, what is the cardinality of Np ∩N c
q ?

3. What is the Hausdorff dimension of such a set?

Another approach to normality will be useful. Recall that a real sequence (un)n is
said to be uniformly distributed mod 1 if

∀0 ≤ a < b ≤ 1,
1
N

|{n ≤ N ; {un} ∈ [a, b]}| → b − a,

as N → ∞, where {x} is the fractional part of x. Equivalently, by the Weyl’s
criterion, if and only if

∀k �= 0,
1
N

∑
n≤N

ek(un) → 0,

where ek(x) := e2iπkx. This means that the sequence of probability measures on I:

1
N

∑
n≤N

δ{un} → m weak∗

where δx is the unit mass at x.



228 M. Queffélec

It was proved by Wall in [39] that x ∈ I is normal to base q if and only the
sequence (qnx)n is uniformly distributed mod 1. This point of view leads to the
ergodic proof of Borel’s theorem since, m-almost everywhere,

1
N

∑
n<N

ek ◦ Tn
q →

∫
I

ek dm = 0.

3.1. Schmidt’s results

In 1960, W. Schmidt solved questions 1. and 2. We write p ∼ q if there exist positive
integers r, s with pr = qs (or log p

log q ∈ Q), and p �∼ q otherwise.

Theorem 3.1 (W. Schmidt). 1. Assume p ∼ q; then any number normal to base
p is normal to base q: Np = Nq.

2. If p �∼ q, then the set of p-normal numbers which are not even simply normal
to base q has the power of the continuum.

Proof. 1. The identity Npr = Np can be established by using the combinatorial
definition. This gives the first assertion immediately.

An alternative proof of the inclusion Npr ⊂ Np goes as follows: if x ∈ Npr so are
px, p2x, . . . , pr−1x, since

∑
n<N ek(prnpjx) =

∑
n<N ekpj (prnx). The normality of

x to base p is a consequence of the division algorithm.
For the reverse inclusion Nq ⊂ Nqs we can proceed as suggested in [3]. Suppose

that x ∈ Nq: νN = 1
N

∑
n≤N−1 δ{qnx} → m weak∗; we shall prove that

ν
(s)
N =

1
N

∑
n≤N−1

δ{qsnx} → m weak∗

by proving that m is the unique weak∗ limit point of the sequence (ν(s)
N ). If F ⊂ I

is a closed set such that m(F ) = 0, then by hypothesis νsN (F ) ≤ ε for N ≥ NF .
The evident inequality 1

sN

∑
n≤N−1 δ{qsnx}(F ) ≤ νsN (F ) yields that

ν
(s)
N (F ) ≤ sε, N ≥ NF .

Let σ be a weak∗ limit point of ν
(s)
N in the weak∗ compact set of probability measures

on I. From the above, σ(F ) = 0 whenever F is closed with m(F ) = 0. For every
Borel set A with m(A) = 0, one has

σ(A) = sup
K⊂A

K compact
σ(K) = 0

since m(K) = 0, and σ  m. But σ is Tqs -invariant and m is the unique absolutely
continuous Tqs -invariant measure. Hence σ = m and x ∈ Nqs .

2. The proof of the second assertion, which is rather complicated in [37], has been
simplified by many authors, first of them being Keane and Pierce [23]. The basic idea
is that any q-invariant, ergodic and non absolutely continuous probability measure
µ supports N c

q . By choosing k with µ̂(k) �= 0, and using the ergodic theorem, one
gets

1
N

∑
n<N

ek(qnx) → µ̂(k) �= 0 µ − a.e.

and µ-almost x is in N c
q .
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Keane and Pierce constructed a Cantor measure (depending on q but not on
p) supported by Np ∩ N c

q . Later, generalizations have been obtained by Brown,
Moran & Pierce [9] by employing Riesz products, by Feldman & Smorodinski [13]
then Bisbas [6] with Bernoulli convolution measures, by Kamae [17] with specific
singular measures; Host [14] improved the result in view of Fürstenberg’s conjecture.
Pollington [31] showed that the set Np ∩N c

q has full Hausdorff dimension. We give
here a revisited proof by Kamae [17] where g-measures, introduced by Keane [21],
play an important role.

Let us recall the notion of g-measures. Let T be an m-to-1 covering transforma-
tion on a compact metric space X, and g a positive continuous function on X such
that

∑
Ty=x

g(y) = 1. We define the transfer operator L on C(X) by

Lf(x) =
∑

Ty=x

f(y)g(y).

A g-measure is a T -invariant Borel probability measure, which is an eigenmeasure to
the maximal eigenvalue of the adjoint operator L∗. Uniqueness holds whenever g is
strictly positive with Lipschitz regularity, and in this case µ is strongly mixing [21].
Natural examples appear in computing the correlation measure of finitely-valued
q-multiplicative sequences of modulus 1 (which are nothing else than generalized
Morse sequences).

Fix q ≥ 2; consider Sq(n) the sum of the q-digits of n and ρ := ρq the correlation
measure of the sequence α(n) = e2iπαSq(n), α ∈ R; ρ is the strongly mixing g-

measure
∏

P (qnx), with P (x) =
1
q
|

∑
0≤k<q

α(k)e(kx)|2 and g = 1
q P . It is proved in

[32] that ρ has the constant modulus property; we need only a weaker assertion:

Lemma 1. Denote by Γ the dual group of T when acting multiplicatively. If χρ ∈
Γρ, the set of limit points for the topology σ(L∞(ρ), L1(ρ)) of sequences (γn) ⊂ Γ,
then |χρ| = C, C constant.

As explained above, ρ(Nq) = 0. Now, for every k �= 0,
∫ ∣∣∣ 1

N

∑
n<N

ek(pnx)
∣∣∣2dρ(x) =

1
N2

∑
n<N
m<N

ρ̂(kpn − kpm)

and the property ρ(Np) = 1 for p �∼ q follows readily from the next one:

Lemma 2. For every integer a �= 0, limn,m→∞
n>m

ρ̂(a(pn − pm)) = 0.

Proof. Fix a > 0 and denote by χρ ∈ Γρ a limit point in the topology σ(L∞(ρ), L1(ρ))
of the sequence (γapn) ⊂ Γ, where γk = ek. By Lemma 1, |χρ| = C. Since |χρ|2 is a
limit point of the sequence (γapn−apm)n>m, it suffices to prove that C = 0.

If C �= 0, there exists c �= 0 and γ = γb with |
∫

χργb dρ| = c; now, by extracting
a subsequence if necessary,

ρ̂(apn + b) →
∫

χργb dρ.

Let 0 < ε  1, and ρ being continuous, let m > 0 be such that |ρ̂(m)| < εc. If
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qN−1 ≤ m < qN , from hypotheses on p, q, there exists nk, mk going to ∞ such that

pnk

qmk
→ m

aqN
∈ [0, 1[.

Thus, apnk = mqmk−N + rk where rk = o(qmk), and for k big enough,

apnk + b = mqmk−N + rk + b, mk > N, rk + b < qmk−N .

By the strong mixing property,

ρ̂(apnk + b) ∼ ρ̂(m)ρ̂(rk + b).

But ρ̂(apnk + b) → c and |ρ̂(m)ρ̂(rk + b)| < εc, which yields a contradiction if such
a c �= 0 exists. This implies that χρ = 0 and the lemma is proved.

This lemma has been proved in a different way by Kamae with help of a deep
result from Strauss and Senge.

3.2. Sums of normal numbers

Observe first that a Borel set E ⊂ T with m(E) > 1/2 satisfies E + E = T. This
follows from the fact that for every x ∈ T, m (E ∩ (x − E)) > 0, hence there exist
u, v ∈ E such that x = u + v. Now if m(E) = 0 but E supports a probability
measure µ satisfying µ ∗ µ = m, then every number in T can be expressed as the
sum of four numbers in E since m(E + E) = 1. But this is far from optimal.

It is well-known that K3, the triadic Cantor set, is such that K3 + K3 = T.
However, if µ3 is the Cantor measure (the probability measure uniformly distributed
over those points of T whose ternary expansions contain only 0’s and 2’s), µ3 �∈
M0(T) = {µ ∈ M(T); limn→∞ µ̂(n) = 0} and µ3 ∗ µ3 is not even absolutely
continuous with respect to the Lebesgue measure m on T.

More striking: Erdös gave an example showing that there exist arbitrarily thin
sets, in the sense of Hausdorff measures, whose sum set contains an interval.

Now, if E and F have positive Cantor measure, E + F has positive Lebesgue
measure, since we have the following inequality

m(E + F ) ≥ µ3(E)αµ3(F )α (3.1)

where α = log 3/ log 4; this follows from the combinatorial one: If A, B ⊂ {0, 1}n,
then |A+B| ≥ |A|α|B|α. (Note that 2α = dim m/ dim µ3). The extension of (3.1) to
the Cantor measure µm on Km, the m-adic Cantor set, m ≥ 3, has been established
in [8]:

m(E1 + · · · + Em) ≥
m∏

j=1

µm+1(Ej)α(m)

where α(m) = log(m + 1)/m log 2.
Similar observations can be made about the negligible sets N (p) = ∩q �∼pNq∩N c

p .
Keane and Pierce have shown in [23] that µp(N (p)) = 1. Combining this with all
previous remarks yields that every number in T can be expressed as the sum of
2(p − 1) numbers in N (p). But various measures living on N (p) (as we saw) lead
to different decomposition results.

By using Hausdorff measures, Pollington proved in [31] the following result.

Theorem 3.2. For each p ≥ 2, N (p) + N (p) = T.
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3.3. More about non-normal numbers

So what more can be said about measures living on the negligible sets N c
q ? Proba-

bility measures µ on T whose Fourier transform vanishes at infinity rather fast are
still annihilating the sets N c

q . More precisely, in [25] the following was shown. If
|µ̂(n)| ≤ φ(|n|) whenever φ is a non-increasing function such that

∑ φ(n)
n log n < ∞,

then µ(N c
q ) = 0. This is a consequence of the following Strong Law of Large Num-

bers for weakly correlated random variables, applied to Xn = ekqn .

Theorem 3.3 (Davenport–Erdös–LeVeque). Let µ be a probability measure
on E, (Xn) a sequence of bounded random variables and SN = 1

N

∑N
n=1 Xn. If

∑
N≥1

1
N

∫
|SN |2dµ < ∞,

then SN → 0 µ-a.e.

On the other hand, Lyons constructed a probability measure concentrated on N c
2

with |µ̂(n)| ≤ φ(|n|), where φ is a non-increasing function such that
∑ φ(n)

n log n = ∞.
It is a convolution type measure with respect to which the binary digits as random
variables are independent by blocks. His sharpest result is the following theorem.

Theorem 3.4 (Lyons). There exists a probability measure µ ∈ M0(T) such that

lim sup
K→∞

1
K

K∑
1

1[0,1/2](2kx) = 1 µ − a.e.

Then arised the following question: Does there exist x and I, closed arc of length
1/2, such that {2nx} ∈ I for all n ≥ 0?

4. Normality and continued fractions

Every real number admits a regular continued fraction expansion, which is more
handy than the q-expansions, and furnishes the best rational approximations. Al-
though it is difficult to get one expansion from the other, there exist classes of ex-
amples for which both are known, but no example of normal number with bounded
partial quotients has been exhibited yet.

We recall some facts concerning the regular continued fraction algorithm (RCF).

Given an irrational number x ∈ I, x is the limit of the infinite sequence of rational
numbers

Pk(x)
Qk(x)

=
1

a1(x) +
1

a2(x) + · · · 1

ak−1(x) +
1

ak(x)

,

where the integers ak(x) ≥ 1 if k ≥ 1; we write shortly Pk

Qk
= [0; a1, . . . , ak], x =

[0; a1, a2, . . .] where the partial quotients of x, a1, a2, . . . , are uniquely defined.
The shift on the RCF expansion is conjugated to an expanding transformation,

the Gauss map, defined on X = [0, 1]\Q by Tx =
1
x

mod 1. The partial quotients
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an = an(x), n ≥ 1, are then given by

a1(x) = [
1
x

], ak+1(x) = ak(Tx).

The probability measure µ on X (called the Gauss measure) defined by µ(A) =
1

log 2

∫
A

dx
1+x for every Borel-set A, is preserved by T and is T -ergodic. Furthermore,

µ is the unique absolutely continuous T -invariant probability measure.
Applying Birkhoff’s ergodic theorem, we get that

lim
n→∞

1
n

(a1(x) + · · · + an(x)) = +∞ µ − a.e.

Since µ is equivalent to Lebesgue measure, the set BAD of numbers in [0, 1) with
bounded partial quotients has zero Lebesgue measure.

A significant difference between adic- and RCF expansions is the behavior of the
digits as random variables; the an(x) are no more independent identically distrib-
uted variables on (X, µ), but quasi-independent in the following sense.

Theorem 4.1 (Philipp). Consider the σ-algebras Ak = σ(a1, . . . , ak) and Bk =
σ(ak+1, . . .). Then there exists θ ∈]0, 1[ such that

|µ(A ∩ B) − µ(A)µ(B)| ≤ θnµ(A)µ(B)

for every A ∈ Ak and B ∈ Bk+n, k ≥ 1, n ≥ 1.

For complementary notations and results on the regular continued fraction ex-
pansion we refer to [16] and [5].

In [24], a class of normal numbers with explicit RCF expansion is exhibited; this
combines two ideas.

1. Every number of the form
∑

k
1

Ak
, with Ak integers ≥ 2 such that A2

k divides
Ak+1, has an explicit RCF expansion.

This is a consequence of classical identities around symmetry, for example [28,
38], if P

Q = [0; a1, . . . , aN ], aN ≥ 2, x ≥ 1,

P

Q
+

(−1)N

xQ2
= [0; a1, . . . , aN−1︸ ︷︷ ︸, aN , x − 1, 1, aN − 1, aN−1, . . . , a1︸ ︷︷ ︸].

In this way, Mahler proved that the transcendental number
∑∞

k=0
1

u2k , u ≥ 2, is in
BAD.

2. Every number α of the form
∑

k p−λkq−µk , where (λk), (µk) are increasing
sequences of integers ≥ 1, p, q ≥ 2 relatively prime integers and µk ≥ pλk , is
normal to base q.

This is due to sharp estimates on the distribution of digits in periodic fractions
and a consequence of the structure in base q of the numbers α. It can be seen that the
q-expansion of an α looks like 0aW s0

0 W ′
0W

s1
1 W ′

1 . . . W sn
n W ′

n . . . , W ′
n being a prefix

of the word Wn, |Wn| = tn the order of q mod pλn and |W sn
n W ′

n| = µn+1 − µn.

Theorem 4.2 (Korobov). Numbers of the form α =
∑

k p−2k

q−p2k

with p, q
relatively prime integers, are normal to base q with explicit RCF expansion.

Of course in these cases xk = Ak+1/A
2
k → ∞ and such numbers α �∈ BAD.

Montgomery [29] in his book posed the following problem: Does there exist nor-
mal numbers with bounded partial quotients ?

In 1980, Kaufman [18], using the structure of the sets F (N) = {x ∈ [0, 1); x =
[0; a1, a2, . . . ] with ai ≤ N ∀i ≥ 1}, obtained the following deep result.
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Theorem 4.3 (Kaufman). For N ≥ 3 F (N) carries a probability measure µ such
that |µ̂(t)| ≤ c|t|−η for a certain η > 0 (Kaufman’s measure).

When Kaufman’s paper appeared, R.C. Baker observed in [29] that combining
the above result with a corollary of the Davenport–Erdös–Leveque’s theorem (al-
ready used by Lyons for non-normal sets), yields the existence of normal numbers
in BAD.

More generally, if A is a finite alphabet of integers ≥ 1, |A| ≥ 2, and

F (A) = {x ∈ [0, 1); x = [0; a1, a2, . . .] with ai ∈ A ∀i ≥ 1},

In [34] we improved Kaufman’s result as follows.

Theorem 4.4. If dimH(F (A)) > 1/2, F (A) supports a Kaufman’s measure and
contains infinitely many normal numbers. In particular there exist infinitely many
normal numbers with partial quotients ∈ {1, 2}.

Note that no explicit normal numbers in BAD have been constructed yet.

Now, it is natural to ask about the existence of RCF-normal numbers. Such
a number x is defined by the property that for every m ≥ 1, every finite word
d1d2 . . . dm ∈ N∗m occurs in the RCF expansion of x, with frequency µ([d1d2 . . .
dm]), the Gauss measure of the cylinder [d1d2 . . . dm]. Once more from ergodicity
(or quasi-independence), almost all x ∈ [0, 1) are normal for the continued fraction
transformation and once more constructing one RCF-normal number raises difficul-
ties. A successful proceedure has been carried out by Adler, Keane and Smorodinsky
[2].

Theorem 4.5. Let Qn be the ordered set of all rationals in [0, 1) with denomina-
tor n. The RCF expansion obtained by concatenating the RCF expansions of the
numbers in Q2, Q3, . . . leads to an RCF-normal number.

Hence the following problems: How to construct a number normal with respect
to both adic- and Gauss transformations? Does there exist an RCF-normal number
with low complexity relative to an adic-expansion?

5. More investigation

5.1. Topological point of view

The sets N c
q , N c are small from the metric point of view but big from the topological

one. This has been known for a long time, for example, a result from Helson and
Kahane [15] goes as follows. For each q ≥ 2, N c

q intersects every open interval in
a uncountable set. Also, if q ≥ 2, 0 ≤ r < q, x ∈ [0, 1) and Nn(r, x) is the number
of occurrences of r in the first n terms of the q-expansion of x, then the set of
limit points of the sequence (Nn(r, x)/n) is [0, 1], for all x but a set of first Baire
category; as a consequence the set N is in first Baire category [36].

Real numbers with non-dense orbit under Tq (“q-orbit”) are in fact very inter-
esting. If I is an open arc of T of length > 1/2, the set of x ∈ T whose 2-orbit does
not intersect I must be finite, but there exist s ∈ [0, 1/2] whose 2-orbit is infinite
and whole contained into [s, s+1/2]; this furnishes an answer to the question raised
at the end of section 4; in fact we have a complete description of these numbers s
(see [4, 33]).
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Theorem 5.1 (Bullett–Sentenac). Let s =
∑

j≥1
εj

2j be an irrational number in
[0, 1/2]. Then following assertions are equivalent.

1. The closed 2-orbit of s lies into [s, s + 1/2].
2. The sequence of digits (εj)j is a characteristic sturmian sequence on the al-

phabet {0, 1}.

5.2. Generalizations

Generalization of normality to non-integer bases or to endomorphisms leads to very
interesting questions (see [3]). But this would be another story . . .

Acknowledgments

Thanks to the organizators of this colloquium in honor of Mike, thanks to the
referee, and my gratitude to Mike himself for transmitting his enthousiasm through
various lectures he gave us many years ago.

References

[1] Adamczewski, B. and Bugeaud, Y. (2004). On the complexity of algebraic
numbers. Preprint.

[2] Adler, R., Keane, M.S., and Smorodinsky, M. (1981). A construction
of a normal number for the continued fraction transformation. J. Number Th.
13, 95–105. MR0602450

[3] Bertrand-Mathis, A. (1996). Nombres normaux. J. Th. Nombres de Bor-
deaux 8, 397–412. MR1438478

[4] Bullett, S. and Sentenac, P. (1994). Ordered orbits of the shift, square
roots, and the devil’s staircase. Math. Proc. Camb. Philos. Soc. 115, 451–481.
MR1269932

[5] Billingsley, P. (1978). Ergodic Theory and Information. Reprint of the 1965
original. Robert E. Krieger Publishing Co., Huntington, N.Y.. MR0524567

[6] Bisbas, A. (2003). Normal numbers from infinite convolution measures. Er-
godic Th. Dyn. Syst. 23, 389–393.MR2061299

[7] Borel, E. (1909). Les probabilités dénombrables et leurs applications
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tions continues à quotients restreints. l’Enseignement Math. 49, 335–356.
MR2028020

[35] Ridout, D. (1957). Rational approximations to algebraic numbers. Mathe-
matika 4, 125–131. MR0093508

[36] Salat, T. (1966). A remark on normal numbers. Rev. Roum. Math. Pure
Appl. 11, 53–56. MR0201386

[37] Schmidt, W. (1960). On normal numbers. Pacific J. Math. 10, 661–672.
MR0117212



236 M. Queffélec
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