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Abstract: This paper considers a problem of estimating an unknown sym-
metric region in Rk based on n points randomly drawn from it. The domain
of interest is characterized by two parameters: size parameter r and shape
parameter p. Three methods are investigated which are the maximum likeli-
hood, Bayesian procedures, and a composition of these two. A modification of
Wald’s theorem as well as a Bayesian version of it are given in this paper to
demonstrate the strong consistency of these estimates. We use the measures
of symmetric differences and the Hausdorff distance to assess the performance
of the estimates. The results reveal that the composite method does the best.
Discussion on the convergence in distribution is also given.

1. Introduction

It is a pleasure to write this article for Professor Rubin’s Festschrift. I cannot begin
to enumerate the things I have learned from him, and the number of times I walked
into his office or he walked into mine, drew up a chair, and started a conversation,
and opened my eyes. This paper itself is a prime example of how much I benefitted
from him in my student days at Purdue.

In biology, the size and shape of home range within a community of a species
of animal are often a starting point for the analysis of a social system. In forestry,
estimating the geographical edge of a rare species of plant based on sighting of
individuals is an important issue as well. The need to estimate an unknown domain
by using a set of points sampled randomly from it can also be seen in many other
disciplines. See Macdonald et al. (1979), Seber (1986, 1992), and Worton (1987).

If one considers the shape of the unknown domain an infinite-dimensional para-
meter, the convex hull of the sample will be the maximum likelihood solution. Most
of the literature hence focuses on the studies of the convex hull and the results are
all for one dimensional and two dimensional regions. Refer to Ripley et al. (1977),
Moore (1984), and Bräker et al. (1998).

However, if we use these results in some other applications, for example, recog-
nizing the valid region of predictor variables, which usually involves more than
two dimensions, we will then encounter some difficulties in implementation. As the
dimensionality rises to higher than three dimensions, where a simple visual illus-
tration is impossible, describing the convex hull of a sample becomes much more
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difficult. Hence, a more practical approach for estimating a higher dimensional do-
main is necessary. Due to this consideration, we would like to characterize the shape
of a domain by a finite-dimensional parameter rather than using a non-parametric
model to which most literature is devoted. Besides, it is easier to establish proper-
ties of estimates of the set of interest under parametric modelling. This would make
us more comfortable using these estimates.

Since the configuration of a roughly spherical object is easier characterized, we
would like to start our investigation with a particular family of sets, the Lp balls,
because of their richness in fitting roughly rounded objects and in deriving pilot
theoretical inference.

Let Bp,r denote the centered Lp ball with radius r with respect to the metric
induced from p-norm in the k-dimensional Euclidean space, Rk; namely

Bp,r = {x
˜
∈ Rk : ‖x

˜
‖p ≤ r}, (1)

here

‖x
˜
‖p =

{ (
|x1|p + · · · + |xk|p

)1/p when p is finite,
max(|x1|, . . . , |xk|) when p is infinite.

We call ‖ · ‖p the p-norm operator. The unknown set S we wish to estimate will be
assumed to be an Lp ball; namely S = Bp0,r0 for some 0 < p0 ≤ ∞ and 0 < r0 < ∞.

Notice that in our approach, the center of symmetry of the domain S is assumed
to be known. This will not be exactly true in practice. A short discussion is given
in the last section.

Also notice that, when the dimension k equals one, the family of Lp balls be-
comes the family of closed intervals [−r, r] in the real line. Our one dimensional
version of estimating an Lp ball can be viewed as the well known “end-point” prob-
lem: estimating the end points a and b by using points randomly selected from [a, b].
Also, p does not play any role in characterizing the set S which we wish to estimate
when k = 1. Therefore throughout this paper, we will take k ≥ 2. However, the one
dimensional case often lends much intuition to the case of higher dimensions.

Now let x
˜
1 = (x11, . . . , x1k)′, . . . , x

˜
n = (xn1, . . . , xnk)′ denote a realization of

n points from the domain S. We would like to estimate S by using these observa-
tions x

˜
1, . . . , x

˜
n. We will assume that x

˜
1, . . . , x

˜
n are independently uniformly drawn

from S. It is possible in practice that x
˜

1, . . . , x
˜

n are independently drawn from S
not uniformly but following a measure µ on Rk other than the Lebesgue measure,
truncated to S with finite µ(S); i.e. x

˜
1, . . . , x

˜
n

i.i.d.∼ µ(·)
µ(S) . There will be no problem

in deriving similar results which we establish in this article if µ is known and for
which Bp,r is identifiable. However, if µ is unknown, estimating S becomes much
more difficult. The reason is that we will be unable to distinguish between a rare
event (e.g. the density with respect to µ at a point x

˜
is small) and a null event (e.g.

point x
˜

is not in the support S); see Hall (1982).
To summarize, we have taken an interesting problem and analyzed an interesting

parametric model. We have given two very general results on strong consistency,
and additional results on weak convergence as well as practical evaluation by very
detailed numerics. We have indicated how to possibly address more general cases
and commented on application. These are the main contributions.

2. Estimation

As the domain S which we wish to estimate is characterized by parameters p and r,
a plug-in method can be used to estimate S. We will consider three natural methods
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of estimation for p and r: maximum likelihood method, a Bayesian approach, and
a combination of these two methods.

The maximum likelihood estimates have a drawback that they underestimate
the volume of the true set with probability one and the magnitude of this bias is
difficult to evaluate. The Bayesian approach does not have this underestimating
problem. However, they are hard to calculate. That is not uncommon in a Bayesian
analysis. An alternative approach which combines the maximum likelihood estimate
and the Bayesian approach is therefore proposed. This approach treats the volume
of the true set as a parameter and estimates it using a Bayesian method. Then
it corrects the maximum likelihood estimates for their biases accordingly. We are
excited about this approach.

Let us now look at the maximum likelihood method in detail first. Recall that
x
˜

1, . . . , x
˜

n are uniformly drawn from S. Thus the likelihood function of p and r is

L(p, r|x
˜

1, . . . , x
˜

n) =
1

λ(Bp,r)n
1{(p,r):x

˜
i∈Bp,r ∀ i=1,...,n}; (2)

here λ is the Lebesgue measure. The formula for the Lebesgue volume of Bp,r is

λ(Bp,r) = 2krk
Γ(1 + 1

p )k

Γ(1 + k
p )

; (3)

(see Gradshteyn and Ryzhik (1994), p. 647). If we denote the maximum likelihood
estimate of (p, r) by (p̂mle , r̂mle), then we have

(p̂mle , r̂mle) = argmax
(p,r)

L(p, r|x
˜
1, . . . , x

˜
n) = arg min

{(p,r):x

˜
i∈Bp,r∀i=1,...,n}

λ(Bp,r). (4)

Moreover, as λ(Bp,r) is an increasing function of r for any fixed p, (p̂mle , r̂mle) must
satisfy

r̂mle = max
1≤i≤n

‖x
˜

i‖p̂mle
,

and hence

p̂mle = arg max
p

(
2k

(
max

1≤i≤n
‖x
˜

i‖p

)k Γ(1 + 1
p )k

Γ(1 + k
p )

)−1

.

The profile likelihood of p mostly appears to be unimodal and therefore it is usually
not difficult to obtain p̂mle and r̂mle numerically.

Despite this easy characterization of the maximum likelihood estimate, there
is a disadvantage in using this estimate. Consider the end-point problem. Suppose
x1, . . . , xn are iid Unif([a,b]). It is well known that the maximum likelihood set
estimate of [a, b], [x(1), x(n)], is always contained in the true interval. And therefore
the length of the estimated support [x(1), x(n)] is always shorter than the true length
b− a. Similarly, when the dimension k > 1, the volume of the maximum likelihood
set estimate Bp̂mle ,r̂mle

is always smaller than the true volume λ(Bp0,r0). The reason
is that the maximum likelihood set estimate Bp̂mle ,r̂mle

is the Lp ball which possesses
the smallest volume among Lp balls containing all the observations. On the other
hand, the true domain evidently contains all the observations. Therefore, we have
λ(Bp̂mle ,r̂mle

) ≤ λ(Bp̂0,r̂0).
Here we would like to point out that unlike the end-point problem (or the

nonparametric setting) where the maximum likelihood interval estimate is always
contained in the true interval, the maximum likelihood set estimate Bp̂mle ,r̂mle

does
not need to be inside the true set all the time.

Now let us move to the Bayesian approach. We will choose the loss function
being

lλ(S, Ŝ ) = λ(S�Ŝ ) (5)
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where � denotes the symmetric difference operator. If we denote the prior of (p, r)
by π, the posterior of (p, r) after observing x

˜
1, . . . , x

˜
n is

π(p, r|x
˜

1, . . . , x
˜

n) ∝ π(p, r)
1

λ(Bp,r)n
1{(p,r) : x

˜
i∈Bp,r∀1≤i≤n}.

Thus the Bayesian estimate based on the loss function (5) is

(p̂bayes , r̂bayes) = argmin
(p̂,r̂)

Eπ(p,r|x
˜
1,...,x

˜
n)

(
λ(Bp,r�Bp̂,r̂)

)
. (6)

Though we are able to show theoretically that (p̂bayes , r̂bayes) is strongly consis-
tent and does not have the underestimating problem like (p̂mle , r̂mle) does, however
the computation of (p̂bayes , r̂bayes) is difficult. The reason is that we do not have
a formula of λ(Bp,r�Bp̂,r̂) for any two general Bp,r and Bp̂,r̂ unless Bp,r ⊂ Bp̂,r̂

or Bp̂,r̂ ⊂ Bp,r. So, in general, it seems we have to approximate numerically the
Bayesian estimate. This is a formidable numerical problem and indeed we are not
sure that a minimizer reported by the computer can be trusted.

Therefore an alternative approach is introduced to fix the drawback of the max-
imum likelihood set estimates which always underestimate the true volume and the
disadvantage of the Bayesian estimates which have computational difficulty. The
alternative approach tries to estimate the true volume using the Bayesian method,
and then corrects the maximum likelihood estimate for bias, based on the estimated
volume.

If we consider the loss function

lvol(S, Ŝ ) =
∣∣λ(S) − λ(Ŝ )

∣∣, (7)

it can be analyzed easily. One notes that it only gives a penalty for inaccuracy of
volume estimation. Therefore it provides us with only a decision on the volume
of S. The following proposition characterizes the class of all Bayesian estimates in
this situation.

Proposition 1. Let x
˜
1, . . . , x

˜
n be a random sample from Bp,r. Define the transfor-

mation v(p, r) = λ(Bp,r) and denote a median of posterior of v(p, r) by vm. Then
all the Lp balls with volume vm are Bayesian estimates under the loss (7).

Proof. Let us denote by π(v|x
˜

1, . . . , x
˜

n) the distribution of v = v(p, r) = λ(Bp,r)
with (p, r) having distribution π(p, r|x

˜
1, . . . , x

˜
n). The risk

ρ(p̂, r̂) = Eπ(p,r|x
˜
1,...,x

˜
n)

(
|λ(Bp,r) − λ(Bp̂,r̂)|

)
= Eπ(v|x

˜
1,...,x

˜
n)

(
|v − v(p̂, r̂)|

)
(8)

which depends only on v(p̂, r̂) and is minimized when v(p̂, r̂) equals vm. Namely Bp̂,r̂

is a Bayes estimate with respect to loss (7) for any (p̂, r̂) for which λ(Bp̂,r̂) = vm.

As there are infinitely many Lp balls with volume vm, we need a criterion to
help us to choose one among these as the estimate of S. A reasonable way to choose
a specific Lp ball as an estimate of S could be the pair (p, r) that has the smallest
Euclidean distance from (p̂mle , r̂mle) among the infinitely many pairs implied in
Proposition 1. Thus, this composite approach is to find

(p̂comb, r̂comb) = arg min
{(p,r):λ(Bp,r)=vm}

(p − p̂mle)2 + (r − r̂mle)2. (9)

We characterize (p̂comb, r̂comb) below. It is nice that the characterization is as ex-
plicit as it turned out to be.
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Proposition 2. Let x
˜
1, . . . , x

˜
n be a random sample from Bp,r. Then (p̂comb, r̂comb)

in (9) exists. Furthermore, p̂comb is the unique root of

p2(p − p̂mle) − r(p)
(

ψ

(
1 +

k

p

)
− ψ

(
1 +

1
p

)) (
r(p) − r̂mle

)
= 0 (10)

and r̂comb = r(p̂comb). Here ψ is the digamma function and

r(p) =
v̂
1/k
m

2

Γ(1 + k
p )1/k

Γ(1 + 1
p )

. (11)

Proof. It is clear from (3) that for any fixed 0 < p ≤ ∞, r(p) is the unique solution
in r of λ(Bp,r) = vm. If we can show that (p− p̂mle)2 + (r(p)− r̂mle)2 has a unique
minimum at some p = p̃, then (p̂comb, r̂comb) = (p̃, r(p̃)).

This follows on observing that λ(B(p̂mle ,r̂mle)) = v̂mle < vm which implies that the
point (p̂mle , r̂mle) is under the curve (p, r(p)) in the (p, r) plane. Furthermore, r(p)
is strictly convex and differentiable, therefore, we have the existence and uniqueness
of p̃, and it must satisfy

(p̃ − p̂mle) +
(
r(p̃) − r̂mle

)
r′(p̃) = 0. (12)

By some further calculations, we obtain r′(p) = r(p)(ψ(1 + k
p ) − ψ(1 + 1

p )) 1
p2 .

From (12) it now follows that p̃ is the unique root of (10).

3. Strong consistency of the estimates

Maximum likelihood and Bayesian estimates are the most widely used methods of
estimation and there is an enormous amount of literature on it. However, a lot of the
well known asymptotic theory applies only to those distributions satisfying certain
“regularity” conditions. See Lehman and Casella (1998), Le Cam (1953), Huber
(1967), and Perlman (1972). One of the conditions requires that the distributions
have common support. Apparently, we cannot look for answers in these theories for
our problem, as the support is the parameter itself. Consequently, a more direct
approach would be necessary and the Wald theorem would be the core key.

3.1. Strong consistency of ML estimate

Let us consider the maximum likelihood estimate first. The most popular strong
consistency theorem for the maximum likelihood estimate is due to Wald (1949). It
can be applied to the non-regular case. In his paper, Wald gave several conditions
to prove a main theorem first. Then he established, essentially through this main
theorem, the strong consistency of the maximum likelihood estimate (in fact, of a
more general family of estimates) provided that the distributions admit those con-
ditions. Though our problem does not satisfy Wald’s conditions, the main theorem,
however, holds for our problem. Therefore, here we will try to combine his main
theorem and his strong consistency theorem for our maximum likelihood estimate.
For completeness, we provide the proof.

Theorem 1 (Wald). Let Pθ

˜
be a distribution with density f(x

˜
; θ
˜
), where θ

˜
∈ Θ.

Suppose the realizations x
˜

1, . . . , x
˜

n come from Pθ

˜
0 independently for some θ

˜
0 ∈ Θ.

Let θ̂
˜

n be a function of x
˜

1, . . . , x
˜

n satisfying

f(x
˜
1; θ̂

˜
n) · · · f(x

˜
n; θ̂

˜
n)

f(x
˜
1; θ

˜
0) · · · f(x

˜
n; θ

˜
0)

≥ c > 0 for all n and x
˜
1, . . . , x

˜
n for some positive c.

(13)



296 W.-C. Tsai and A. DasGupta

If for any given neighborhood of θ0, say U , it also holds that

Pθ

˜
0

{
lim

n→∞

supθ

˜
∈Θ\U f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

f(x
˜
1; θ

˜
0) · · · f(x

˜
n; θ

˜
0)

= 0
}

= 1, (14)

then we have
Pθ

˜
0

{
lim

n→∞
θ̂
˜
n = θ

˜
0

}
= 1. (15)

This theorem basically states that if the likelihood ratio of θ
˜

to θ
˜
0 is uniformly

small as θ
˜

falls outside any given neighborhood of the true parameter θ
˜
0, then the

estimate θ̂
˜

n must be close to θ
˜
0 since by assumption its likelihood ratio to θ

˜
0 is

always greater than or equal to c (which is greater than 0).

Proof. This theorem does not require that the coordinates of θ
˜
0 are finite (note

that the shape parameter p in our problem can be infinity). But we will give the
proof for θ0 having finite coordinates only to avoid redundancy since the proofs are
similar.

To prove (15), it suffices to show that for any neighborhood of θ
˜
0, say U , θ̂

˜
n will

fall inside U eventually with probability one. But from (14), one sees that, with
probability one, there exists N , which may depend on {x

˜
i}∞i=1, such that

supθ

˜
∈Θ\U f(x

˜
1, θ

˜
) · · · f(x

˜
n, θ

˜
)

f(x
˜
1, θ

˜
0) · · · f(x

˜
n, θ

˜
0)

<
c

2
∀ n ≥ N.

However, (13) claims that

f(x
˜
1, θ̂

˜
n) · · · f(x

˜
n, θ̂

˜
n)

f(x
˜
1, θ

˜
0) · · · f(x

˜
n, θ

˜
0)

≥ c >
c

2
∀ n and x

˜
1, . . . , x

˜
n.

Thus, θ̂
˜

n �∈ Θ \ U when n ≥ N . Therefore θ̂
˜

n belongs to U eventually with proba-
bility one, as claimed.

Since a maximum likelihood estimate, if it exists, obviously satisfies (13) with
c = 1, this theorem also proves the strong consistency of the maximum
likelihood estimate provided (14) holds. Fortunately, our family of distributions
{Unif(Bp,r)}{0<p≤∞,0<r<∞} satisfies (14).

Lemma 1. Let Pθ

˜
denote Unif(Bp,r), where θ

˜
= (p, r) and θ

˜
∈ Θ = {(p, r) : 0 <

p ≤ ∞, 0 < r < ∞}. Then {Pθ

˜
}θ

˜
∈Θ satisfies (14).

Proof. The proof is extremely lengthy and involved. To maintain the flow of this
paper, we will only give a rough sketch here and refer the rigorous proof to Tsai
(2000).

The basic idea of this proof is as follows. For any given (p, r) �= (p0, r0), one has
either Bp0,r0 ⊂λ Bp,r or λ(Bp0,r0 \ Bp,r) > 0, here A ⊂λ B means A is contained
in B properly in the Lebesgue measure; i.e. A ⊂ B and λ(B \ A) > 0. In the first
situation, we will have the likelihood ratio equal to (λ(Bp0,r0)

λ(Bp,r) )n which goes to 0 as n

goes to ∞ since λ(Bp0,r0) < λ(Bp,r). For the second case, we will, eventually, observe
some x

˜
i not belonging to Bp,r, which results in the zero value of the likelihood ratio.

As a result, (14) shall hold.

Now by Theorem 1, and Lemma 1, we have the strong consistency of (p̂mle , r̂mle).

Corollary 1. Let x
˜
1, . . . , x

˜
n be a random sample from Bp,r. Then the maximum

likelihood estimate (p̂mle , r̂mle) is strongly consistent.
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3.2. Strong consistency of Bayesian estimate

Let us now move to the consistency of the Bayesian estimate. The following is a
general result on the strong consistency of the Bayesian estimate under a general
assumption on the distribution family and the loss function. Basically, this theorem
and its proof are very similar to the Wald Theorem given in the previous section
except that we have to include the prior and the loss which are the other elemen-
tary components for Bayesian analysis. The generality of this theorem makes it an
attractive result of independent interest.

Theorem 2. Suppose Pθ

˜
denotes a distribution with density f(x

˜
; θ
˜
), where θ

˜
∈ Θ.

Assume the observations x
˜

1, . . . , x
˜

n are iid with probability Pθ

˜
0 for some θ

˜
0 ∈ Θ.

Let π(θ
˜
) be a prior of θ

˜
and l(θ

˜
, θ̂
˜
) be a loss function such that∫

Θ

π(θ
˜
) dθ

˜
< ∞ and

∫
Θ

l(θ
˜
, θ
˜
0)π(θ

˜
) dθ

˜
< ∞. (16)

Then the Bayesian estimate will converge to θ
˜
0 with probability one (under Pθ

˜
0)

provided that for any neighborhood of θ
˜
0, say U , there exist sets W ⊂ V ⊂ U

satisfying

(i) Pθ

˜
0

{
lim

n→∞

supθ

˜
∈Θ\V f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

infθ

˜
∈W f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

= 0
}

= 1,

(ii)
∫

W

π(θ
˜
)dθ

˜
> 0, and

(iii) inf
θ̂

˜
∈Uc,θ

˜
∈V

l(θ
˜
, θ̂
˜
) − l(θ

˜
, θ
˜
0) ≥ ε for some ε > 0.

Remark 1. In this theorem, there is a condition on all components of the problem
(likelihood, prior, and loss). Condition (i) states that the likelihood ratio for θ

˜
far

away from θ
˜
0 versus θ

˜
near θ

˜
0 is uniformly small. Condition (ii) requires that the

prior puts a positive mass around the true θ
˜
0. Condition (iii) says that the loss

function does punish for bad decisions. These conditions are all quite mild.

Proof. We divide the proof into several steps for clarity and ease of understanding.
Step 1: Let us denote the posterior of θ

˜
given x

˜
1, . . . , x

˜
n by

π(θ
˜
|x
˜
1, . . . , x

˜
n) ∝ Πn

i=1f(x
˜

i, θ
˜
) π(θ

˜
).

Then the posterior expected loss for decision θ̂
˜

is ρ(θ̂
˜
) = Eπ(θ

˜
|x
˜

1,...,x

˜
n)

(
l(θ

˜
, θ̂
˜
)
)

, and

the Bayesian estimate is θ̂
˜
bayes = arg minθ̂

˜
∈Θ ρ(θ̂

˜
).

To prove the strong consistency of θ̂
˜
bayes , it suffices to show that for any neigh-

borhood of θ
˜
0, say U , θ̂

˜
bayes will fall inside U eventually with probability one (under

Pθ

˜
0). Now, let V , W , and ε be as defined in condition (i), (ii), and (iii). We will

show that

Pθ

˜
0

{
inf

θ̂

˜
∈Uc

ρ(θ̂
˜
) ≥ ρ(θ

˜
0) +

1
4
ε eventually

}
= 1. (17)

This will imply

Pθ

˜
0

{
argmin

θ̂

˜

ρ(θ̂
˜
) ∈ U eventually

}
= 1,

proving this theorem.
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Step 2: In this step, we will break ρ(θ̂
˜
)−ρ(θ

˜
0) into several terms whose magnitudes

are easier to investigate. Note that

ρ(θ̂
˜
) − ρ(θ

˜
0)

= Eπ(θ

˜
|x
˜
1,...,x

˜
n)(l(θ

˜
, θ̂
˜
) − l(θ

˜
, θ
˜
0))

=

∫
Θ
(l(θ

˜
, θ̂
˜
) − l(θ

˜
, θ
˜
0))Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
Θ

Πn
i=1f(x

˜
i|θ
˜
)π(θ

˜
)dθ

˜

=

∫
V

(l(θ
˜
, θ̂
˜
) − l(θ

˜
, θ
˜
0))Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
V

Πn
i=1f(x

˜
i|θ
˜
)π(θ

˜
)dθ

˜

·
∫

V
Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
Θ

Πn
i=1f(x

˜
i|θ
˜
)π(θ

˜
)dθ

˜

+

∫
V c l(θ

˜
, θ̂
˜
)Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
Θ Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜

−
∫

V c l(θ
˜
, θ
˜
0)Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
Θ Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜= (I) · (II) + ((III) − (IV )) . (18)

Step 3: In this step, we will show that (I) is always greater than or equal to ε.
From condition (iii), it is easy to see that

(I) ≥
∫

V
ε · Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
V Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜

= ε for all θ̂
˜
∈ U c. (19)

Step 4: Now, we claim
Pθ

˜
0 {(II) −→ 1} = 1. (20)

Note that

|1 − (II)| =

∫
V c Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜∫
Θ Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜

≤
∫

V c Πn
i=1f(x

˜
i|θ
˜
)π(θ

˜
)dθ

˜∫
W Πn

i=1f(x
˜

i|θ
˜
)π(θ

˜
)dθ

˜
≤ supθ

˜
∈V c f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

infθ

˜
∈W f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

∫
V c π(θ

˜
)dθ

˜∫
W π(θ

˜
)dθ

˜

. (21)

From condition (i), together with condition (ii) and (16), we get that the upper
bound (21) converges to 0 with probability one. Consequently, claim (20) is proved.
Step 5: Now let us look at the term (III) − (IV ). We would like to show that

Pθ

˜
0

{
inf

θ̂

˜
∈Uc

{(III) − (IV )} ≥ −1
4
ε eventually

}
= 1. (22)

Since (III) is nonnegative, we have (III) − (IV ) ≥ −(IV ) which does not depend
on θ̂

˜
. Moreover

0 ≤ (IV ) ≤ supθ

˜
∈V c f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

infθ

˜
∈W f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

∫
V c l(θ

˜
, θ
˜
0)π(θ

˜
)dθ

˜∫
W

π(θ
˜
)dθ

˜
Again from conditions (i) and (ii), and (16), we get that (IV ) converges to 0 with
probability one. Therefore (22) is true.
Step 6: Finally, as an immediate consequence of (18), (19), (20), and (22) together,
we obtain (17). This theorem therefore follows.

Now we would like to apply Theorem 2 to our problem. The following lemma
says that the distribution family Unif(Bp,r), and the loss function l((p, r), (p̂, r̂)) =
λ(Bp,r�Bp̂,r̂) satisfy condition (i) and (iii) of Theorem 2.
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Lemma 2. Let Pθ

˜
denote the distribution Unif(Bp,r), where θ

˜
= (p, r) and θ

˜
∈

Θ = {(p, r) : 0 < p ≤ ∞, 0 < r < ∞}. Let l((p, r), (p̂, r̂)) = λ(Bp,r�Bp̂,r̂) be the
loss function and let π be the prior on θ

˜
. Suppose θ

˜
0 = (p0, r0) is a fixed point in

Θ and π is positive in some neighborhood of (p0, r0). Then for any neighborhood
of (p0, r0), say U , there exist sets W ⊂ V ⊂ U such that the conditions (i), (ii),
and (iii) in Theorem 2 hold.

Proof. The idea of the proof is not difficult. However, the proof is very lengthy.
Refer to Tsai (2000).

Now, as an application of Theorem 2, we have the strong consistency of
(p̂bayes , r̂bayes) as follows:

Corollary 2. Let x
˜

1, . . . , x
˜

n be iid with distribution Unif(Bp,r). Suppose the true
value of (p, r) is denoted by (p0, r0). Let π be a proper prior on (p, r) such that π
is positive in some neighborhood of (p0, r0). Assume also that Eπ(p,r)(λ(Bp,r)) is
finite. Then the Bayesian estimate under the loss l((p, r), (p̂, r̂)) = λ(Bp,r�Bp̂,r̂)
converges to (p0, r0) with probability one.

Proof. From the assumption on π, one has

Eπ(p,r) [l((p, r), (p̂, r̂))] ≤ Eπ(p,r) [λ(Bp,r) + λ(Bp0,r0)] < ∞.

Thus, the corollary follows from Theorem 2 and Lemma 2 immediately.

3.3. Strong consistency of combined estimate

Now we discuss the strong consistency of a combined estimate (p̂comb, r̂comb). Recall
that it is the pair (p, r) closest to the initial guess (p̂mle , r̂mle) with λ(Bp,r) equal to
vm, the posterior median of v = λ(Bp,r). From Corollary 1 and Corollary 3 below,
(p̂mle , r̂mle) and vm are both strongly consistent in the respective parameters. One
may expect, therefore, that the combined estimate will be strongly consistent as
well. We give a general theorem in this direction below. Again the generality makes
it an appealing theorem of independent interest.

Theorem 3. Let x
˜

1, . . . , x
˜

n be a sample from a distribution Pθ

˜
, θ

˜
∈ Θ. Let Θ be

a metric space with a metric d. Let θ̂
˜

n and β̂
˜

n be functions of the observations
x
˜

1, . . . , x
˜

n such that θ̂
˜

n and β̂
˜

n converge almost surely to θ
˜

and β
˜
(θ
˜
), respectively,

under Pθ

˜
, where β

˜
(θ
˜
) is a function of θ

˜
. Suppose θ̃

˜
n

def
= arg min{θ

˜
:β

˜
(θ

˜
)=β̂

˜
n} d(θ̂

˜
n, θ

˜
)

exists and is unique. Then θ̃
˜

n converges to θ
˜

with probability one if for any ε > 0,
there exists a neighborhood of β

˜
(θ
˜
) contained in β

˜
(Bd(θ

˜
, ε)), where Bd(θ

˜
, ε) is the

ε-ball centered at θ
˜

with respect to the metric d.

Proof. To prove the strong consistency of θ̃
˜

n, it is enough to show that for any
ε > 0,

Pθ

˜

{
d(θ

˜
, θ̃
˜

n) < 3ε eventually
}

= 1. (23)

By assumption, there exists a neighborhood of β
˜
(θ
˜
), say B, contained in β

˜
(Bd(θ

˜
, ε));

so, if β̂
˜

n ∈ B, there exists θ̃
˜

within ε distance of θ
˜

such that β
˜
(θ̃
˜
) = β̂

˜
n. Then, one

has

d(θ̂
˜

n, θ̃
˜

n) = min
{θ

˜
:β

˜
(θ

˜
)=β̂

˜
n}

d(θ̂
˜

n, θ
˜
) ≤ d(θ̂

˜
n, θ̃

˜
) ≤ d(θ̂

˜
n, θ

˜
) + d(θ

˜
, θ̃
˜
) ≤ d(θ

˜
, θ̂
˜

n) + ε,
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which implies
d(θ

˜
, θ̃
˜

n) ≤ d(θ
˜
, θ̂
˜

n) + d(θ̂
˜

n, θ̃
˜

n) ≤ 2d(θ
˜
, θ̂
˜

n) + ε.

Furthermore, if d(θ
˜
, θ̂
˜

n) < ε, then we have d(θ
˜
, θ̃
˜

n) < 3ε. On the other hand, θ̂
˜

n and
β̂
˜

n are strongly consistent for θ
˜

and β
˜
(θ
˜
) respectively. This implies

Pθ

˜

{
d(θ

˜
, θ̂
˜

n) < ε and β̂
˜

n ∈ B eventually
}

= 1.

This proves (23) and hence the theorem.

To apply the above general theorem to our problem, we need the strong con-
sistency of vm. This will be implied by the following theorem which generalizes
Theorem 2.

Theorem 4. Let x
˜
1, . . . , x

˜
n be a sample from Pθ

˜
with density f(x

˜
; θ
˜
), where θ

˜
∈ Θ.

Suppose we are interested in estimating a function β
˜
(θ
˜
) (rather than θ

˜
) itself and

the loss is a function of θ
˜

through β
˜
(θ
˜
), say l(β

˜
(θ
˜
), β̂

˜
). Denote the true value of θ

˜
by

θ
˜
0 and the prior of θ

˜
by π. Assume

∫
π(θ

˜
)dθ

˜
< ∞ and

∫
l(β

˜
(θ
˜
), β

˜
(θ
˜
0))π(θ

˜
)dθ

˜
< ∞.

Then the Bayesian estimate of β
˜
(θ
˜
), argminβ̂

˜
Eπ(θ

˜
|x
˜
1,...,x

˜
n)(l(β

˜
(θ
˜
), β̂

˜
)), converges

to β
˜

0 ≡ β
˜
(θ
˜
0) with probability one under Pθ

˜
0 provided that for any neighborhood of

β
˜

0, say B, there exists sets W ⊂ V ⊂ β
˜
−1(B) satisfying

(i) Pθ

˜
0

{
lim

n→∞

supθ

˜
∈Θ\V f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

infθ

˜
∈W f(x

˜
1; θ

˜
) · · · f(x

˜
n; θ

˜
)

= 0
}

= 1,

(ii)
∫

W

π(θ
˜
)dθ

˜
> 0, and

(iii) inf
β̂

˜
∈Bc,θ

˜
∈V

l(β
˜
(θ
˜
), β̂

˜
) − l(β

˜
(θ
˜
), β

˜
(θ
˜
0)) ≥ ε for some ε > 0.

Remark 2. Theorem 2 is a special case of Theorem 4 when we take β
˜
(θ
˜
) = θ

˜
.

Moreover, in this theorem, β
˜

does not have to be one-to-one and β
˜
−1(B) is defined

as { θ
˜

: β
˜
(θ
˜
) ∈ B}.

Proof. The proof is exactly the same as that of Theorem 2.

We now apply Theorem 4 to prove the strong consistency of vm.

Corollary 3. Let x
˜
1, . . . , x

˜
n be a random sample from Bp,r. Define v = v(p, r) =

λ(Bp,r). Let π be a prior on (p, r) and vm the posterior median of v. Let also (p0, r0)
denote the true value of (p, r). If π is positive in a neighborhood of (p0, r0), then
vm converges to v(p0, r0) with probability one.

Proof. Denote v(p0, r0) by v0. Let B be a neighborhood of v0. Without loss of
generality, we can assume B = (v0 − δ, v0 + δ) for some δ > 0. Since v(p, r) is a
continuous function of (p, r), there exists a neighborhood of (p0, r0), say U , such
that U ⊂ v−1(B′), where B′ = (v0 − δ

3 , v0 + δ
3 ). Then by Lemma 2, there exist sets

W ⊂ V ⊂ U such that conditions (i) and (ii) in Theorem 4 hold.
Furthermore, if (p, r) ∈ V , one has v(p, r) ∈ B′ , which implies

|v(p, r) − v(p0, r0)| <
δ

3
and |v(p, r) − v̂| >

2δ

3
for all v̂ ∈ B.

This gives us condition (iii) of Theorem 4.
The corollary, therefore, follows from Theorem 4 immediately.
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Corollary 3 endows us with the strong consistency of vm needed to apply the
general result of Theorem 3. We are now ready to prove the strong consistency of
(p̂comb, r̂comb).

Corollary 4. The estimator (p̂comb, r̂comb) defined in Section 2.3 is strongly con-
sistent.

Proof. To prove this proposition, we will apply Theorem 3 for the case when the
true value, p0, of p is finite. When p0 is infinity, we will prove this proposition
directly. Recall that

(p̂comb, r̂comb) = arg min
{(p,r):λ(Bp,r)=vm}

[
(p − p̂mle)2 + (r − r̂mle)2

]
.

Also Corollary 1 and Corollary 3 give us the strong consistency of (p̂mle , r̂mle) and
vm respectively.
Case 1 p0 = ∞ : By (10) and the fact that vm ≥ λ(Bp̂mle ,r̂mle

), p̂comb must be
greater than p̂mle . As p̂mle converges to p0 = ∞ with probability one, so does

p̂comb. Furthermore, Proposition 2 also gives r̂comb = vm
1/k

2

Γ1/k(1+ k
p̂comb

)

Γ(1+ 1
p̂comb

)
. Thus the

strong consistency of r̂comb follows from the strong consistency of p̂comb and vm

immediately.
Case 2 p0 < ∞ : We will prove this case as an application of Theorem 3. For
any given ε > 0, let us take B = (λ(Bp0,(r0−ε)+), λ(Bp0,r0+ε)). It is easy to see
that for any b ∈ B, there exists (r0 − ε)+ < r < r0 + ε such that v(p0, r) = b
and certainly the distance between (p0, r) and (p0, r0) is smaller than ε. Therefore,
the assumptions in Theorem 3 are all satisfied. This proposition for the case when
p0 < ∞ follows.

4. Discussion

This section will first compare the performance of the maximum likelihood estimate
with the combined estimate, especially when the sample size is small. Recall that the
calculation of Bayes estimate is difficult. Then, some simulation and conjectures on
the asymptotic distribution of the estimates will be given as, unfortunately, they are
very hard. We end with a brief discussion for the case when the center of symmetry
of the true set is unknown.

4.1. Comparison of (p̂mle , r̂mle) and (p̂comb , r̂comb)

We remarked that the combined estimate can be principally considered as a dilation
of the maximum likelihood estimate. Our simulation will try to examine: (i) in what
fashion the combined estimate dilates the maximum likelihood estimate, (ii) if it
indeed helps with regard to underestimation of the volume of the true set, and
(iii) if the choice of the prior on p and r affects the performance of the combined
estimate.

The tables and figures referenced below are based on a simulation of size 750 with
true (p, r) = (2, 1), dimension k = 2, and sample size n = 10. We consider three re-
spective priors on (p, r). They are π1(p, r) = pe−pre−r, π2(p, r) = 1

2p2e−pre−r , and
π3(p, r) = 2

π(1+p2)re
−r respectively. We denote each of the corresponding combined

estimates by (p̂comb1, r̂comb1), (p̂comb2, r̂comb2), and (p̂comb3, r̂comb3), respectively.
Table 1 gives the mean and the standard error of the volume of Bp̂mle ,r̂mle

,
Bp̂comb1,r̂comb1 , Bp̂comb2,r̂comb2 , and Bp̂comb3,r̂comb3 , and their symmetric difference as well
as their Hausdorff distances to the true set. This table shows that the volumes of the
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Table 1: The mean and standard error (in parentheses) from a size 750 simulation
of the volume of the maximum likelihood estimate and the combined estimates with
respect to three different priors on (p, r) and the symmetric difference distances and
the Hausdorff distances to the true set.

true (p, r) = (2, 1) k = 2, n = 10

(p̂, r̂) = λ(Bp̂,r̂) dλ(Bp,r, Bp̂,r̂) dH(Bp,r, Bp̂,r̂)

(p̂mle , r̂mle) 2.70519(0.294328) 0.466593(0.290792) 0.118659(0.077068)
(p̂comb1, r̂comb1) 3.10145(0.321972) 0.336655(0.200423) 0.095912(0.065939)
(p̂comb2, r̂comb2) 3.10321(0.332331) 0.342807(0.201751) 0.097780(0.066906)
(p̂comb3, r̂comb3) 3.13368(0.344959) 0.351907(0.202675) 0.098770(0.065463)

p̂comb1

2 4 6 8 10

2

4

6

8

10

r̂comb1

0.6 0.8 1 1.2 1.4 1.6

0.6

0.8

1

1.2

1.4

1.6

p̂mle r̂mle

Figure 1: Scatter plots of (p̂mle , p̂comb) and (r̂mle , r̂comb).

combined estimates are much closer to the true volume (which is π = 3.14159), but
with a higher variance, than that of the maximum likelihood estimate. Moreover,
the distances, either one, of the combined estimates to the true set are about 20%
to 30% less compared to the maximum likelihood estimate. It also appears that the
selection of the prior does not affect the performance of the combined estimate very
much.

Figure 1 plots p̂comb1 against p̂mle and r̂comb1 against r̂mle . We see that the
scatter plot of (p̂mle , p̂comb1) is virtually the 45 degree line; (r̂mle , r̂comb1)s’, on the
other hand, all fall above the 45 degree line. We have similar results for the other
two combined estimators. So, Bp̂comb,r̂comb

may indeed be considered as if it was
dilated from Bp̂mle ,r̂mle

by enlarging only the radius r while keeping p essentially
fixed at p̂mle . This is interesting.

4.2. Convergence in distribution

In this section, some simulation and conjectures on the asymptotic distribution of
the maximum likelihood estimate will be given. Figure 2 shows several scatter plots
of (n(p̂mle −p), n(r̂mle − r)) with p = 2, r = 1, and various sample sizes. We believe
that when the true value of p is finite, (n(p̂mle − p), n(r̂mle − r)) converges to some
nondegenerate distribution which puts all its mass in the half plane: {(x, y) : y ≤
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Figure 2: Scatter plots of (n(p̂mle − p), n(r̂mle − r)) with (p, r) = (2, 1) and k = 2.

Solid line is (n(t − p), n(Γ1/k(1+ k
t )

Γ(1+ 1
t )

Γ(1+ 1
p )

Γ1/k(1+ k
p )

− 1)r), where t ranges from 0 to ∞.

Broken line is the straight line through the origin with slope −1
p2 (ψ(1+ k

p )−ψ(1+ 1
p )).
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−r
p2 {ψ(1+ k

p )−ψ(1 + 1
p )}x}. It is also obvious that the correlation of p̂mle and r̂mle

is negative. When p̂mle overestimates the true p, the corresponding r̂mle will then
likely underestimate the true r, and vice versa.

Figure 3 gives scatter plots of (
√

n( 1
p̂mle

), n(r̂mle − r)) for the case where (p, r) =
(∞, 1). It seems that (

√
n( 1

p̂mle
), n(r̂mle−r)) converges to some nondegenerate distri-

bution having support in the fourth quadrant. Interestingly, the convergence rates
seem dependent on the true value of p.

In fact, these conjectures were inspired by the case when one of the parameters
(p or r) is known. A summary for the behavior of p̂mle when r is assumed to be
known is given below. Similar results can also be derived for the case when p is
assumed to be known. See Tsai (2000) for details.

If we assume r is known, say, r = r0, the characterization of the maximum
likelihood estimate of p becomes very simple. We are in fact able to give the exact
distribution of p̂mle and therefore the weak convergence result for p̂mle . The idea of
getting this result is very simple. Indeed this problem can be converted to an end-
point problem if we consider the new random variables zi = λ(Bpr0 (x

˜
i),r0), where

Bpr0 (x

˜
i),r0 is the smallest Lp ball containing x

˜
i with radius r0. It can be easily shown

that Zi’s are independently and identically distributed with value between 0 and
the volume of the true domain and λ(Bp̂mle ,r0) = max1≤i≤n zi, whose asymptotic
distribution is well known. Thus we have the following weak convergence result for
p̂mle when the true r is known.

Proposition 3. Suppose x
˜

1, . . . , x
˜

n are iid from Unif(Bp,r0), where 0 < r0 < ∞ is
known. Let G denote an exponential random variable with mean 1. Then
(I) when p < ∞,

n(p̂mle − p) D−→ −p2

k

(
1

ψ(1 + k
p ) − ψ(1 + 1

p )

)
G, (24)

where ψ is the digamma function, and
(II) when p = ∞,

√
n

1
p̂mle

D−→
√

12
π2k(k − 1)

√
G. (25)

Remark 3. Note that when p < ∞, interestingly, the asymptotic variance,
(p2

k ( 1
ψ(1+ k

p )−ψ(1+ 1
p )

))2, is a decreasing function of the dimension k. It appears that

the curse of dimensionality does not show up in this problem. To the contrary, for
estimation of the single shape parameter p, it is beneficial to have a large k!

Remark 4. In fact, n(λ(Bp̂mle ,r0) − λ(Bp,r0))
D−→ −λ(Bp,r0)G. If we divide both

sides by the true volume, this expression tells us that the proportion of the uncom-
mon part between the estimate and the true set (to the true set) converges with
the rate n to an exponential distribution. It does not relate to the true set. The
convergence rates of p̂mle , however, do depend on p. It is interesting that the speed
of convergence of p̂mle slows down from n to

√
n discontinuously as p changes from

finite to infinite. We believe that this phenomenon is caused by the difficulty of
“catching the corners” of a square, for example. This is also interesting.

4.3. Unknown center of symmetry

In practice, the center of symmetry of the object usually would not be known. It
then has to be estimated. In this section, we will have a brief examination of this
situation.
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Figure 3: Scatter plots of (
√

n( 1
p̂mle

), n(r̂mle − r)) with (p, r) = (∞, 1) and k = 2 for
different sample sizes.



306 W.-C. Tsai and A. DasGupta

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

p = 1.5, r = 1, n = 10 p = 1.5, r = 1, n = 25

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

p = 2, r = 1, n = 10 p = 2, r = 1, n = 25

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

p = 3, r = 1, n = 10 p = 3, r = 1, n = 25

Figure 4: Visual display of the set estimate when the center is unknown. The region
bounded by the solid curves is the true set, by the broken or the dotted curve is the
maximum likelihood estimate with the center assumed to be known or estimated by
the mean of the observations, respectively. The conspicuous circle is the estimated
center and the dots are the observations.
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Apparently, it is not easy to estimate the center together with the shape para-
meter p and the size parameter r by using the maximum likelihood method. See
Amey et al. (1991) for some calculations. Besides, the problem of underestimating
of the volume of the maximum likelihood estimate in this situation will be more
serious. Therefore, it may be preferable to estimate the center by some other ex-
ternal methods. We tried the mean of the observations, and the L2 median (spatial
median) (which minimizes Σ1≤i≤n‖x

˜
i − u

˜
‖2 over u

˜
). It turns out that the mean

of the observations performs better than the L2 median. Therefore, here we at-
tempt to check how the estimate may be influenced if the center is unknown and
is estimated by the mean of the observations. Figure 4 gives a visual comparison
between the maximum likelihood estimates with center treated to be known and
with center estimated by the mean of the observations. It can be seen that the
shape of the estimates can vary very much depending on whether the center is
known or estimated. But the estimate of the size parameter does not differ that
much. Moreover, the volume of the maximum likelihood estimate with the center
estimated by the mean of the observations can exceed the volume of the true set.
When the realizations cluster to one side with some observations appearing in the
far opposite direction, apparently the estimate can miss the true set badly. There-
fore, constructing a better estimate for the center of symmetry of the true set is
important.
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