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Conservative bounds on extreme P-values

for testing the equality of two

probabilities based on very large

sample sizes

Herman Chernoff1

Harvard University

Abstract: With very large sample sizes the conventional calculations for tests
of the equality of two probabilities can lead to very small P-values. In those
cases, the large deviation effects make inappropriate the asymptotic normal-
ity approximations on which those calculations are based. While reasonable
interpretations of the data would tend to reject the hypothesis in those cases,
it is desireable to have conservative estimates which don’t underestimate the
P-value. The calculation of such estimates is presented here.

1. Introduction

There are several excellent alternatives for testing the hypothesis that p1 = p2

where p1 and p2 are probabilities governing two binomial samples. These include
the Yates continuity correction and the Fisher Exact test and several others based
on the asymptotic normality of the observed proportions. All these test procedures
have the desireable property that the calculated P-value does not depend on the
unknown common probability under the hypothesis. There is a slight problem with
the Fisher exact test, i.e., it is not strictly appropriate for the problem because the
calculated probability is conditional on the values of the margins, which are not
fixed in advance. The problem is considered slight because the information in the
margins is quite small Chernoff (2004).

In a legal case the problem arose where there were 7 successes out of 16 trials
for one sample and 24 successes out of 246 in the second sample. It is clear that
the hypothesis is not plausible in the light of these data. Since the various alterna-
tive tests provide substantially different calculated P-values, all very small, it was
considered wise to present a very conservative P-value. While one sample size was
substantial, the other was quite modest. Neither was so large that modern com-
puters would be frustrated by calculating the exact P-value rather than relying on
asymptotic theory. One consequence of such an approach is that the P-value is no
longer independent of the unknown value of the nuisance parameter, the common
value of the probabiities under the hypothesis. This problem is dealt with in several
publications (Berger and Boos (1994), Chernoff (2003)). A crucial aspect of the dif-
ficulty in using asymptotic theory is that in extreme cases where the P-values are
very very small, we are in the tails of the distribution and asymptotic normality no
longer fits in these large deviation cases.

A new problem recently came to my attention, where both sample sizes are
enormous, i.e. n1 = 19, 479 and n2 = 285, 422, Here agains there are several cases
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where we have a large deviation problem, and asymptotic normality is not appro-
priate, and probably not conservative. How should we deal with this problem in
this example where ordinary high speed computers may find it difficult to provide
exact calculations such as were feasible in the previous case? The Chernoff bound,
originally derived by H. Rubin, provides a method of deriving an upper bound on
the desired probability which is convenient to calculate.

2. The Poisson approximation

While the normal approximation is unreliable, the Poisson approximation may be
better. In any case, it is to be used here merely to provide an initial approximation
for the quantities required for the binomial calculation. We outline the analysis
which provides a solution assuming the Poisson approximation fits.

The main tool to deliver a conservative bound on the P-value is the Chernoff
bound, first derived by Herman Rubin, using a Chebyshev type of inequality, that
states that if d ≥ E(X),

P (X ≥ d) ≤ E
(
et(X−d)

)
for all t. The right hand side attains its minimum for t ≥ 0.

Let X1 and X2 be the number of successes in n1 and n2 independent trials with
common probability p, and let

D =
X1

n1
− X2

n2
,

Using the Poisson approximation to the binomial distribution, we shall derive
the curve in the (p,d) space for which the bound on log(P (D ≥ d)),

q = log
(
inf
t

E
(
et(D−d)

))

attains a given value, for d > 0. Under the assumption that the number of successes
in each trial has a Poisson distribution, we have

Q(t, d) = log
(
E

(
et(D−d)

))
= −dt + n1p

(
et/n1 − 1

)
+ n2p

(
e−t/n2 − 1

)
.

Differentiating with respect to t, the value of t which minimizes Q satisfies

et/n1 − e−t/n2 = d/p = a

while
Q(t, d) = pr(t, a)

where
r(t, a) = −at + n1

(
et/n1 − 1

)
+ n2

(
et/n2 − 1

)
.

For each value of t, there is a corresponding value of a for which t is optimal
and a corresponding value of r. Let p = q/r and d = ap. As t varies these values of
p and d trace out the (p, d) curve corresponding to the given value of q ≥ log(P ).

3. The binomial case

We use the Poisson calculation to get a first approximation in the derivation of the
(p.d) curves for the binomial case. In the previous section we obtained values of p
and d for each value of t. Here we will keep both p and q fixed, and starting with
the value of t, we find

Q(t, d) = log E
(
et(D−d)

)
= −td + n1 log

(
1 − p + pet/n1

)
+ n2 log

(
1 − p + pe−t/n2

)
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and the value of d for which Q is minimized by the given value of t is given by

d(t) = (1 − p)
(

1
1 − p + pe−t/n2

− 1
1 − p + pet/n1

)
.

We note that

d′(t) = p(1 − p)
(

et/n1

n1(1 − p + pet/n1)2
+

e−t/n2

n2(1 − p + pe−t/n2)2

)
.

Insofar as Q(t, d(t)) varies from the specified value of q, we apply the Newton
iteration to modify t. This leads t to the new value t + (q − Q(t, d(t))/Q′(t) where

Q′(t) = ∂Q/∂t + d′(t)∂Q/∂d = −td′(t).

Thus t goes into t − (q − Q)/td′(t).
If the new value of t and d(t) do not provide Q(t, d(t)) close enough to the desired

value q, one may iterate again. Finally we have for each initial value of t and the
given value of q a new point (p, d) for the curve of specified q ≥ log(P (D ≥ d)).

While the curves we have obtained of (p, d) values for a given value of q are
useful, they don’t resolve the inverse problem in which we may be interested. That
is, how do we calculate a bound on the P-value for a given p and d? A series of
curves provided above would be useful to get rough approximations for a set of cases
with given n1 and n2, but do not provide a reasonable precise algorithm should that
be desired. To obtain the bound on the P-value, we start with the estimate of p
given by p = (X1 + X2)/(n1 + n2). Assusming that value is fixed, we approximate
t, assuming t is small compared to n1 and n2, by

t =
dn1n2(1 − p)
(n1 + n2)p

This value of t together with the observed value of D yields Q(t, D) and d(t).
Insofar as d(t) differs from D, we modify t by the Newton method to t + (D −
d(t))/d′(t). With this new value of t, we recalculate Q and d(t) and interate until
d(t) is approximately D. Then the bound on the P-value is given by eQ assuming
our estimate of p is accurate. Since the range of possible values of p is quite limited
under the hypothesis, we can see how much the P-value changes by considering
potential alternative values of p.

4. Summary

For the case of very large sample sizes, with data quite inconsistent with the hy-
pothesis that two binomial distributions have the same value of p, we anticipate
very small P-values. The usual calculations are unreliable because large deviation
effects make the asymptotic normality on which these calculations depend unreli-
able. While it is clear in such cases that the hypothesis is false, it is often desireable
to have a conservative bound on the P-value. The Chernoff bound provides such a
result. We provide the basis for three algorithms. One provides the (p, d) values for
which given bounds on the value of log(P ) are attained assuming that a Poisson
approximation to the binomial distribution is acceptable. This algorithm is used as
a starting point in calculating the curve of (p, d) values for the binomial distribu-
tion. Finally we show how to calculate the conservative bound for the P-value in
the binomial case.
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Figure 1:
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We have in Figure 1, the (p, d) values for the case P = 10−a where a takes
on the values 3,4,5,8,12,16, and 20, n1 = 19, 479, n2 = 285, 422, and we use the
binomial distribution. In Figure 2 we use the calculation for the Yates continuity
correction where p represents the estimate of the common probability.

In both of these cases we have calculated one sided P-values. The calculation for
negative values of D can be obtained by interchanging n1 and n2 after replacing D
by its absolute value.
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