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Zeroes of infinitely differentiable

characteristic functions

Herman Rubin1 and Thomas M. Sellke1

Purdue University

Abstract: We characterize the sets where an n-dimensional, infinitely differen-
tiable characteristic function can have its real part zero, positive, and negative,
and where it can have its imaginary part zero, positive, and negative.

1. Introduction and summary

Let f : Rn → C be the characteristic function of a probability distribution on Rn.
Let A+ ⊂ Rn be the set on which Re{F (·)} is strictly positive, and let A− be the
set on which Re{F (·)} is strictly negative. Let B+ be the set on which Im{f(·)}
is strictly positive. What can we say about the sets A+, A− , and B+? Since f is
continuous, A+, A− , and B+ are open sets. Since f(t) = f(−t) for all t ∈ Rn, we
have A+ = −A+, A− = −A−, and B+ ∩ (−B+) = ∅. Clearly, A+ ∩A− = ∅. Finally,
it follows from f(0) = 1 that 0 ∈ A+ and 0 /∈ B+.

This paper will show that these obviously necessary conditions on the triple
(A+, A−, B+) are also sufficient to insure the existence of an n-dimensional charac-
teristic function whose real part is positive precisely on A+ and negative precisely
on A−, and whose imaginary part is positive precisely on B+. Furthermore, this
characteristic function may be taken to be infinitely differentiable.

Let A0 ⊂ Rn be a closed set satisfying 0 /∈ A0 and A0 = −A0. Let B0 ⊂
Rn be a closed set containing 0 whose complement (B0)c can be expressed as
(B0)c = B+ ∪ (−B+), where B+ is an open set satisfying B+ ∩ (−B+) = ∅. It
follows immediately from the main result that there exists an n-dimensional C∞

characteristic function whose real part is zero precisely on A0 and whose imaginary
part is zero precisely on B0. These sufficient conditions on A0 and B0 are obviously
necessary.

Examples of one-dimensional characteristic functions with compact support are
well known. However, the usual examples, and all those obtainable from the famous
sufficient condition of Polya (see Theorem 6.5.3 of Chung (1974)) are not differen-
tiable at zero, and the authors are not aware of any previously published examples
of C∞ characteristic functions with compact support.

2. Construction of the characteristic functions g1,n and g2,n

For x ∈ R, x �= 0, define

r(x) =
6
x2

(
1 − sinx

x

)
.

Let r(0) = 1, so that r is continuous.
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Lemma 1. The characteristic function of the probability density (3/2){(1 − |t|)+}2

is r.

Proof. Direct calculation.

Lemma 2. The function r is unimodal and positive.

Proof. Since r is symmetric and since r(0) = 1 and limx→∞r(x) = 0, it will suffice
to prove that the first derivative r′(·) has no zeroes for x ∈ (0,∞). But

r′(x) = − 6
x4

[
(2 + cosx)x − 3 sinx

]
,

so that it will suffice to prove that w(·) defined by

w(x) = (2 + cosx)x − 3 sinx

has no zeroes on (0,∞). It is easy to see that w(x) is positive for x ≥ π. To take
care of x ∈ (0, π), note that

w′(x) = 2 − 2 cosx − x sin x

w′′(x) = sin x − x cosx

w′′′(x) = x sin x

The third derivative w′′′(x) is positive for x ∈ (0, π). Since w′′(0) = w′(0) =
w(0) = 0, it follows that w(x) is positive for x ∈ (0, π), and we are done.

Let X1, X2, . . . be . . . random variables with density (3/2){(1− |t|)+}2. Define

S1 =
∞∑

k=1

Xk/k2 and S2 =
∞∑

k=1

Xk/k4.

Let h1 be the density of S1, and let h2 be the density of S2. Since
∑∞

k=1 k−2 = π2/6,
the density h1 is positive precisely on the interval (−π2/6, π2/6). Likewise, since∑∞

k=1 k−4 = π4/90, h2 is positive precisely on (−π4/90, π4/90).
It follows from Lemma 1 that the characteristic functions of S1 and S2 are given

by

q1(x) =
∞∏

k=1

r
(
x/k2

)
and q2(x) =

∞∏
k=1

r
(
x/k4

)
,

respectively.
By the Fourier inversion theorem (see the corollary on p. 155 of Chung (1974)),

hj(t) =
1
2π

∫ ∞

−∞
e−ixtqj(x) dx,

for j = 1, 2. Setting t = 0 yields

2πhj(0) =
∫ ∞

−∞
qj(x) dx.

Thus, p̃j(·) defined by
p̃j(·) =

qj(x)
2πhj(0)

is a probability density with characteristic function given by

g̃j(t) = hj(t)/hj(0), j = 1, 2.
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Obviously, g̃1 and g̃2 are positive precisely on (−π2/6, π2/6) and (−π4/90,
π4/90), respectively. Since r(·) is symmetric about 0 and unimodal, p̃1 and p̃2

are also symmetric and unimodal. From the definitions of r(·) and qj(·) above, it is
easy to see that

lim
x→∞

xmp̃j(x) = 0

for j = 1, 2 and for all m > 0. Thus, the densities p̃1 and p̃2 have all moments. It
follows that g̃1 and g̃2 are C∞. (See Theorem 6.4.1 of Chung (1974)). Finally, we
need to show that the tails of p̃2 are fatter than those of p̃1 in the sense that, for
each real a > 0,

lim
x→∞

p̃1(ax)
p̃2(x)

= 0. (2.1)

To do this, it will suffice to show that

lim
x→∞

q1(ax)
q2(x)

= 0. (2.2)

If b, c > 0, then obviously r(bx)
r(cx) → c2

b2 as x → ∞. Also, if b > c > 0, then 0 < r(bx)
r(cx) ≤

1 for all x ∈ R, by Lemma 2. But

q1(ax)
q2(x)

=
∞∏

k=1

r(ax/k2)
r(x/k4)

,

and the kth factor converges to (a2k4)−1. There are only finitely many k’s for which
(a2k4)−1 ≥ 1. If (a2k4)−1 < 1, then 0 < r(ax/k2)

r(x/k4) ≤ 1 for all x, and the limiting
value (a2k4)−1 can be made arbitrarily small by choosing k sufficiently large. This
suffices to prove (2.2) and hence (2.1).

Define g1, g2, p1, and p2 by rescaling g̃1, g̃2, p̃1, and p̃2 as follows.

g1(t) = g̃1

(
π2t/6

)
g2(t) = g̃2

(
π4t/90

)
p1(x) =

(
6/π2

)
p̃1

(
6x/π2

)
p2(x) =

(
90/π2

)
p̃2

(
90x/π4

)
.

Our results for g̃1, g̃2, p̃1, and p̃2 imply the results for g1, g2, p1, and p2 given in
the following lemma.

Lemma 3. The functions g1 and g2 defined above are real-valued, nonnegative, C∞

characteristic functions which are positive precisely on (−1, 1). The corresponding
probability densities p1 and p2 are unimodal, and the tails of p2 are fatter then those
of p1 in the sense that, for every a > 0, lim

x→∞
p1(ax)
p2(x) = 0.

In order to prove our main theorem, we will need an n-dimensional analog of
Lemma 3. For the remainder of this paper, t and x will denote points in R

n with
respective coordinates ti and xi, i = 1, . . . , n.

For j=1 and 2, let Yj be a random vector in Rn whose coordinates are i.i.d.
random variables with density pj . Then Yj has density

p̂j,n(x) =
n∏

i=1

pj(xi)

and characteristic function
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ĝj,n(t) =
n∏

i=1

gj(ti).

Let M be a random n×n orthogonal matrix (with the normalized Haar measure
on the group of n × n orthogonal matrices as its probability distribution), and
suppose M is independent of Yj . Then Zj = MYj is a spherically symmetric
random vector in Rn with density

p̃j,n(x) =
∫

Sn−1
p̂j,n

(
‖x‖u

)
dυ(u),

where Sn−1 = {t ∈ Rn : ‖t‖ = 1} is the unit sphere in Rn, and υ is the rotation
invariant probability measure on Sn−1. The characteristic function of Zj is

g̃j,n(t) =
∫

Sn−1
ĝj,n

(
‖t‖u

)
dυ(u),

which is C∞ and is positive precisely on {t ∈ Rn : ‖t‖ <
√

n}. For j=1 and 2, let

gj,n(t) = g̃j,n

(√
nt

)
(2.3)

and
pj,n(x) = n−1/2p̃j,n

(
n−1/2x

)
. (2.4)

The following lemma gives us the results we need to prove the main theorem.

Lemma 4. The functions g1,n and g2,n defined above are real-valued, nonnegative,
C∞ characteristic functions which are positive precisely on {t ∈ Rn : ‖t‖ < 1}. For
each a > 0, there is a constant L(a) such that the corresponding densities functions
p1,n and p2,n satisfy

p1,n(ax) < L(a)p2,n(x)

for all x ∈ Rn.

Proof. Only the second assertion remains to be proved. Fix a > 0. It follows from
Lemma 3 that there exists a number K(a) > 0 such that p1(ax1) < K(a)p2(x1) for
all x1 ∈ R. Thus

p̂1,n(ax) =
n∏

i=1

p1(axi) < Kn(a)
n∏

i=1

p2(xi) = Kn(a)p̂2,n(x)

Furthermore,

p̃1,n(ax) =
∫

Sn−1
p̂1,n(a‖x‖u) dv(u) < Kn(a)

∫
Sn−1

p̂2,n(‖x‖u) dv(u)

= Kn(a)p̃2,n(x).

Let L(a) = Kn(a). Then it follows from (2.4) that p1,n(ax) < L(a)p2,n(x) for all
x ∈ Rn.

Remark. It is not hard to show that the spherically symmetric densities p1,n and
p2,n are unimodal, and that, for each a > 0, they satisfy

lim
‖x‖→∞

p1,n(ax)
p2,n(x)

= 0.

We will only need the facts given in Lemma 4, however.
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3. The main theorem

Theorem. Let A+, A−, and B+ be open subsets of Rn satisfying A+ = −A+, A− =
−A−, B+

⋂
(−B+) = ∅, A+

⋂
A− = ∅, 0 ∈ A+, and 0 /∈ B+. Then there exists an

infinitely differentiable characteristic function f on Rn satisfying

A+ =
{
t ∈ R

n : Re(f(t)) > 0
}

A− =
{
t ∈ R

n : Re(f(t)) < 0
}

B+ =
{
t ∈ R

n : Im(f(t)) > 0
}
.

Proof. For c ∈ Rn and r a positive constant, let

Br(c) =
{
t ∈ R

n : ‖t − c‖ < r
}

be the open ball in Rn with center c and radius r. We may assume without loss of
generality that B1(0) ⊂ A+. Define

Ã+ = A+
⋂{

t ∈ R
n : ‖t‖ > 1/2

}
.

Since Ã+ is open, it is the union of a countable set {Bri(ci)}∞i=1 of open balls.
Since Ã+ = −Ã+, we have Bri(−ci) ⊂ Ã+ for all i. Define

f+
i (t) = g1,n

{
(t − ci)/ri

}
+ g1,n

{
(t + ci)/ri

}
.

By Lemma 4, f+
i is positive precisely on Bri(ci)

⋃
Bri(−ci). Taking a Fourier trans-

form yields

(2π)−n

∫
R�

e−i(x·t)f+
i (t) dt =

{
e−i(x·ci) + ei(x·ci)

}
rip1,n(rix)

= 2ri cos(x · ci)p1,n(rix)

(See Theorem 7.7(c) of Rudin (1973)).
Let {αi}∞i=1 be a sequence of positive constants satisfying αi < 2−i−2

× {2riL(ri)}−1. Then
∣∣∣∣(2π)−n

∫
Rn

e−i(x·t)
∞∑

i=1

αif
+
i (t) dt

∣∣∣∣ <
∞∑

i=1

2−i−2
{
L(ri)

}−1
p1,n(rix) <

1
4
p2,n(x).

Furthermore, by choosing the αi’s to converge to zero sufficiently fast, we can insure
that f+(·) defined by

f+(t) =
∞∑

i=1

αif
+
i (t)

is C∞ and in L1(Rn). Note that the real-valued, nonnegative function f+(·) is
nonzero precisely on A+.

Let {Br′
i
(c′i)}∞i=1 be a sequence of open balls whose union is A−, and let

f−
i (t) = −g1,n

{(
t − c′i

)
/r′i

}
− g1,n

{(
t + c′i

)
/r′i

}
.

The same argument used above shows that we can choose a sequence of positive
constants {βi}∞i=1 such that f−(·) defined by

f−(t) =
∞∑

i=1

βif
−
i (t)
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is C∞, in L1(Rn), and satisfies∣∣∣∣(2π)−n

∫
R�

e−(x·t)f−(t) dt

∣∣∣∣ <
1
4
p2,n(x).

Note that the real-valued, nonpositive function f−(·) is nonzero precisely on A−.
Let {Br′′

i
(c′′i )}∞i=1 be a sequence of open balls whose union is B+. Let

f im
i (t) = i

[
gi,n

{(
t − c′′i

)
/r′′i

}
− g1,n

{(
t + c′′i

)
/r′′i

}]
Then

(2π)−n

∫
R�

e−i(x·t)f im
i (t) dt =

{
e−i(x·c′′i ) − ei(x·c′′i )

}
r′′i p1,n

(
r′′i x

)
= −2r′′i sin

(
x · c′′i

)
p1,n

(
r′′i x

)
Again, we can choose a sequence of positive constants {γi}i=1 so that f im(·)

defined by

f im(t) =
∞∑

i=1

γif
im
i (t)

is C∞, in L1(Rn), and satisfies∣∣∣∣(2π)−n

∫
R�

e−i(x·t)f im(t) dt

∣∣∣∣ <
1
4
p2,n(x).

Note that the function f im(·) is pure imaginary, and that its imaginary part is
positive precisely on B+.

Now let
f(t) = g2,n(t) + f+(t) + f−(t) + f im(t).

Clearly the real and imaginary parts of f are positive and negative on the proper
sets. The function f is C∞, and in L1(Rn).

Define
p(x) = (2π)−n

∫
R�

e−i(x·t)f(t) dt.

Since ∣∣∣∣(2π)−n

∫
R�

e−i(x·t)(f+(t) + f−(t) + f im(t)
)
dt

∣∣∣∣ <
3
4
p2,n(x),

and
(2π)−n

∫
R�

e−i(x·t)g2,n(t) dt = p2,n(x),

we have

1
4
p2,n(x) < p(x) < 2p2,n(x).

By the Fourier inversion theorem (again, see Theorem 7.7(c) of Rudin (1973)),

f(t) =
∫

R�

ei(x·t)p(x) dx.

Also, since f(0) = g2,n(0) = 1, we have∫
R�

p(x) dx = f(0) = 1.

Thus, f is the characteristic function of the probability density p, and f satisfies all
the requirements of the theorem.
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Addendum

Except for slight corrections, the present paper was completed in 1984. Results
very similar to the one-dimensional version of our main theorem appear in Sasvári
(1985).
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