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recurrence of symmetric Markov chains:
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Abstract: Given a parametric statistical model, an improper prior distribu-
tion can often be used to induce a proper posterior distribution (an inference).
This inference can then be used to solve decision problems once an action
space and loss have been specified. One way to evaluate the inference is to ask
for which estimation problems does the above formal Bayes method produce
admissible estimators. The relationship of this problem to the recurrence of an
associated symmetric Markov chain is reviewed.

Appreciation

Near the end of my graduate study at Stanford, Carl Morris and I had a conversation
which lead us to ask whether or not the usual χ2-test for a point null hypothesis in a
multinomial setting was in fact a proper Bayes test. After a few months of struggle,
we eventually reduced the problem to one involving La Place transforms. At this
point it was clear we needed help, and even clearer whose assistance we should seek
– namely Herman Rubin. Herman’s stature as a researcher, problem solver and font
of mathematical knowledge was well known to the Stanford students.

Within a few days of having the problem described to him, Herman had sketched
an elegant solution minus a few “obvious” details that Carl and I were able to supply
in the next month or so. This eventually led to an Eaton–Morris–Rubin publication
in the Journal of Applied Probability. During this collaboration, I was struck with
Herman’s willingness to share his considerable gifts with two fledgling researchers.
In the succeeding years it has become clear to me that this is an essential part of
his many contributions to our discipline. Thank you Herman.

1. Introduction

This expository paper is concerned primarily with some techniques for trying to
evaluate the formal Bayes method of solving decision problems. Given a parametric
model and an improper prior distribution, the method has two basic steps:

1. Compute the formal posterior distribution (proper) for the parameter given
the data (assuming this exists)

2. Use the formal posterior to solve the “no data” version of the decision problem.

This two step process produces a decision rule whose properties, both desirable and
undesirable, can be used in the assessment of the posterior distribution and hence
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the improper prior. Typically, when frequentist measures of assessment are pro-
posed, they often include some discussion of admissibility (or almost admissibility)
for the formal Bayes rules obtained from the posterior. However, there is a delicate
balance that arises immediately. If only a few decision problems are considered in
the assessment, then the evidence may not be very convincing that the posterior is
suitable since admissibility is, by itself, a rather weak optimality property. On the
other hand, even in simple situations with appealing improper prior distributions,
it is certainly possible that there are interesting decision problems where formal
Bayes solutions are inadmissible (for example, see Blackwell (1951), Eaton (1992,
Example 7.1), and Smith (1994)).

One approach to the above problem that has yielded some interesting and use-
ful results is based on estimation problems with quadratic loss. In this case, formal
Bayes decision rules are just the posterior means of the functions to be estimated
and risk functions are expected mean squared error. Conditions for admissibility,
obtained from the Blyth–Stein method (see Blyth (1951) and Stein (1955)), involve
what is often called the integrated risk difference (IRD). In the case of quadratic loss
estimation, various techniques such as integration by parts or non-obvious appli-
cations of the Cauchy–Schwarz inequality applied to the IRD, sometimes yield ex-
pressions appropriate for establishing admissibility (for example, see Karlin (1958),
Stein (1959), Zidek (1970), and Brown and Hwang (1982)). These might be de-
scribed as “direct analytic techniques.”

In the past thirty years or so, two rather different connections have been discov-
ered that relate quadratic loss estimation problems to certain types of “recurrence
problems.” The first of these appeared in Brown (1971) who applied the Blyth–
Stein method to the problem of establishing the admissibility of an estimator of the
mean vector of a p-dimensional normal distribution with covariance equal to the
identity matrix. The loss function under consideration was the usual sum of squared
errors. In attempting to verify the Blyth–Stein condition for a given estimator δ,
Brown showed that there corresponds a “natural” diffusion process, although this
connection is far from obvious. However, the heuristics in Section 1 of Brown’s
paper provide a great deal of insight into the argument. A basic result in Brown
(1971) is that the estimator δ is admissible iff the associated diffusion is recurrent.
This result depends on some regularity conditions on the risk function of δ, but
holds in full generality when the risk function of δ is bounded. The arguments in
Brown’s paper depend to some extent on the underlying multivariate normal sam-
pling model. Srinivasan (1981) contains material related to Brown (1971). The basic
approach in Brown has been extended to the Poisson case in Johnstone (1984, 1986)
where the diffusion is replaced by a birth and death process. A common feature of
the normal and Poisson problems is that the associated continuous time stochas-
tic process whose recurrence implies admissibility, are defined on the sample space
(as opposed to the parameter space) of the estimation problem. In addition the
inference problems under consideration are the estimation of the “natural” para-
meters of the model. Brown (1979) describes some general methods for establishing
admissibility of estimators. These methods are based on the ideas underlying the
admissibility–recurrence connection described above.

Formal Bayes methods are the focus of this paper. Since the posterior distri-
bution is the basic inferential object in Bayesian analysis, it seems rather natural
that evaluative criteria will involve this distribution in both proper and improper
prior contexts. As in Brown (1971), just why “recurrence problems” arise in this
context is far from clear. Briefly, the connection results from using admissibility in
quadratic loss estimation problems to assess the suitability of the posterior distri-
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bution. In particular, if the posterior distribution of θ given the data x is Q(dθ|x)
(depending, of course, on a model and an improper prior), then the formal Bayes
estimator of any bounded function of θ, say φ(θ), is the posterior mean of φ(θ), say

φ̂(x) =
∫

φ(θ)Q(dθ|x).

It was argued in Eaton (1982, 1992) that the “admissibility” of φ̂ for all bounded
φ constituted plausible evidence that the formal posterior might be suitable for
making inferences about θ. To connect the admissibility of φ̂ to recurrence, first
observe that when φA(θ) = IA(θ) is an indicator function of a subset A of the
parameter space, then the formal Bayes estimator

φ̂A(x) = Q(A|x)

is the posterior probability of A. If η denotes the “true value of the model parame-
ter” from which X was sampled, then the expected value (under the model) of the
estimator Q(A|X) is

R(A|η) = EηQ(A|X). (1.1)

Next, observe that R in (1.1) is a transition function defined on the parameter space
Θ of the problem. Thus, R induces a discrete time Markov chain whose state space
is Θ. The remainder of this paper is devoted to a discussion of the following result.

Theorem 1.1. If the Markov chain on Θ defined by R in (1.1) is “recurrent,” then
φ̂ is “admissible” for each bounded measurable φ when the loss is quadratic.

Because Θ is allowed to be rather general, the recurrence of the Markov chain
has to be defined rather carefully – this is the reason for the quotes on recurrent.
As in Brown (1971), what connects the decision theoretic aspects of the problem
to the Markov chain is the Blyth–Stein technique – and this yields what is often
called “almost admissibility.” Thus, the quotes on admissibility.

The main goal of this paper is to explain why Theorem 1.1 is correct by exam-
ining the argument used to prove the result. The starting point of the argument
is that the Blyth–Stein condition that involves the IRD provides a sufficient con-
dition for admissibility. Because this condition is somewhat hard to verify directly,
it is often the case that a simpler condition is provided via an application of the
Cauchy–Schwarz Inequality. In the development here, this path leads rather natu-
rally to a mathematical object called a Dirichlet form. Now, the connection between
the resulting Dirichlet form, the associated chain with the transition function R in
Theorem 1.1, and the recurrence of the chain is fairly easy to explain.

In brief, this paper is organized as follows. In Section 2, the Blyth–Stein condi-
tion is described and the basic inequality that leads to the associated Dirichlet form
is presented. In Section 3 the background material (mainly from the Appendix in
Eaton (1992)) that relates the Markov chain to the Dirichlet form is described. The
conclusion of Theorem 1.1 is immediate once the connections above are established.

The application of Theorem 1.1 in particular examples is typically not easy
– primarily because establishing the recurrence of a non-trivial Markov chain is
not easy. Examples related to the Pitman estimator of a translation parameter
are discussed in Section 4. The fact that the Chung-Fuchs (1951) Theorem is used
here supports the contention that interesting examples are not routine applications
of general theory. Also in Section 4, a recent result of Lai (1996) concerning the
multivariate normal translation model is described.
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A detailed proof of Theorem 3.2 is given in an appendix to this paper. The
conclusion of Theorem 3.2 is hinted at in Eaton (1992), but a rigorous proof is
rather more involved than I originally believed it would be. Thus the careful proof
here.

Although the Markov chain of interest here has the parameter space as its state
space, some interesting related work of Hobert and Robert (1999) use a related
chain on the sample space in some examples where the two spaces are both subsets
of the real line.

2. The Blyth–Stein condition

Here are some basic assumptions that are to hold throughout this paper. The sam-
ple space X and the parameter space Θ are both Polish spaces with their respective
σ-algebras of Borel sets. All functions are assumed to be appropriately measurable.
The statistical model for X ∈ X is {P (·|θ)|θ ∈ Θ} and the improper prior distrib-
ution ν is assumed to be σ-finite on the Borel sets of Θ. The marginal measure M
on X is defined by

M(B) =
∫

Θ

P (B|θ)ν(dθ). (2.1)

Because ν(Θ) = +∞ it is clear that M(X ) = +∞. However, in some interesting
examples, the measure M is not σ-finite and this prevents the existence of a formal
posterior distribution [For example, look at X = {0, 1, · · · , m}, the model is Bino-
mial (m, θ) and ν(dθ) = [θ(1−θ)]−1dθ on (0,1). No formal posterior exists here]. In
all that follows the measure M is assumed to be σ-finite. In this case, there exists
a proper conditional distribution Q(dθ|x) for θ given X = x which satisfies

P (dx|θ)ν(dθ) = Q(dθ|x)M(dx). (2.2)

Equation (2.2) means that the two joint measures on X ×Θ agree. Further, Q(·|x)
is unique almost everywhere M . For more discussion of this, see Johnson (1991).

Given the formal posterior, Q(·|x), the formal Bayes estimator for any bounded
function φ(θ) when the loss is quadratic is the posterior mean

φ̂(x) =
∫

φ(θ)Q(dθ|x). (2.3)

The risk function of this estimator is

R(φ̂, θ) = Eθ

[
φ̂(X) − φ(θ)

]2 (2.4)

where Eθ denotes expectation with respect to the model. Because φ is bounded,
φ̂ exists and R(φ̂, θ) is a bounded function of θ. The bounded assumption on φ
simplifies the discussion enormously and allows one to focus on the essentials of the
admissibility-recurrence connection. For a version of this material that is general
enough to handle the estimation of unbounded φ’s, see Eaton (2001).

The appropriate notion of “admissibility” for our discussion here is captured in
the following definition due to C. Stein.

Definition 2.1. The estimator φ̂ is almost-ν-admissible if for any other estimator
t(X) that satisfies

R(t, θ) ≤ R(φ̂, θ) for all θ, (2.5)

the set
B =

{
θ|R(t, θ) < R(φ̂, θ)

}
(2.6)

has ν-measure zero.
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Definition 2.2. The formal posterior Q(·|x) is strongly admissible if the estima-
tor φ̂ is almost-ν-admissible for every bounded function φ.

The notion of strong admissibility is intended to capture a robustness property
of the formal Bayes method across problems – at least for quadratic loss estimation
problems when φ is bounded. The soft argument is that Q(·|x) cannot be too badly
behaved if φ̂ is almost-ν-admissible for all bounded φ.

To describe a convenient version of the Blyth–Stein conditions for almost-ν-
admissibility, consider a bounded function g ≥ 0 defined on Θ and satisfying

0 <

∫
g(θ)ν(dθ) ≡ c < +∞. (2.7)

Now νg(dθ) = g(θ)ν(dθ) is a finite measure on Θ so we can write

P (dx|θ)νg(dθ) = Q̃g(dθ|x)Mg(dx) (2.8)

where Mg is the marginal measure defined by

Mg(dx) =
∫

P (dx|θ)νg(dθ). (2.9)

Of course, Q̃g(dθ|x) is a version of the conditional distribution of θ given X = x
when the proper prior distribution of θ is c−1νg. Setting

ĝ(x) =
∫

g(θ)Q(dθ|x), (2.10)

it is not hard to show that

Mg(dx) = ĝ(x)M(dx). (2.11)

Since the set {x|ĝ(x) = 0} has Mg-measure zero, it follows that a version of Q̃g(dθ|x)
is

Qg(dθ|x) =




g(θ)
ĝ(x)

Q(dθ|x), if ĝ(x) > 0,

Q(dθ|x), if ĝ(x) = 0.

(2.12)

In all that follows, (2.12) is used as the conditional distribution of θ given X = x
when the prior distribution is νg.

Now, the Bayes estimator for φ(θ), given the posterior (2.12), is

φ̂g(x) =
∫

φ(θ)Qg(dθ|x) (2.13)

whose risk function is

R(φ̂g, θ) = Eθ

[
φ̂g(X) − φ(θ)

]2
. (2.14)

The so called Integrated Risk Difference,

IRD(g) =
∫ [

R(φ̂, θ) − R(φ̂g , θ)
]
g(θ)ν(dθ) (2.15)

plays a key role in the Blyth–Stein condition for the almost-ν-admissibility of φ̂.
To describe this condition, consider a measurable set C ⊆ Θ with 0 < ν(C) < +∞
and let

U(C) =


g ≥ 0

∣∣∣∣∣∣
g is bounded, g(θ) ≥ 1 for θ ∈ C,

and
∫

g(θ)ν(dθ) < +∞


 (2.16)

.
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Theorem 2.1 (Blyth–Stein). Assume


There is a sequence of sets Ci ⊆ Ci+1 ⊆ Θ, i = 1, · · · with
0 < ν(Ci) < +∞ and Ci ↗ Θ so that

inf
g∈U(Ci)

IRD(g) = 0 for i = 1, 2, · · ·
(2.17)

Then φ̂ is almost-ν-admissible.

The proof of this well known result is not repeated here. The usual interpretation
of Theorem 2.1 is that when φ̂ is “close enough to a proper Bayes rule φ̂g” then φ̂
is almost-ν-admissible, but the notion of closeness is at best rather vague.

A possible first step in trying to apply Theorem 2.1 is to find a tractable (and
fairly sharp) upper bound for IRD(g) in (2.15). Here is the key inequality that
allows one to see eventually why “recurrence” implies strong-admissibility.

Theorem 2.2. For a real valued measurable function h defined on Θ, let

∆(h) =
∫∫∫

(h(θ) − h(η))2Q(dθ|x)Q(dη|x)M(dx). (2.18)

Then for each bounded function φ, there is constant Kφ so that

IRD(g) ≤ Kφ∆ (
√

g ) , (2.19)

for all bounded non-negative g satisfying
∫

g(θ)ν(dθ) < +∞.

Proof. A direct proof of (2.19) using the Cauchy–Schwarz Inequality follows. First,
let A = {x|ĝ(x) > 0} and recall that Ac has Mg measure zero. Thus,

IRD(g) =
∫
X

∫
Θ

[(
φ̂(x) − φ(θ)

)2

−
(
φ̂g(x) − φ(θ)

)2
]

P (dx|θ)g(θ)ν(dθ)

=
∫
X

∫
Θ

[(
φ̂(x) − φ(θ)

)2

−
(
φ̂g(x) − φ(θ)

)2
]

Qg(dθ|x)Mg(dx)

=
∫

A

(
φ̂(x) − φ̂g(x)

)2

ĝ(x)M(dx) (2.20)

=
∫

A

[∫
Θ

φ(θ)
(

1 − g(θ)
ĝ(x)

)
Q(dθ|x)

]2

ĝ(x)M(dx)

=
∫

A

1
ĝ(x)

[∫
Θ

φ(θ) (g(θ) − ĝ(x)) Q(dθ|x)
]2

M(dx).

A bit of algebra shows that for each x,∫
Θ

φ(θ) (g(θ) − ĝ(x)) Q(dθ|x)

=
1
2

∫∫
(φ(θ) − φ(η)) (g(θ) − g(η))Q(dθ|x)Q(dη|x).

Using the non-negativity of g and the Cauchy–Schwarz inequality we have∣∣∣∣
∫∫

(φ(θ) − φ(η)) (g(θ) − g(η))Q(dθ|x)Q(dη|x)
∣∣∣∣

≤ W (x) ·
[∫∫ (√

g(θ) −
√

g(η)
)2

Q(dθ|x)Q(dη|x)
] 1

2
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where

W 2(x) =
∫∫

(φ(θ) − φ(η))2
(√

g(θ) +
√

g(η)
)2

Q(dθ|x)Q(dη|x).

Since φ is bounded, say |φ(θ)| ≤ c0, and since (
√

g(θ) +
√

g(η) )2 ≤ 2(g(θ) + g(η)),
we have

W 2(x) ≤ 4c2
0ĝ(x).

Substituting these bounds into the final expression in (2.20) yields

IRD(g) ≤ 4c2
0

∫
A

∫∫ (√
g(θ) −

√
g(η)

)2

Q(dθ|x)Q(dη|x)M(dx)

≤ 4c2
0∆ (

√
g ) .

Setting Kφ = 4c2
0 yields the result.

Combining Theorem 2.1 and Theorem 2.2 gives the main result of this section.

Theorem 2.3. Assume


There is a sequence of increasing sets Ci ⊆ Θ, i = 1, 2, . . .

with 0 < ν(Ci) < +∞ and Ci ↗ Θ so that
inf

g∈U(Ci)
∆

(√
g
)

= 0, for each i.
(2.21)

Then Q(dθ|x) is strongly admissible.

Proof. When (2.21) holds, inequality (2.19) shows that (2.17) holds for each bounded
measurable φ. Then Q(dθ|x) is strongly admissible.

It should be noted that the assumption (2.21) does not involve φ (as opposed to
assumption (2.17)). Thus the conditions for strong admissibility involve the behav-
ior of ∆. It is exactly the functional ∆ that provides the connection between (2.21)
and the “recurrence” of the Markov chain with transition function R in (1.1).

To put the material of the next section in perspective, it is now useful to isolate
some of the essential features of the decision theory problem described above –
namely, under what conditions on the given model P (dx|θ) and the improper prior
ν(dθ) with the formal posterior Q(dθ|x) be strongly admissible? A basic ingredient
in our discussion will be the transition function

R(dθ|η) =
∫

Q(dθ|x)P (dx|η) (2.22)

introduced in Section 1. A fundamental property of R is its symmetry with respect
to ν – that is, the measure on Θ × Θ defined by

s(dθ, dη) = R(dθ|η)ν(dη). (2.23)

is a symmetric measure in the sense that

s(A × B) =
∫∫

IA(θ)IB(η)R(dθ|η)ν(dη)

= s(B × A) (2.24)
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for Borel subsets A and B of Θ. This is easily established from the definition of R. It
is this symmetry that drives the theory of the next section and allows us to connect
the behavior of ∆, namely

∆(h) =
∫∫

(h(θ) − h(η))2 R(dθ|η)ν(dη), (2.25)

to the “recurrence” of the Markov chain defined by R. The expression (2.25) for ∆
follows from (2.18) and the disintegration formula (2.2).

Also, note that ν is a stationary measure for R – that is,∫
R(A|η)ν(dη) = ν(A) (2.26)

for all Borel sets A. This is an easy consequence of the symmetry of s in (2.23).
The discussion in the next section begins with an abstraction of the above

observations. Much of the discussion is based on the Appendix in Eaton (1992).
Here is the standard Pitman example that gives a concrete non-trivial example

of what the above formulation yields.

Example 2.1. Consider X1, . . . , Xn that are independent and identically distrib-
uted random vectors in Rp with a density f(x − θ) (with respect to Lebesgue
measure). Thus Θ = Rp and the model for X = (X1, . . . , Xn) is

P (dx|θ) =
n∏

i=1

f(xi − θ)dxi

on the sample space X = Rpn. With dx as Lebesgue measure on X , the density of
P (dx|θ) with respect to dx is

p(x|θ) =
n∏

i=1

f(xi − θ).

Next take ν(dθ) = dθ on Θ = Rp and assume, for simplicity, that

m(x) =
∫

Rp

p(x|θ)dθ

is in (0,∞) for all x. Then a version of “Q(dθ|x)” is

Q(dθ|x) =
p(x|θ)
m(x)

dθ.

Thus the transition function R is given by

R(dθ|η) =
(∫

X

p(x|θ)p(x|η)
m(x)

dx

)
dθ.

Therefore,
R(dθ|η) = r(θ|η)dθ

where the density r(·|η) is

r(θ|η) =
∫
X

p(x|θ) p(x|η)
m(x)

dx.
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Now, it is easy to show that for each vector u ∈ Rp,

r(θ + u|η + u) = r(θ|η)

so that r is only a function of θ − η, say

t(θ − η) = r(θ − η|0).

Further routine calculations give


t(u) = t(−u) for u ∈ Rp∫
t(u)du = 1

In summary then, for the translation model with dθ as the improper prior distrib-
ution, the induced transition function is

R(dθ|η) = t(θ − η)dθ

and t is a symmetric density function on Rp. We will return to this example later.

3. Symmetric Markov chains

Here, a brief sketch of symmetric Markov chain theory, recurrence and Dirichlet
forms is given. The purpose of this section is two-fold – first to explain the rela-
tionship between recurrence and the Dirichlet form and second to relate this to the
strong admissibility result of Theorem 2.3.

Let Y be a Polish space with the Borel σ-algebra B and consider a Markov
Kernel R(dy|z) on B × Y . Also let λ be a non-zero σ-finite measure on B.

Definition 3.1. The kernel R(dy|z) is λ-symmetric if the measure

α(dy, dz) = R(dy|z)λ(dz) (3.1)

is a symmetric measure on B × B.

Typically, R is called symmetric without reference to λ since λ is fixed in most
discussions. As the construction in Section 2 shows, interesting examples of sym-
metric kernels abound in statistical decision theory. In all that follows, it is assumed
that R is λ-symmetric. Note that the assumption of σ-finiteness for λ is important.

Given a λ-symmetric R, consider a real valued measurable function h and let

∆(h) =
∫∫

(h(y) − h(z))2R(dy|z)λ(dz). (3.2)

The quadratic form ∆ (or sometimes 1
2∆) is often called a Dirichlet form. Such

forms are intimately connected with continuous time Markov Process Theory (see
Fukushima et al (1994)) and also have played a role in some work on Markov
chains (for example, see Diaconis and Strook (1991)). A routine calculation using
the symmetry of R shows that

∆(h) ≤ 4
∫

h2(y)λ(dy) (3.3)

so ∆ is finite for h ∈ L2(λ), the space of λ-square integrable functions.
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Now, given R(dy|z), there is a Markov chain with state space Y and transition
function R(dy|z). More precisely, consider the path space W = Y ∞ = Y × Y × · · ·
with the usual product σ-algebra. Given the initial value w0, there is a Markov
chain W = (w0, W1, W2, . . .) so that R(dwi+1|wi) is the conditional distribution of
Wi+1 given Wi = wi, for i = 0, 1, 2, . . .. The unique probability measure on path
space that is consistent with this Markov specification, is denoted by S(·|w0).

Because the space Y is rather general, the definition of recurrence has to be
selected with some care. The reader should note that neither irreducibility nor
periodicity occur in the discussion that follows (see Meyn and Tweedie (1993) for
a discussion of such things in the general state space case). Let C ⊆ Y satisfy
0 < λ(C) < +∞. Such measurable sets are called λ-proper. Define the random
variable TC on W as follows:

TC =




+∞ if Wi /∈ C for i = 1, 2, . . .

1 if W1 ∈ C

n if Wn ∈ C for some n ≥ 2 and
Wi /∈ C for i = 1, . . . , n − 1

(3.4)

Then TC ignores the starting value of the chain and records the first hitting time
of C for times greater than 0. The set

BC = {TC < +∞} (3.5)

is the event where the chain hits C at some time after time 0.

Definition 3.2. A λ-proper set C ⊆ Y is called locally -λ-recurrent if the set

B0 = {w0 ∈ C|S(BC |w0) < 1}

has λ-measure zero.

Definition 3.3. A λ-proper set C ⊆ Y is called λ-recurrent if the set

B1 = {w0|S(BC |w0) < 1}

has λ-measure zero.

In other words, C is locally-ν-recurrent if whenever the chain starts in C, it
returns to C w.p.1, except for a set of starting values of λ-measure zero. It is this
notion of recurrence that is most relevant for admissibility considerations. Of course,
C is λ-recurrent if the chain hits C no matter where it starts, except for a set of
starting values of λ-measure zero. This second notion is closer to traditional ideas
related to recurrence.

To describe the connection between the Dirichlet form ∆ and local-λ-recurrence,
consider

V (C) =

{
h ∈ L2(λ)

∣∣∣∣∣ h ≥ 0, h(y) ≥ 1 for y ∈ C,

h is bounded

}
. (3.6)

Note that U(C) in (2.16) and V (C) are in one-to-one correspondence via the relation
h(y) =

√
g(y), y ∈ Y .

Theorem 3.1. For a λ-proper set C,

inf
h∈V (C)

∆(h) = 2
∫

C

(1 − S(BC |w))λ(dw). (3.7)



Evaluating improper priors and the recurrence of symmetric Markov chains 15

A proof of this basic result can be found in Appendix 2 of Eaton (1992).
From (3.7), it is immediately obvious that C is a locally-λ-recurrent set iff the
inf over V (C) of the Dirichlet form ∆ is zero.

Definition 3.4. The Markov chain W = (W0, W1, W2, . . .) is locally-λ-recurrent if
each λ-proper set C is locally-λ-recurrent.

In applications, it is useful to have some conditions that imply local-λ-recurrence
since the verification that every λ-proper C is locally-λ-recurrent can be onerous.
To this end, we have

Theorem 3.2. The following are equivalent:

(i) The Markov chain W = (W0, W1, W2, . . .) is locally-λ-recurrent

(ii) There exists an increasing sequence of λ-proper sets Ci, i = 1, . . . such that
Ci −→ Y and each Ci is locally-λ-recurrent

Proof. Obviously (i) implies (ii). The converse is proved in the appendix.

In a variety of decision theory problems, it is often sufficient to find one set
B0 that is “recurrent” in order to establish “admissibility.” For an example of
the “one-set phenomenon,” see Brown and Hwang (1982). In the current Markov
chain context, here is a “one-set” condition that implies local-λ-recurrence for the
chain W .

Theorem 3.3. Suppose there exists a λ-proper set B0 that is λ-recurrent (see
Definition 3.3). Then the Markov chain W is locally-ν-recurrent.

Proof. Since λ is σ-finite, there is a sequence of increasing λ-proper sets Bi, i =
1, 2, . . . such that Bi −→ Y . Let Ci = Bi ∪ B0, i = 1, 2, . . . so the sets Ci are
λ-proper, are increasing, and Ci −→ Y . The first claim is that each Ci is locally-λ-
recurrent. To see this, let N be the λ-null set where S(TB0 < +∞|w) < 1. Then for
w /∈ N , the chain hits B0 w.p.1 after time 0 when W0 = w. Thus, for w /∈ N , the
chain hits B0∪Bi w.p.1 after time 0 when W0 = w. Therefore the set Ci = B0∪Bi

is locally-λ-recurrent. By Theorem 3.2, W is locally-λ-recurrent.

The application of the above results to the strong-admissibility problem is
straightforward. In the context of Section 2, consider a given model P (dx|θ) and a
σ-finite improper prior distribution ν(dθ) so that the marginal measure M in (2.1) is
σ-finite. This allows us to define the transition R(dθ|η) in (2.22) that is ν-symmetric.
Therefore the above theory applies to the Markov chain W = (W0, W1, W2, . . .) on
Θ∞ defined by R(dθ|η). Here is the main result that establishes “Theorem 1.1”
stated in the introductory section of this paper.

Theorem 3.4. Suppose the Markov chain W with state space Θ and transition
function R(dθ|η) is locally-ν-recurrent. Then the posterior distribution Q(dθ|x) de-
fined in (2.2) is strongly-admissible.

Proof. Because W is locally-ν-recurrent, the infimum in (3.7) is zero for each ν-
proper set C. This implies that condition (2.21) in Theorem 2.3 holds. Thus, Q(dθ|x)
is strongly admissible.

Of course Theorem 3.2 makes it a bit easier to show W is locally-ν-recurrent,
while Theorem 3.3 provides an extremely useful sufficient condition for this property
of W . An application is given in the next section.
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4. Examples

Here we focus on two related examples. The first is based on the Pitman model
introduced in Example 2.1. In this case, the induced Markov chain is a random
walk on the parameter space, and as is well known, under rather mild moment
conditions for dimensions p = 1 and p = 2, the random walks are recurrent. But
for p ≥ 3, there are no recurrent random walks on Rp that have densities with
respect to Lebesque measure. Of course this parallels what decision theory yields
for admissibility of the Pitman estimator of a mean vector – admissibility for p = 1
and p = 2 (under mild moment conditions) and inadmissibility in many examples
when p ≥ 3. The results here do not concern estimation of a mean vector, but
rather involve the strong admissibility of the posterior, and again the dimension
phenomenon prevails.

The second example is from the thesis of Lai (1996) and concerns the p-dimens-
ional normal distribution with an unknown mean vector and the identity covariance
matrix. In essence, Lai’s results provide information regarding a class of improper
priors that yield strong admissibility when the parameter space is Rp. Even in
the case of the normal distribution there are many open questions concerning the
“inappropriateness” of the posterior when the improper prior is dθ on Rp, p ≥ 3.

Example 4.1 (continued). As shown in Section 2, the induced transition function
on the parameter space Θ = Rp is given by

R(dθ|η) = t(θ − η) dθ (4.1)

where the density function t is defined in Example 2.1. The Markov chain induced
by R is just a random walk on Rp. When p = 1, the results of Chung and Fuchs
(1951) apply directly. In particular, if p = 1 and∫ ∞

−∞
|u|t(u) du < +∞, (4.2)

then the Markov chain is recurrent and so the posterior distribution in this case
is strongly admissible. A sufficient condition for (4.2) to hold is that the original
density function f in Example 2.1 has a finite mean (see Eaton (1992) for details).

When p = 2, a Chung–Fuchs-like argument also applies (see Revuz (1984)). In
particular, if ∫

R2
‖u‖2t(u) du < +∞, (4.3)

then the Markov chain on R2 is recurrent so strong admissibility obtains. Again, it
is not too hard to show that the existence of second moments under f in Example
2.1 imply that (4.3) holds. These results for p = 1, 2 are suggested by the work of
Stein (1959) and James and Stein (1961).

For p ≥ 3, the Markov chain obtained from R in (4.1) can never be recurrent (see
Guivarc’h, Keane, and Roynette (1977)) suggesting that the posterior distribution
obtained from the improper prior dθ on Θ = Rp is suspect. At present, the question
of “inadmissibility” of the posterior when p ≥ 3 remains largely open. This ends
our discussion of Example 2.1.

Example 4.2. The material in this example is based on the work of Lai (1996).
Suppose X is a p-dimensional random vector with a normal distribution Np(θ, Ip).
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Here θ ∈ Θ = Rp is unknown and the covariance matrix of X is the p × p identity.
Consider an improper prior distribution of the form

ν(dθ) = (a + ‖θ‖2)α dθ (4.4)

where the constant a is positive and α is a real number. In this setting Lai proved
the following.

Theorem 4.1 (Lai (1996)). If α ∈ (−∞,− p
2 + 1], then the posterior distribution

for θ is strongly admissible.

The above follows from the more general Theorem 5.3.3 in Lai (1996), but
well illustrates the use of the Markov chain techniques. Lai’s argument consists of
proving that for the range of α indicated, the induced Markov chain on Θ is locally-
ν-recurrent so strong admissibility obtains. In fact, the Markov chain techniques
developed by Lai to handle this example include extensions of some recurrence cri-
teria of Lamperti (1960) and an application of Theorem 3.3 given above. Although
the class of priors in (4.4) is quite small, the extension of Theorem 4.1 to other
improper priors can be verified via Remark 3.3 in Eaton (1992). In this particular
example, Remark 3.3, coupled with Theorem 4.1, implies the following.

Theorem 4.2. Consider a prior distribution ν of the form (4.4) with α ∈
(−∞,− p

2 + 1] and let g(θ) satisfy

c ≤ g(θ) ≤ 1
c

for all θ

for some c > 0. Then the Markov chain induced by the prior distribution

νg(dθ) = g(θ)ν(dθ) (4.5)

is locally-ν-recurrent and the induced posterior distribution is strongly admissible.

For applications of Lai’s ideas to the multivariate Poisson case, we refer the
reader to Lai’s thesis. This completes Example 4.1.

Appendix

Here we provide a proof of Theorem 3.2. To this end, consider a measurable subset
C ⊆ Y that is λ-proper and let

H(C) = inf
h∈V (C)

∆(h). (A.1)

Also, let
V ∗(C) = {h|h ∈ V (C), h(y) ∈ [0, 1] for y ∈ Cc}.

The results in Appendix 2 of Eaton (1992) show that

H(C) = inf
h∈V ∗(C)

∆(h). (A.2)

Lemma 1.1. Consider measurable subsets A and B of Y that are both λ-proper.
If A ⊆ B, then

H
1
2 (A) ≤ H

1
2 (B) ≤ H

1
2 (A) + 2

1
2 λ

1
2 (B ∩ Ac). (A.3)



18 M. L. Eaton

Proof. Since V (A) ⊇ V (B), H(A) ≤ H(B) so the left hand inequality in (A.3) is
obvious. For the right hand inequality, first note that ∆

1
2 is a subadditive function

defined on L2(λ)– that is,

∆
1
2 (h1 + h2) ≤ ∆

1
2 (h1) + ∆

1
2 (h2). (A.4)

A proof of (A.4) is given below. With h3 = h1 + h2, (A.4) yields

∆
1
2 (h3) ≤ ∆

1
2 (h1) + ∆

1
2 (h3 − h1), (A.5)

for h1 and h3 in L2(λ). Now consider h ∈ V ∗(A) and write

h̃(y) = h(y) + g(y)

where
g(y) = (1 − h(y))IB∩Ac(y).

Then h̃ ∈ V ∗(B) and (A.5) implies that

∆
1
2 (h̃) ≤ ∆

1
2 (h) + ∆

1
2 (g).

Thus,
H

1
2 (B) ≤ ∆

1
2 (h) + ∆

1
2 (g). (A.6)

Because g(y) ∈ [0, 1],

∆(g) =
∫∫

(g(y) − g(z))2R(dy|z)λ(dz)

= 2
[∫

g2(y)λ(dy) −
∫∫

g(y)g(z)R(dy|z)λ(dz)
]

≤ 2
∫

B∩Ac

g2(y)λ(dy) ≤ 2λ
(
B ∩ AC

)
.

Substituting this into (A.6) yields

H
1
2 (B) ≤ ∆

1
2 (h) + 2

1
2 λ

1
2
(
B ∩ Ac

)
. (A.7)

Since (A.7) holds for any h ∈ V ∗(A), the right hand inequality in (A.3) holds. This
completes the proof.

The proof of (A.4) follows. For h1 and h2 in L2(λ), consider the symmetric
bilinear form

< h1, h2 >=
∫

h1(y)h2(y)λ(dy) −
∫∫

h1(y)h2(z)R(dy|z)λ(dz).

That < ·, · > is non-negative definite is a consequence of the symmetry of R and
the Cauchy–Schwarz inequality:(∫∫

h1(y)h1(z)R(dy|z)λ(dz)
)2

≤
(∫∫

h2
1(y)R(dy|z)λ(dz)

)
·
(∫∫

h2
1(z)R(dy|z)λ(dz)

)

=
(∫

h2
1(y)λ(dy)

)2

.
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Thus ‖h‖ =< h, h >
1
2 is a semi-norm on L2(λ) and so is subadditive. Since ∆(h) =

2‖h‖2, inequality (A.4) holds.
The proof of Theorem 3.2 is now easy. Let C be any λ-proper set so λ(C) < +∞

and let
Ei = Ci ∩ C, i = 1, 2, . . . .

Since Ci is locally-λ-recurrent, H(Ci) = 0 so H(Ei) = 0 by Lemma A.1. Since
Ei ↗ C and λ(C) < +∞, we have

lim
i−→∞

λ(Ei) −→ λ(C)

and
lim

i−→∞
λ(C ∩ Ec

i ) −→ 0.

Applying (A.3) yields

H
1
2 (C) ≤ H

1
2 (Ei) + 2

1
2 λ(C ∩ Ec

i ).

The right hand side of this inequality converges to zero as i −→ ∞. Hence H(C) = 0.
Since C was an arbitrary λ-proper set, the chain W is locally-ν-recurrent.
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