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Binomial upper bounds on generalized

moments and tail probabilities of

(super)martingales with differences

bounded from above
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Michigan Technological University

Abstract: Let (S0, S1, . . . ) be a supermartingale relative to a nondecreasing
sequence of σ-algebras H≤0, H≤1, . . . , with S0 ≤ 0 almost surely (a.s.) and
differences Xi := Si − Si−1. Suppose that Xi ≤ d and Var(Xi|H≤i−1) ≤ σ2

i
a.s. for every i = 1, 2, . . . , where d > 0 and σi > 0 are non-random constants.
Let Tn := Z1 + · · · + Zn, where Z1, . . . , Zn are i.i.d. r.v.’s each taking on
only two values, one of which is d, and satisfying the conditions EZi = 0 and
VarZi = σ2 := 1

n
(σ2

1 + · · · + σ2
n). Then, based on a comparison inequality

between generalized moments of Sn and Tn for a rich class of generalized
moment functions, the tail comparison inequality

P(Sn ≥ y) ≤ c PLin,LC(Tn ≥ y + h
2
) ∀y ∈ R

is obtained, where c := e2/2 = 3.694 . . . , h := d + σ2/d, and the function
y �→ PLin,LC(Tn ≥ y) is the least log-concave majorant of the linear interpolation
of the tail function y �→ P(Tn ≥ y) over the lattice of all points of the form
nd+kh (k ∈ Z). An explicit formula for PLin,LC(Tn ≥ y + h

2
) is given. Another,

similar bound is given under somewhat different conditions. It is shown that
these bounds improve significantly upon known bounds.

1. Introduction

To begin with, consider normalized Khinchin-Rademacher sums ε1a1 + · · ·+ εnan,
where the εi’s are i.i.d. Rademacher random variables (r.v.’s), with P(εi = ±1) = 1

2 ,
and the ai’s are real numbers such that a2

1+ · · ·+a2
n = 1. Whittle [27] (cf. Haagerup

[10]) established the sharp form

(1.1) E f (ε1a1 + · · · + εnan) ≤ E f
(

1√
n
(ε1 + · · · + εn)

)
≤ E f(Z)

of Khinchin’s inequality [16] for the power moment functions f(x) = |x|p with
p ≥ 3, where Z ∼ N(0, 1). An exponential version of inequality (1.1), with the
moment functions f(x) = eλx for λ ∈ R, follows from a result of Hoeffding [12]. An
immediate corollary of that is the exponential inequality

(1.2) P (ε1a1 + · · · + εnan ≥ x) ≤ e−x2/2 ∀x ≥ 0.

(In fact, Hoeffding [12] obtains more general results; cf. Remark 2.2 below.) This
upper bound, e−x2/2, invites a comparison with an “ideal” upper bound, of the
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form c P(Z ≥ x) for some absolute constant c > 0, which one might expect to have
in view of (1.1). Since P(Z ≥ x) ∼ 1

x
√

2π
e−x2/2 as x → ∞, this comparison suggests

that a factor of order 1
x (for large x) is “lost” in (1.2). It turns out that the cause

of this loss is that the class of the exponential moment functions is too small. For
α > 0, consider the following class of functions f : R → R:

F (α)
+ :=

{
f : f(u) =

∫ ∞

−∞
(u − t)α

+ µ(dt) for some Borel measure µ ≥ 0 on R

and all u ∈ R

}
,

where x+ := max(0, x) and xα
+ := (x+)α. Define F (α)

− as the class of all functions
of the form u �→ f(−u), where f ∈ F (α)

+ . Let F (α) := {f + g : f ∈ F (α)
+ , g ∈ F (α)

− }.

Proposition 1.1. For every natural α, one has f ∈ F (α)
+ iff f has finite deriva-

tives f (0) := f , f (1) := f ′, . . . , f (α−1) on R such that f (α−1) is convex on R and
f (j)(−∞+) = 0 for j = 0, 1, . . . , α − 1.

The proof of this and other statements (whenever a proof is necessary) is deferred
to Section 3.

It follows that, for every t ∈ R, every β ≥ α, and every λ > 0, the functions
u �→ (u− t)β

+ and u �→ eλ(u−t) belong to F (α)
+ , while the functions u �→ |u− t|β and

u �→ cosh λ(u − t) belong to F (α).

Remark 1.2. Eaton [5] (cf. [7, 21]) obtained inequality (1.1) for a class of mo-
ment functions, which essentially coincides with the class F (3), as seen from [21,
Proposition A.1]. Since the class F (3) is much richer than the class of exponential
moment functions, Eaton [6] conjectured (based on asymptotics and numerics) that
his inequality (1.1) for f ∈ F (3) implies the inequality P (ε1a1 + · · · + εnan ≥ x) ≤
2e3

9
1

x
√

2π
e−x2/2 for all x >

√
2, so that the “lost” factor 1

x would be restored. A
stronger form of this conjecture was proved by Pinelis [21]:

(1.3) P (ε1a1 + · · · + εnan ≥ x) ≤ 2e3

9
P(Z ≥ x) ∀x ∈ R;

a multivariate analogue of (1.3) was also obtained there.

Later it was realized (Pinelis [22]) that it is possible to extract (1.3) from (1.1)
for all f ∈ F (3) because the tail function of the normal distribution is log-concave.
The following is a special case of Theorem 4 of Pinelis [23]; see also Theorem 3.11
of Pinelis [22].

Theorem 1.3. Suppose that α > 0, ξ and η are real-valued r.v.’s, and the tail
function u �→ P(η ≥ u) is log-concave on R. Then the comparison inequality

(1.4) Ef(ξ) ≤ Ef(η) ∀f ∈ F (α)
+

implies

P(ξ ≥ x) ≤ cα P(η ≥ x) ∀x ∈ R,(1.5)

where
cα := Γ(α + 1)(e/α)α.

Moreover, the constant factor cα is the best possible one in (1.5).
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A similar result for the special case when α = 1 is due to Kemperman and is
contained in the book by Shorack and Wellner [26, pages 797–799].

Remark 1.4. As follows from [22, Remark 3.13], a useful point is that the require-
ment of the log-concavity of the tail function q(u) := P(η ≥ u) in Theorem 1.3
can be relaxed by replacing q with any (e.g., the least) log-concave majorant of q.
However, then the optimality of the constant factor cα is not guaranteed.

Note that c3 = 2e3/9, which is the constant factor in (1.3). Bobkov, Götze,
and Houdre [4] discovered a simpler proof of a variant of (1.3) with a constant
factor 12.0099 . . . in place of 2e3/9 = 4.4634 . . .. The value of the constant factor is
obviously important in statistical applications. The upper bound in (1.3) improves
Chernoff-Hoeffding’s bound e−x2/2 in (1.2) for all x > 1.3124 . . .. On the other hand,
the bound in [4] does so only for all x > 4.5903 . . ., when P(Z ≥ x) < 2.22 × 10−6.
The proof in [4] was direct (rather than based on a moment comparison inequality of
the form (1.4)). Of course, this does not imply that the direct methods are inferior.
In fact, this author has certain ideas to combine the direct and indirect methods
to further improve the constant factors.

A stronger, “discrete” version of (1.3) was obtained in [23, Theorem 5], as follows.
Let η1, . . . , ηn be independent zero-mean r.v.’s such that |ηi| ≤ 1 almost surely (a.s.)
for all i, and let b1, . . . , bn be any real numbers such that b2

1 + · · · + b2
n = n. Then

(1.6) P(b1η1 + · · · + bnηn ≥ x) ≤ c3 P(ε1 + · · · + εn ≥ x)

for all values x that are taken on by the r.v. ε1 + · · ·+ εn with nonzero probability.
Clearly, (1.3) follows from (1.6) by the central limit theorem.

In this paper, we provide new upper bounds on generalized moments and tails
of real-valued (super)martingales. It is well known that such bounds can be used,
in particular, to obtain concentration-type results; see e.g. [17, 18, 22].

2. Upper bounds on generalized moments and tails of
(super)martingales

Theorem 2.1. Let (S0, S1, . . . ) be a supermartingale relative to a nondecreasing
sequence of σ-algebras H≤0, H≤1, . . . , with S0 ≤ 0 a.s. and differences Xi := Si −
Si−1, i = 1, 2, . . . . Suppose that for every i = 1, 2, . . . there exist non-random
constants di > 0 and σi > 0 such that

Xi ≤ di and(2.1)

Var(Xi|H≤i−1) ≤ σ2
i(2.2)

a.s. Then, for all n = 1, 2, . . . ,

Ef(Sn) ≤ Ef(Tn) ∀f ∈ F (2)
+ , where(2.3)

Tn := Z1 + · · · + Zn(2.4)

and Z1, . . . , Zn are independent r.v.’s such that each Zi takes on only two values,
one of which is di, and satisfies the conditions

EZi = 0 and VarZi = σ2
i ; that is,

P(Zi = di) =
σ2

i

d2
i + σ2

i

and P

(
Zi = −σ2

i

di

)
=

d2
i

d2
i + σ2

i

.
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Let us explain in general terms how such a result as Theorem 2.1 can be proved.
First, it is not difficult to reduce Theorem 2.1 to the case when (S0, S1, . . . ) is a
martingale with S0 = 0 a.s. Then it is not difficult to reduce the situation to the case
of one random summand X, so that the problem becomes to find – for any given
t ∈ R, d > 0, and σ > 0 – the maximum of Eft(X) subject to the restrictions X ≤ d
a.s., EX = 0, and EX2 ≤ σ2, where ft(x) := (x− t)2+. Then, using arguments going
back to Chebyshev and Hoeffding [11, 13–15], one sees that here an extremal r.v. X
takes on at most three distinct values with nonzero probability. In fact, because of a
special relation between the objective-function ft(x) = (x− t)2+ and the restriction-
functions 1, x, and x2, one can see that an extremal r.v. X takes on only two distinct
values with nonzero probability; this makes the distribution of an extremal r.v. X
uniquely determined by d and σ; in particular, the extremal distribution does not
depend on the value of the parameter t of the objective-function ft. Thus the result
follows.

An alternative approach is based on duality [22, Eq. (4)], and such an approach
is actually used in the proof of Theorem 2.1 given in Section 3 below. According
to the latter approach, one should search for a tight upper bound on the objective-
function ft(x) over all x ≤ d; this upper bound must be of the form Ax2 + Bx + C
(which is a linear combination of the restriction-functions 1, x, and x2), so that
ft(x) ≤ Ax2 + Bx + C for all x ≤ d. It is not difficult to see that, for such a tight
upper bound, the equality ft(x) = Ax2+Bx+C is attained for at most two distinct
values of x ∈ (−∞, d]. This again implies that an extremal r.v. X takes on only
two distinct values with nonzero probability, whence the result. (See the mentioned
proof for details.)

Remark 2.2. In the case when (Si) is a martingale, Theorem 2.1 is a result of
Bentkus [1, 3], who used essentially the “duality” approach. Moreover, using Schur
convexity arguments similar to those in Eaton [5], he also showed that, in the
case di ≡ d, for every f ∈ F (2)

+ the right-hand side Ef(Tn) of inequality (2.3) is
maximized – under the condition σ2

1 + · · · + σ2
n = nσ2 = const – when the Zi’s are

identically distributed; this fact was earlier established by Hoeffding [12, (2.10)] for
f(x) ≡ eλx with λ > 0. Finally, for such i.i.d. Zi’s with di ≡ d and σi ≡ σ, Bentkus
used the method given in [22] (cf. Theorem 1.3 and Remark 1.4 above) to extract
the upper bound of the form

(2.5) P(Sn ≥ y) ≤ c2P
LC(Tn ≥ y) ∀y ∈ R,

where the function y �→ PLC(Tn ≥ y) is the least log-concave majorant of the tail
function y �→ P(Tn ≥ y) on R. Note that c2 = e2/2 = 3.694 . . . .

Note also that the distribution of r.v. Tn in (2.5) is a shifted and re-scaled
binomial distribution, concentrated on the lattice, say Ln,d,h, of all points of the
form nd + kh (k ∈ Z), where

h := d + σ2/d.

Here and henceforth, we assume that di ≡ d, unless indicated otherwise.
Since the tail function of the binomial distribution is log-concave on Z (see e.g.

[23, Remark 13]), one has PLC(Tn ≥ y) = P(Tn ≥ y) for all y in the lattice Ln,d,h.

Inequality (2.5) can be significantly improved. Let the function y �→ PLin(Tn ≥ y)
denote the linear interpolation of the function y �→ P(Tn ≥ y) over the lattice Ln,d,h,
so that

PLin(Tn ≥ y) = (1 − γ)P(Tn ≥ nd + kh) + γP(Tn ≥ nd + (k + 1)h)
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if γ := (y − nd − kh)/h ∈ [0, 1] for some k ∈ Z. Let then the function
y �→ PLin,LC(Tn ≥ y) denote the least log-concave majorant of the function
y �→ PLin(Tn ≥ y) on R.

Theorem 2.3. Suppose that the conditions of Theorem 2.1 hold with di ≡ d. As
before, let σ2 := 1

n (σ2
1 + · · · + σ2

n) and h := d + σ2/d. Then

(2.6) P(Sn ≥ y) ≤ c2P
Lin,LC(Tn ≥ y + h

2 ) ∀y ∈ R.

Because the tail function y �→ P(Tn ≥ y) decreases very rapidly, the shift h
2 in

PLin,LC(Tn ≥ y + h
2 ) generally provides quite a substantial improvement. As will

be shown later in this paper (Proposition 2.7), in almost all practically important
cases the bound (2.6) is better, or even much better, than (2.5).

In Subsection 2.1 (Proposition 2.10), we will also provide an explicit expression
for PLin,LC(Tn ≥ y + h

2 ).
That (S0, S1, . . . ) in Theorems 2.1 and 2.3 is allowed to be a supermartingale

(rather than only a martingale) makes it convenient to use the simple but powerful
truncation tool. (Such a tool was used, for example, in [20] to prove limit theorems
for large deviation probabilities in Banach spaces based only on precise enough
probability inequalities and without using Cramér’s transform, the standard device
in the theory of large deviations.) Thus, for instance, one immediately has the
following corollary of Theorem 2.3.

Corollary 2.4. Suppose that all conditions of Theorem 2.1 hold except possibly for
condition (2.1). Then for all y ∈ R and d > 0

P(Sn ≥ y) ≤ P
(

max
1≤i≤n

Xi ≥ d
)

+ c2 PLin,LC(Tn ≥ y + h
2 )(2.7)

≤
∑

1≤i≤n

P (Xi ≥ d) + c2 PLin,LC(Tn ≥ y + h
2 ).(2.8)

These bounds are much more precise than the exponential bounds in [8, 9, 19].

Remark 2.5. By the Doob inequality, inequality (2.6) holds for the maximum,
Mn := max0≤k≤n Sk, in place of Sn. This follows because (i) all functions of class
F (2)

+ are convex and (ii) in view of Lemma 3.1 on page 41, one may assume without
loss of generality that (Si) is a martingale. Similarly, inequalities (2.7) and (2.8)
hold for Mn in place of Sn.

In a similar manner, under conditions (2.1)–(2.2) and with

(2.9) b :=
√

b2
1 + · · · + b2

n, where bi := max(di, σi),

Bentkus [2, 3] obtained the following extensions of inequalities (1.6) and (1.3),
respectively:

P(Sn ≥ y) ≤ c3P
LC

( n∑
i=1

εi ≥
y
√

n

b

)
∀y ∈ R and(2.10)

P(Sn ≥ y) ≤ c3P(Z ≥ y/b) ∀y ∈ R.

The upper bound in (2.10) can be improved in a similar manner, as follows.

Proposition 2.6. Under conditions (2.1), (2.2), and (2.9),

(2.11) P(Sn ≥ y) ≤ c3P
Lin,LC

( n∑
i=1

εi ≥ 1 +
y
√

n

b

)
∀y ∈ R.
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In (2.10) and (2.11), the di’s are allowed to differ from one another.
Note that the expression PLin,LC

( ∑n
i=1 εi ≥ 1 + y

√
n

b

)
= PLin,LC

( ∑n
i=1

b√
n
εi ≥

y+ b√
n

)
is a special case of the expression PLin,LC(Tn ≥ y+ h

2 ), with h
2 = d = σ = b√

n
.

From the “right-tail” bounds stated above, “left-tail” and “two-tail” ones im-
mediately follow. For instance, if condition Xi ≤ di in Theorem 2.1 is replaced
by |Xi| ≤ di, then inequality (2.3) holds with F (2) in place of F (2)

+ provided that
(S0, S1, . . . ) is a martingale with S0 = 0 a.s.

In order to present an explicit formula for the upper bound in (2.6) and compare
it with the upper bound in (2.5), it is convenient to rescale the r.v. Tn, taking on
values in the lattice Ln,d,h of all points of the form nd + kh (k ∈ Z), so that the
rescaled r.v., say

(2.12) Bn :=
q

d
Tn + np, where p :=

σ2

d2 + σ2
and q := 1 − p =

d2

d2 + σ2
,

is binomial with parameters n and p. Then for all y ∈ R, with

(2.13) x :=
q

d
y + np,

one has

P(Tn ≥ y) = P(Bn ≥ x) =: Qn(x),

PLC(Tn ≥ y) = PLC(Bn ≥ x) =: QLC
n (x),

PLin(Tn ≥ y) = PLin(Bn ≥ x) =: QLin
n (x),

PLin,LC(Tn ≥ y) = PLin,LC(Bn ≥ x) =: QLin,LC
n (x), so that

PLin,LC(Tn ≥ y + h
2 ) = QLin,LC

n (x + 1
2 ).(2.14)

Here the function x �→ PLin,LC(Bn ≥ x) is defined as the least log-concave majorant
on R of the function x �→ PLin(Bn ≥ x), which is in turn defined as the linear
interpolation of the tail function x �→ P(Bn ≥ x) over the lattice Z. Similarly,
the function x �→ PLC(Bn ≥ x) is defined as the least log-concave majorant of the
function x �→ P(Bn ≥ x) on R.

Note also that Bn ∈ [0, n] a.s.
Now one is ready to state the following comparison between the upper bounds

in (2.5) and (2.6).

Proposition 2.7. Here relation (2.13) between y and x is assumed.

(i) Equation

(2.15) ln
1 − u

− ln u
− 1 − 1

2
(1 + u) ln u

1 − u
= 0

in u ∈ (0, 1) has exactly one solution, u = u∗ := 0.00505778 . . . .
(ii) The upper bound in (2.6) is no greater than that in (2.5) for all x ≤ j∗∗, where

j∗∗ :=

⌊
n − u∗∗

q
p

1 + u∗∗
q
p

⌋
and(2.16)

u∗∗ :=
u∗

1 − u∗
= 0.00508349 . . . ;(2.17)

since u∗∗ is small, j∗∗ is rather close to n unless q
p is large.
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(iii) Moreover, the upper bound in (2.6) is no greater than that in (2.5) for all
x ≤ n provided that

(2.18) n ≤ p

q

1
u∗∗

=
p

q
196.714 . . . .

In particular, (2.6) works better than (2.5) for all x ≤ n if n ≤ 196 and p ≥ 1
2 .

Since
∑n

i=1 εi is a special case of Tn (with d = σ = 1), one immediately obtains
the following corollary to Proposition 2.7.

Corollary 2.8. The upper bound in (2.11) is no greater than that in (2.10) for all
x ≤ j∗∗, where x := y

√
n

2b + n
2 and j∗∗ :=

⌊
n−u∗∗
1+u∗∗

⌋
. Moreover, the upper bound in

(2.11) is no greater than that in (2.10) for all x ≤ n provided that n ≤ 196.

Of course, the restriction x ≤ j∗∗ (even though very weak) is only sufficient, but
not necessary for the upper bound in (2.6) to be no greater than that in (2.5).

Moreover, (2.6) may work very well even when p is small. For example, in Figure 1
one can see the graph of the ratio

r(x) :=
QLin,LC

n

(
x + 1

2

)
QLC

n (x)
=

c2 PLin,LC(Tn ≥ y + h
2 )

c2 PLC(Tn ≥ y)

of the “new” upper bound – that in (2.6), to the “old” one – that in (2.5), for n = 30
and p = 3

100 . In the same figure, one can also see the graph of the new upper bound
q(x) := min

(
1, c2 QLin,LC

n

(
x + 1

2

))
, which is a very rapidly decreasing tail function.

Proposition 2.7(ii) guaranteed that, for these n and p, the new upper bound will
be an improvement of the old one (that is, one will have r(x) ≤ 1) at least for all
x ∈ (−∞, j∗∗] = (−∞, 25], which is rather close to what one can see in the picture.
Note that, by Theorem 2.3, for x ≥ 25 one has P(Sn ≥ y) ≤ c2Q

Lin,LC
n

(
25 + 1

2

)
≈

3.44 × 10−33. Thus, the new upper bound is not an improvement only if the tail
probability P(Sn ≥ y) is less than 3.45 × 10−33. On the other hand, for instance,
r(4) ≈ 0.58; that is, the new upper bound is approximately a 42% improvement of
the old one for x = 4; at that, the new upper bound is ≈ 0.026 = 2.6%, a value
quite in a common range in statistical practice.

Fig 1. r(x), solid; q(x) = min
(
1, c2 QLin,LC

n

(
x + 1

2

))
, long dashes.
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The upper bound in (2.6), c2 PLin,LC(Tn ≥ y + h
2 ) = c2 QLin,LC

n

(
x + 1

2

)
, is rather

simple to compute, as described in Proposition 2.10, given in a separate subsec-
tion, Subsection 2.1. An underlying reason for this simplicity is that the “discrete”
tail function, Z � j �→ Qn(j), of the binomial distribution is log-concave [23, Re-
mark 13]; therefore, it turns out (by Propositions 2.10 and 2.9) that the value
QLin,LC

n

(
x + 1

2

)
can be computed locally: for a certain function Q which depends

only on its 7 arguments, one has QLin,LC
n

(
x + 1

2

)
= Q(x, n, j∗, qk−1, qk, qk+1, qk+2)

for all x ∈ R and p ∈ (0, 1), where j∗ := (n + 1)p� + 1, k := x�, and qj := Qn(j)
for all j ∈ Z.

2.1. How to compute the expression QLin,LC
n

(
x + 1

2

)
in (2.14)

First here, we need to introduce some notation.
For each j = 1, . . . , n such that j > (n + 1)p, let

xj := j − 1
2

+
qj

pj
+

qj

pj−1
− qj

pj

ln pj−1
pj

,(2.19)

yj := j − 1
2

+
qj

pj−1
+

qj

pj−1
− qj

pj

ln pj−1
pj

= xj − qj

(
1
pj

− 1
pj−1

)
,(2.20)

where, for all j ∈ Z,
(2.21)

qj := Qn(j) = P(Bn ≥ j) and pj := qj − qj+1 = P(Bn = j) =
(

n

j

)
pjqn−j ;

note that, for each j = 0, . . . , n,

(2.22) pj−1 > pj ⇐⇒ j > (n + 1)p ⇐⇒ j ≥ j∗ := (n + 1)p� + 1,

so that, for all j ∈ Z∩ [j∗, n], one has ln pj−1
pj

> 0, and so, xj and yj are well defined,
and xj > yj ; note that j∗ ≥ 1. Let also

(2.23) xj := j + 1
2 and yj := j − 1

2 for integer j ≥ n + 1.

Proposition 2.9. For all integer j ≥ j∗, one has

j − 3
2 < j − 1 < yj ≤ j − 1

2 < xj ≤ yj+1 ≤ j + 1
2 ;

moreover, if j ≤ n, then yj < j − 1
2 and xj < yj+1.

By Proposition 2.9, for all integer j ≥ j∗, the intervals

δj := (yj , xj)

are non-empty, with the endpoints

yj ∈ (j − 1, j − 1
2 ] ⊂ (j − 3

2 , j − 1
2 ] and xj ∈ (j − 1

2 , j + 1
2 ];

moreover, the intervals δj are strictly increasing in j ≥ j∗: δj < δj+1 for all j ≥ j∗,
where we use the following convention for any two subsets A and B of R:

A < B
def⇐⇒ (x < y ∀x ∈ A ∀y ∈ B).

For all integer j ≥ j∗ and all x ∈ δj , introduce the interpolation expression

(2.24) QInterp
n (x; j) := QLin

n

(
yj + 1

2

)1−δ
QLin

n

(
xj + 1

2

)δ
, where δ :=

x − yj

xj − yj
.
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Proposition 2.10. For all real x,

(2.25) QLin,LC
n

(
x + 1

2

)
= Q(x) :=

{
QInterp

n (x; j) if ∃j ∈ Z ∩ [j∗, n] x ∈ δj ,

QLin
n

(
x + 1

2

)
otherwise.

A few comments are in order here:

• the function Q in (2.25) is well defined, because the δj ’s are pairwise disjoint;
• QLin,LC

n

(
x + 1

2

)
is easy to compute by (2.25) because, in view of Proposi-

tion 2.9, the condition x ∈ δj for j ∈ Z∩ [j∗, n] implies that j equals either x�
or x�+ 1. In particular, QLin,LC

n

(
x + 1

2

)
= QLin

n

(
x + 1

2

)
= 0 for all x ≥ n + 1

2 .

3. Proofs

Proof of Proposition 1.1. The “only if” part follows because f ∈ F (α) for a natural
α implies that the (right) derivative f ′(u) = α

∫ ∞
−∞(u − t)α−1

+ µ(dt). Vice versa, if
f satisfies the conditions listed after “iff” in the statement of Proposition 1.1, then
one can use the Fubini theorem repeatedly to see that for all real u

f(u) =
∫ u

−∞
f ′(t) dt =

∫ u

−∞
dt

∫ t

−∞
f ′′(s) ds =

∫ u

−∞
(u − s)f ′′(s) ds = . . .

=
∫ u

−∞

(u − s)α−1

(α − 1)!
f (α)(s) ds =

∫ u

−∞

(u − s)α

α!
df (α)(s) =

∫ ∞

−∞
(u − s)α

+ µ(ds),

where f (α) is the (nondecreasing) right derivative of the convex function f (α−1) and
µ(ds) := df (α)(s)/α!.

Theorem 2.1 can be rather easily reduced to the case when (Sn) is a martingale.
This is implied by the following lemma.

Lemma 3.1. Let (Si) be a supermartingale as in Theorem 2.1, so that conditions
(2.1) and (2.2) are satisfied. For i = 1, 2, . . . , let

(3.1) X̃i := (1 − γi−1)Xi + γi−1di, where γi−1 :=
Ei−1Xi

Ei−1Xi − di
;

Ej and Varj denote, respectively, the conditional expectation and variance given
X1, . . . , Xj. Then X̃i is H≤i-measurable,

Xi ≤ X̃i ≤ di, Ei−1X̃i = 0, and Vari−1X̃i ≤ Vari−1Xi ≤ σ2
i a.s.

Proof. The conditions di > 0 and Ei−1Xi ≤ 0 imply that that γi−1 ∈ [0, 1). Now
(3.1) and the inequality Xi ≤ di yield Xi ≤ X̃i ≤ di. Moreover, (3.1) yields
Ei−1X̃i = (1 − γi−1)Ei−1Xi + γi−1di = 0 and Vari−1X̃i = (1 − γi)2 Vari−1Xi ≤
Vari−1Xi.

Theorem 2.1 is mainly based on the following lemma, which also appeared as [1,
(12)] and [3, Lemma 4.4(i), with condition EX = 0 missing there].

Lemma 3.2. Let X be a r.v. such that EX = 0, VarX ≤ σ2, and X ≤ d a.s. for
some non-random constants σ > 0 and d > 0. Let a := σ2/d2, and let Xa be a r.v.
taking on values −a and 1 with probabilities 1

1+a and a
1+a , respectively. Then

(3.2) Ef(X) ≤ Ef(d · Xa) ∀f ∈ F (2)
+ .
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Proof. (Given here for the reader’s convenience and because it is short and simple.)
By homogeneity, one may assume that d = 1 (otherwise, rewrite the lemma in
terms of X/d in place of X). Note that Xa ≤ 1 with probability 1, EXa = 0, and
EX2

a = σ2. Let here ft(x) := (x − t)2+ and

ht(x) :=
(1 − t)2+
(1 − ta)2

(x − ta)2, where ta := min(t,−a).

Then it is easy to check (by considering the cases t ≥ 1, −a ≤ t ≤ 1, and t ≤ −a)
that ft(x) ≤ ht(x) for all x ≤ 1, and ft(x) = ht(x) for x ∈ {1,−a}. Therefore,
Eft(X) ≤ Eht(X) ≤ Eht(Xa) = Eft(Xa) (the second inequality here follows because
ht(x) is a quadratic polynomial in x with a nonnegative coefficient of x2, while
EX = EXa and EX2 ≤ EX2

a). Now the lemma follows by the definition of the class
F (α)

+ and the Fubini theorem.

Proof of Theorem 2.1. This proof is based in a standard manner on Lemma 3.2,
using also Lemma 3.1. Indeed, by Lemma 3.1, one may assume that Ei−1Xi = 0 for
all i. Let Z1, . . . , Zn be r.v.’s as in the statement of Theorem 2.1, which are also
independent of the Xi’s, and let

Ri := X1 + · · · + Xi + Zi+1 + · · · + Zn.

Let Ẽi denote the conditional expectation given X1, . . . , Xi−1, Zi+1, . . . , Zn. Note
that, for all i = 1, . . . , n, ẼiXi = Ei−1Xi = 0 and ẼiX

2
i = Ei−1X

2
i ; moreover,

Ri − Xi = X1 + · · · + Xi−1 + Zi+1 + · · · + Zn is a function of X1, . . . , Xi−1,

Zi+1, . . . , Zn. Hence, by Lemma 3.2, for any f ∈ F (2)
+ , f̃i(x) := f(Ri − Xi + x),

and all i = 1, . . . , n, one has Ẽif(Ri) = Ẽif̃i(Xi) ≤ Ẽif̃i(Zi) = Ẽif(Ri−1), whence
Ef(Sn) ≤ Ef(Rn) ≤ Ef(R0) = Ef(Tn) (the first inequality here follows because
S0 ≤ 0 a.s. and any function f in F (2)

+ is nondecreasing).

Proof of Theorem 2.3. In view of Theorem 2.1 and Remark 2.2, one has

(3.3) Ef(S̃n) ≤ Ef(Bn) ∀f ∈ F (2)
+ ,

where S̃n := q
dSn + np and Bn is defined by (2.12). Let U be a r.v., which is

independent of Bn and uniformly distributed between −1
2 and 1

2 . Then, by Jensen’s
inequality, Ef(Bn) ≤ Ef(Bn + U) for all convex functions f , whence

Ef(S̃n) ≤ Ef(Bn + U) ∀f ∈ F (2)
+ .

Observe that the density function of Bn + U is x �→
∑n

j=0 pj I{|x− j| < 1
2} (where

the pj ’s are given by (2.21)), and so, the tail function of Bn + U is given by the
formula P(Bn + U ≥ x) = QLin

n

(
x + 1

2

)
∀x ∈ R. Now Theorem 2.3 follows by

Theorem 1.3, Remark 1.4, and (2.14).

Proof of Proposition 2.6. This proof is quite similar to the proof of Theorem 2.3.
Instead of (3.3), here one uses inequality Ef(S̃n) ≤ Ef(Bn) ∀f ∈ F (3)

+ , where
S̃n :=

√
n

2b Sn + n
2 . This latter inequality follows from (2.3) (with di and σi each

replaced by bi = max(di, σi)) and the first one of the inequalities (1.1) ∀f ∈ F (3)
+

(recall Remark 1.2), taking also into account the inclusion F (3)
+ ⊆ F (2)

+ (which
follows e.g. from [23, Proposition 1(ii)]).
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In the following two propositions, which are immediate corollaries of results of
[25] and [24], it is assumed that f and g are differentiable functions on an interval
(a, b) ⊆ (−∞,∞), and each of the functions g and g′ is nonzero and does not change
sign on (a, b); also, r := f/g and ρ := f ′/g′.

Proposition 3.1. (Cf. [25, Proposition 1].) Suppose that f(a+) = g(a+) = 0
or f(b−) = g(b−) = 0. Suppose also that ρ ↗ or ↘; that is, ρ is increasing or
decreasing on (a, b). Then r ↗ or ↘, respectively.

Proposition 3.2. (Cf. [24, Proposition 1.9]; the condition that f(a+) =
g(a+) = 0 or f(b−) = g(b−) = 0 is not assumed here.) If ρ ↗ or ↘ on (a, b),
then r ↗ or ↘ or ↗↘ or ↘↗ on (a, b). (Here, for instance, the pattern ↗↘ for
ρ on (a, b) means that ρ ↗ on (a, c) and ↘ on (c, b) for some c ∈ (a, b); the pattern
↘↗ has a similar meaning.) It follows that, if ρ ↗ or ↘ or ↗↘ or ↘↗ on (a, b),
then r ↗ or ↘ or ↗↘ or ↘↗ or ↗↘↗ or ↘↗↘ on (a, b).

Lemma 3.3. Part (i) of Proposition 2.7 is true.

Proof of Lemma 3.3. Let

(3.4) h(u) := ln
1 − u

− ln u
− 1 − 1

2
(1 + u) ln u

1 − u
,

the left-hand side of (2.15). Here and in rest of the proof of Lemma 3.3, it is assumed
that 0 < u < 1, unless specified otherwise. Then

(3.5) h′(u) = r1(u) :=
f1(u)
g1(u)

,

where f1(u) := 2 ln2 u+( 1
u +2−3u) ln u+2(u+ 1

u )−4 and g1(u) := −2(1−u)2 ln u.
Let next

(3.6) r2(u) :=
f ′
1(u)

g′1(u)
=

f2(u)
g2(u)

,

where f2(u) := ( 3
u − 1

u2 ) ln u + 1
u − 1

u2 and g2(u) := 4 lnu − 2
u + 2, and then

(3.7) r3(u) :=
f ′
2(u)

g′2(u)
=

f3(u)
g3(u)

,

where f3(u) := (2 − 3u) ln u + 1 + 2u and g3(u) := 2u(1 + 2u).
One has f ′′

3 (u)
g′′
3 (u) = −1

8 ( 2
u2 + 3

u ), which is increasing; moreover, d
du

f ′
3(u)

g′
3(u) tends to

−∞ < 0 and −29/50 < 0 as u ↓ 0 and u ↑ 1, respectively. Hence, by Proposition 3.2,
f ′
3(u)

g′
3(u) is decreasing (in u ∈ (0, 1)).

Next, by (3.7), r′3(0+) = ∞ > 0 and r′3(1−) = −2/3 < 0. Hence, by Proposi-
tion 3.2, r3 ↗↘ (on (0, 1)).

By (3.6), r′2(0+) = ∞ > 0 and f2(1) = g2(1) = 0. Hence, by Propositions 3.1
and 3.2, r2 ↗↘ (on (0, 1)).

By (3.5), r′1(0+) = ∞ > 0 and r′1(1−) = −1/4 < 0. Hence, by Proposition 3.2,
h′ = r1 ↗↘ (on (0, 1)). Moreover, h′(0+) = −∞ < 0 and h′(1−) = 1

2 > 0. Hence,
for some β ∈ (0, 1), one has h′ < 0 on (0, β) and h′ > 0 on (β, 1).

Hence, h ↘↗ on (0, 1). Moreover, h(0+) = ∞ and h(1−) = 0. It follows that
the equation h(u) = 0 has a unique root u = u∗ ∈ (0, 1).

Now Lemma 3.3 follows by (3.4).
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Lemma 3.4. For all x ≤ j∗∗ + 1,

(3.8) QLin
n

(
x + 1

2

)
≤ QLC

n (x).

Proof of Lemma 3.4. For any given x ≤ j∗∗ + 1, let

j := jx := x� and k := kx := x + 1
2�, so that

j ≤ x < j + 1, k − 1
2 ≤ x < k + 1

2 ,

QLC
n (x) = q1−δ

j qδ
j+1, QLin

n

(
x + 1

2

)
= (1 − γ)qk + γ qk+1, where

δ := x − j ∈ [0, 1) and γ := x + 1
2 − k ∈ [0, 1).

There are only three possible cases: δ = 0, δ ∈ [ 12 , 1), and δ ∈ (0, 1
2 ).

Case 1: δ = 0. This case is simple. Indeed, here k = j and γ = 1
2 , so that

QLC
n (x) = qj ≥ 1

2 qj + 1
2 qj+1 = QLin

n

(
x + 1

2

)
,

since qj is nonincreasing in j.
Case 2: δ ∈ [12 , 1). This case is simple as well. Indeed, here k = j + 1, so that

QLC
n (x) ≥ qj+1 ≥ (1 − γ) qj+1 + γ qj+2 = QLin

n

(
x + 1

2

)
.

Case 3: δ ∈ (0, 1
2 ). In this case, k = j and γ = δ + 1

2 , so that inequality (3.8)
can be rewritten here as q1−δ

j qδ
j+1 ≥ (1

2 − δ)qj + (1
2 + δ)qj+1 or, equivalently, as

(3.9) F (δ, u) := uδ −
(

1
2 − δ

)
−

(
1
2 + δ

)
u ≥ 0,

where

(3.10) u :=
qj+1

qj
∈ [0, 1];

note that the conditions x ≤ j∗∗ + 1 and j ≤ x < j + 1 imply j ≤ j∗∗ + 1 ≤ n (the
latter inequality takes place because, by (2.16), j∗∗ < n); hence, qj ≥ qn > 0, and
thus, u is correctly defined by (3.10). Moreover, because both sides of inequality
(3.8) are continuous in x for all x ≤ n and hence for all x ≤ j∗∗ + 1, it suffices to
prove (3.8) only for x < j∗∗ + 1, whence j ≤ j∗∗, and so, by (2.16),

j ≤ n − u∗∗q/p

1 + u∗∗q/p
;

the latter inequality is equivalent, in view of (2.21), to pj+1
pj

≥ u∗∗, which in turn
implies, in view of (2.17), that

qj

qj+1
= 1 +

pj

qj+1
≤ 1 +

pj

pj+1
≤ 1 +

1
u∗∗

=
1
u∗

,

whence, by (3.10), one obtains u ≥ u∗. Therefore, the proof in Case 3, and hence
the entire proof of Lemma 3.4, is now reduced to the following lemma.

Lemma 3.5. Inequality (3.9) holds for all δ ∈ (0, 1
2 ) and u ∈ [u∗, 1].
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Proof of Lemma 3.5. Observe first that, for every δ ∈ (0, 1
2 ),

F (δ, 0) = −
(

1
2 − δ

)
< 0, F (δ, 1) = 0,

(∂uF )(δ, 1) = −1
2 < 0, and F is concave in u ∈ [0, 1].

(3.11)

This implies that, for every δ ∈ (0, 1
2 ), there exists a unique value

u(δ) ∈ (0, 1)

such that

(3.12) F (δ, u(δ)) = 0,

and at that

(3.13) F (δ, u) ≥ 0 ∀δ ∈
(
0, 1

2

)
∀u ∈ [u(δ), 1],

and (∂uF )(δ, u(δ)) is strictly positive and hence nonzero. Thus, equation (3.12)
defines an implicit function (0, 1

2 ) � δ �→ u(δ) ∈ (0, 1). Moreover, since F is dif-
ferentiable on (0, 1

2 ) × (0, 1) and (∂uF )(δ, u(δ)) �= 0 for all δ ∈ (0, 1
2 ), the implicit

function theorem is applicable, so that u(δ) is differentiable in δ for all δ ∈ (0, 1
2 ).

Now, differentiating both sides of equation (3.12) in δ, one obtains

(3.14) uδ ln u + 1 − u + (δuδ−1 − 1
2 − δ)u′(δ) = 0,

where u stands for u(δ).
Let us now show that u(0+) = u(1

2−) = 0. To that end, observe first that

(3.15) sup
0<δ< 1

2

u(δ) < 1.

Indeed, otherwise there would exist a sequence (δn) in (0, 1
2 ) such that εn := 1 −

u(δn) ↓ 0. But then u(δn)δn = (1 − εn)δn = 1 − εnδn + o(εn), so that (3.12) would
imply

0 = 1 − εnδn + o(εn) −
(

1
2 − δn

)
−

(
1
2 + δn

)
(1 − εn) = (1

2 + o(1))εn,

which would contradict the fact that εn = 1 − u(δn) > 0 for all n.
If it were not true that u(0+) = 0, then there would exist a sequence (δn) in

(0, 1
2 ) and some ε > 0 such that δn ↓ 0 while u(δn) → ε. But then u(δn)δn → 1, so

that equation (3.12) would imply

u(δn) =
u(δn)δn −

(
1
2 − δn

)
1
2 + δn

→ 1,

which would contradict (3.15). Thus, u(0+) = 0.
Similarly, if it were not true that u(1

2−) = 0, then there would exist a sequence
(δn) in (0, 1

2 ) and some ε > 0 such that δn ↑ 1
2 while u(δn) → ε. But then equation

(3.12) would imply

u(δn) =
u(δn)δn −

(
1
2 − δn

)
1
2 + δn

→ ε1/2,

which would imply 0 < ε = ε1/2, so that ε = 1, which would contradict (3.15).
Hence, u(1

2−) = 0.
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Thus, (0, 1
2 ) � δ �→ u(δ) is a strictly positive continuous function, which vanishes

at the endpoints 0 and 1
2 . Therefore, there must exist a point δ∗ ∈ (0, 1

2 ) such that
u(δ∗) ≥ u(δ) for all δ ∈ (0, 1

2 ). Then one must have u′(δ∗) = 0.
Now equation (3.14) yields

u(δ∗)δ∗ = −1 − u(δ∗)
lnu(δ∗)

, whence(3.16)

δ∗ =
ln 1−u(δ∗)

− ln u(δ∗)

lnu(δ∗)
.(3.17)

In the expression (3.9) for F (δ, u), replace now uδ by the right-hand side of (3.16),
and then replace δ by the right-hand side of (3.17). Then, recalling (3.12) and
slightly re-arranging terms, one sees that u = u(δ∗) is a root of equation (2.15).

By Lemma 3.3, such a root of (2.15) is unique in (0, 1). It follows that
max0<δ<1/2 u(δ) = u(δ∗) = u∗ = 0.00505 . . . . In view of (3.13), this completes the
proof of Lemma 3.5.

Proof of Proposition 2.7. In this proof, we shall use Propositions 2.9 and 2.10
(which will be proved later in this paper) and the following preliminary remarks.

According to [23, Remark 13], the restriction of the tail function Qn to the set
Z of all integers is log-concave. Therefore, the logarithm, lnQLC

n , of the least log-
concave majorant QLC

n of Qn can be obtained by the linear interpolation of lnQn

over Z, so that

(3.18) QLC
n (x) = q

1−(x−j)
j qx−j

j+1 if j ≤ x ≤ j + 1 & j ∈ Z,

where qj is defined by (2.21). Here and elsewhere, 00 := 1. Recall that the function
QLin

n is the linear interpolation of the function Qn over Z, so that

(3.19) QLin
n (x) = (1 − (x − j))qj + (x − j)qj+1 if j ≤ x ≤ j + 1 & j ∈ Z.

Since the function Qn is non-decreasing and left-continuous, one can note that
QLin

n ≥ Qn on R; also, QLin
n = Qn on Z.

Let us now proceed to the proof of Proposition 2.7.
(i) Part (i) of Proposition 2.7 follows by Lemma 3.3.
(ii) If x ≤ j∗∗ + 1 and x is not in δj for any j ∈ Z∩ [j∗, n], then, by (2.25) and

Lemma 3.4,

(3.20) QLin,LC
n

(
x + 1

2

)
= Q(x) = QLin

n

(
x + 1

2

)
≤ QLC

n (x).

If x ∈ δj ⊂ (−∞, j∗∗ +1] for some j ∈ Z∩ [j∗, n], then, taking also into account the
definition (2.24), (3.20), and the log-concavity of the function QLC

n , one has, for δ
as in (2.24),

QLin,LC
n

(
x + 1

2

)
= Q(x) = QInterp

n (x; j)

= QLin
n

(
yj + 1

2

)1−δ
QLin

n

(
xj + 1

2

)δ ≤ QLC
n (yj)1−δQLC

n (xj)δ ≤ QLC
n (x).

Hence,

(3.21) QLin,LC
n

(
x + 1

2

)
≤ QLC

n (x)
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for all x ≤ j∗∗ +1 except maybe when x ∈ δj ∩ (−∞, j∗∗ +1] for some j ∈ Z∩ [j∗, n]
such that δj �⊂ (−∞, j∗∗ + 1]. The latter exceptional situation implies that yj <
j∗∗ + 1 < xj . Hence, by Proposition 2.9,

(3.22) j − 1 < yj < j∗∗ + 1 < xj ≤ j + 1
2 ,

whence j < j∗∗ + 2 and j ≥ j∗∗ + 1, so that j = j∗∗ + 1.
It follows that (3.21) holds (at least) for all

x ∈ (−∞, j∗∗ + 1] \ δj∗∗+1 = (−∞, yj∗∗+1] ⊃ (−∞, j∗∗],

the latter inclusion taking place because of the first inequality in (3.22), for j =
j∗∗ + 1. This completes the proof of part (ii) of Proposition 2.7.

(iii) Introduce

(3.23) Q̃(x) :=

{
QLC

n (x) if x ≤ n,

qn−x
n−1 qx−n+1

n if x ≥ n − 1.

Note that for x ∈ [n − 1, n] the expressions for Q̃(x) in the two cases in (3.23)
coincide with each other, which implies that the function Q̃ is log-concave on R.

Now we need the following lemma, whose proof will be given a bit later.

Lemma 3.6. Under condition (2.18), for all x ∈ [n, n + 1
2 ],

(3.24) QLin
n

(
x + 1

2

)
≤ Q̃(x).

Under condition (2.18), it is easy to see that j∗∗+1 ≥ n. Therefore, by Lemma 3.4,
one has (3.8) and hence (3.24) for all x ≤ n.

Also, QLin
n

(
x + 1

2

)
= 0 for all x ≥ n + 1

2 .
Thus, by Lemma 3.6, Q̃(x) ≥ QLin

n

(
x + 1

2

)
for all x ∈ R; at that, as noted above,

the function Q̃ is log-concave on R. Hence, QLin,LC
n

(
x + 1

2

)
≤ Q̃(x) for all x ∈ R.

Now part (iii) of Proposition 2.7 follows in view of (3.23), because Q̃ = QLC
n on the

interval (−∞, n].

Proof of Lemma 3.6. In view of the definitions (3.19) and (3.18), one can rewrite
inequality (3.24) as qn−x

n−1 qx−n+1
n ≥

(
n + 1

2 − x
)
qn +

(
x − n + 1

2

)
qn+1, for all x ∈

[n, n + 1
2 ]. Since qn+1 = 0, the latter inequality is equivalent to

(3.25) lnu ≤ r(α),

where u := qn−1/qn > 1, α := x − n ∈ (0, 1
2 ), and

r(α) :=
ln(1

2 − α)
−α

.

Since r′(0+) = −∞, r′(1
2−) = ∞, and ((ln(1

2 − α))′α)/(−α′
α) = 1/(1

2 − α) is
increasing in α ∈ (0, 1

2 ), it follows from Proposition 3.2 that there is a unique value
α∗ ∈ (0, 1

2 ) such that the function r is decreasing on (0, α∗) and increasing on
(α∗,

1
2 ), so that r′(α∗) = 0 and α∗ is the point of minimum of function r on (0, 1

2 ).
In fact, one has α∗ = 0.3133 . . . and r(α∗) = 5.3566 . . . .

Therefore, inequality (3.25) can be rewritten as u ≤ er(α∗). On the other hand,

u =
qn−1

qn
=

npn−1q + pn

pn
= n

q

p
+ 1,

so that it suffices to check that n q
p ≤ er(α∗) − 1 = 211.022 . . . . But this follows

from condition (2.18).
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Proof of Proposition 2.9. Assume the condition j ≥ j∗. For j ≥ n + 1, the inequal-
ities of Proposition 2.9 immediately follow from (2.23).

It remains to consider the case j ≤ n, which implies pj−1 > pj , by (2.22). Then
it suffices to check four inequalities, j − 1 < yj < j − 1

2 < xj < yj+1. Indeed, the
inequality j − 3

2 < j − 1 is trivial, and the inequality yj+1 ≤ j + 1
2 will then follow

— for j = n, from (2.23); and for j = j∗, . . . , n− 1, from the inequalities yi < i− 1
2

∀i = j∗, . . . , n.
(i) Checking j − 1 < yj . In view of definition (2.20),

(3.26) yj = j − 1
2 + κjqj ,

where

κj :=
1

pj−1
+

1
pj−1

− 1
pj

ln pj−1
pj

=
1 − pj−1

pj
+ ln pj−1

pj

pj−1 ln pj−1
pj

,

so that

(3.27) κj < 0,

in view of the condition pj−1 > pj and the inequality lnu < u − 1 for u > 1.
On the other hand, it is well known and easy to verify that the probability mass

function (pk) of the binomial distribution is log-concave, so that the ratio pk/pk−1

is decreasing in k. Hence,

qj =
n∑

k=j

pk ≤
∞∑

k=j

pj

(
pj

pj−1

)k−j

=
pj

1 − pj

pj−1

=: q̂j .

Therefore, to check j−1 < yj , it suffices to check that dj := ŷj − (j−1) > 0, where
ŷj := j − 1

2 +κj q̂j (cf. (3.26). But one can see that dj = f(u)/(2(u− 1) ln u), where
u := pj−1

pj
> 1 and f(u) := 2(1 − u) + (1 + u) lnu. Thus, to check j − 1 < yj , it

suffices to show that f(u) > 0 for u > 1. But this follows because f(1) = f ′(1) = 0
and f is strictly convex on (1,∞).

(ii) Checking yj < j − 1
2 . This follows immediately from (3.26) and (3.27).

(iii) Checking j − 1
2 < xj . This follows because xj −

(
j − 1

2

)
=

qj(ln u − 1 + 1/u)/(pj lnu) > 0, where again u := pj−1
pj

> 1.
(iv) Checking xj < yj+1. Let first j ≤ n − 1, so that pj > pj+1 > 0. In view

of (2.20) and the obvious identity 1 + qj+1
pj

= qj

pj
, one has

yj+1 = j − 1
2

+
qj

pj
+

qj+1
pj

− qj+1
pj+1

ln pj

pj+1

,

so that the inequality xj < yj+1, which is being checked, can be rewritten as
qjrj > qj+1rj+1 or, equivalently, as

(3.28)
∞∑

k=0

(pj+krj − pj+1+krj+1) > 0,

where rj := ( 1
pj

− 1
pj−1

)/ ln pj−1
pj

. Note that rj > 0, rj+1 > 0, and pjrj = h(v) :=
(1 − v)/ − ln v, where v := pj/pj−1 ∈ (0, 1). By Proposition 3.1, h(v) is increasing
in v ∈ (0, 1). On the other hand, v = pj/pj−1 is decreasing in j, by the mentioned
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log-concavity of (pj). It follows that pjrj is decreasing in j. Because of this and the
same log-concavity, pj+krj

pj+1+krj+1
>

pjrj

pj+1rj+1
> 1 ∀k = 0, 1, . . . , which yields (3.28).

Finally, in the case when j = n ≥ j∗, the inequality xj < yj+1 follows from
(2.19) and (2.23), because then

xn = n +
1
2

+

pn

pn−1
− 1

ln
pn−1

pn

< n +
1
2

= yn+1.

Proof of Proposition 2.10.
Step 1. Here we observe that the function Q defined in (2.25) is continuous.

Indeed, the function x �→ QLin
n

(
x + 1

2

)
is defined and continuous everywhere on

R. On the other hand, for every integer j ≥ j∗, the function x �→ QInterp
n (x; j) is

defined and continuous on the interval δj ; moreover, it continuously interpolates on
the interval δj between the values of the function x �→ QLin

n

(
x + 1

2

)
at the endpoints,

yj and xj , of the interval δj . Also, the intervals δj with j ∈ Z ∩ [j∗, n] are pairwise
disjoint. Thus, the function Q is continuous everywhere on R.

Step 2. Here we show that the function Q is log-concave. To that end, intro-
duce

j(x) := ln
(
(1
2 + j − x)qj + (1

2 − j + x)qj+1

)
∀j ∈ Z, so that

(3.29) (j − 1
2 ≤ x < j + 1

2 & j ≤ n) =⇒ lnQLin
n

(
x + 1

2

)
= j(x);

here, the condition j ≤ n provides for both sides of the equality in (3.29) to be
defined. One can check (which is better done using Mathematica or similar software)
the basic relations

(3.30) j ∈ Z ∩ [j∗, n] =⇒ ′j−1(yj) = ′j(xj) =
j(xj) − j−1(yj)

xj − yj
;

these relations do not rely on the fact that the qj ’s pertain to a binomial distribution,
but only on general relations: pj−1 > pj > 0, pi = qi − qi+1 ∀i, and qj+1 ≥ 0, as
well as the inequalities (j−1)− 1

2 < yj < (j−1)+ 1
2 and j− 1

2 < xj ≤ j + 1
2 , which

follow by Proposition 2.9 and ensure that j and j−1 are defined and differentiable
in neighborhoods of xj and yj , respectively. Using the latter relations together with
(2.24) and (3.29), one has

(3.31)
d
dx

ln QInterp
n (x; j) =

j(xj) − j−1(yj)
xj − yj

∀x ∈ δj ∀j ∈ Z ∩ [j∗, n].

Moreover, for all integer j ≤ n,

′j
(
j − 1

2

)
=

qj+1 − qj

qj
=

−pj

qj
and ′j−1

(
j − 1

2

)
=

−pj−1

qj
.

Hence and by (2.22), for every integer j ≤ n one has

(3.32) ′j
(
j − 1

2

)
≤ ′j−1

(
j − 1

2

)
⇐⇒ j ≤ j∗ − 1.

In view of (3.29), the function x �→ ln QLin
n

(
x + 1

2

)
is concave on the interval

[j − 1
2 , j + 1

2 ] for every integer j ≤ n. Note also that
⋃

j≤j∗−1

[
j − 1

2 , j + 1
2

]
=(

−∞, j∗ − 1
2

]
. Hence, by (3.32) and (3.29), the function

(3.33) x �→ ln QLin
n

(
x + 1

2

)
is concave on the interval

(
−∞, j∗ − 1

2

]
.
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In addition to the open intervals δj = (yj , xj), introduce the closed intervals

∆j := [xj , yj+1]

for integer j ≥ j∗. Then, by Proposition 2.9 and (2.23), the intervals ∆j are each
nonempty,

(3.34) δj∗ ∪ ∆j∗ ∪ δj∗+1 ∪ ∆j∗+1 ∪ · · · ∪ δn ∪ ∆n =
(
yj∗ , n + 1

2

]
,

and
δj∗ < ∆j∗ < δj∗+1 < ∆j∗+1 < · · · < δn < ∆n.

Thus, the intervals δj and ∆j with j ∈ Z ∩ [j∗, n] form a partition of the interval(
yj∗ , n + 1

2

]
. Moreover, for every j ∈ Z∩ [j∗, n], by Proposition 2.9, ∆j ⊆ [j− 1

2 , j +
1
2 ], and so, by (3.29), the function

(3.35) x �→ lnQLin
n

(
x + 1

2

)
is concave on the interval ∆j .

Also, by (2.24), for every j ∈ Z ∩ [j∗, n], the function

(3.36) x �→ lnQInterp
n (x; j) is concave (in fact, affine) on the interval δj .

By the definition of Q in (2.25), for all x ∈ R and all j ∈ Z ∩ [j∗, n], one has

(3.37) Q(x) =




QLin
n

(
x + 1

2

)
if x ≤ yj∗ ,

QInterp
n (x; j) if x ∈ δj & j ∈ Z ∩ [j∗, n],

QLin
n

(
x + 1

2

)
if x ∈ ∆j & j ∈ Z ∩ [j∗, n],

0 = QLin
n

(
x + 1

2

)
if x ≥ n + 1

2 .

Note also that, by Proposition 2.9, yj∗ ≤ j∗− 1
2 , so that (−∞, yj∗ ] ⊆ (−∞, j∗− 1

2 ].
Now it follows from (3.37), (3.33), (3.35), and (3.36) that the function lnQ is concave
on each of the disjoint adjacent intervals

(3.38) (−∞, yj∗ ], δj∗ , ∆j∗ , δj∗+1, ∆j∗+1, . . . , δn, ∆n,

whose union is the interval (−∞, n+ 1
2 ]. Moreover, it follows from the continuity of Q

(established in Step 1) and formulas (3.30), (3.29), and (3.31) that the function lnQ
is differentiable at all the endpoints yj∗ , xj∗ , yj∗+1, xj∗+1, . . . , yn, xn of the intervals
(3.38) except the right endpoint yn+1 = n + 1

2 of the interval ∆n.
Therefore, the function lnQ is concave on the interval (−∞, n+ 1

2 ). On the other
hand, lnQ = −∞ on the interval [n + 1

2 ,∞). Thus, it is proved that the function
lnQ is concave everywhere on R.

Step 3. Here we show that

(3.39) Q(x) ≥ QLin
n

(
x + 1

2

)
for all real x. In view of (3.37) and (3.34), it suffices to check (3.39) for x ∈ δj with
j ∈ Z ∩ [j∗, n]. By Proposition 2.9, δj ⊆ (j − 1, j + 1

2 ] ⊂ [j − 3
2 , j + 1

2 ], for every
j ∈ Z ∩ [j∗, n].

By (3.29), the function x �→ ln QLin
n

(
x + 1

2

)
= j(x) is concave on the interval

[j − 1
2 , j + 1

2 ], for every integer j ≤ n. Hence, (3.30) and (2.24) imply that, for all
x ∈ δj ∩ [j − 1

2 , j + 1
2 ] with j ∈ Z ∩ [j∗, n],

ln QLin
n

(
x + 1

2

)
= j(x) ≤ j(xj) + ′j(xj)(x − xj)

=
xj − x

xj − yj
j−1(yj) +

x − yj

xj − yj
j(xj) = ln QInterp

n (x; j) = lnQ(x),
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so that one has (3.39) for all x ∈ δj ∩ [j − 1
2 , j + 1

2 ] with j ∈ Z ∩ [j∗, n]. Similarly
(using inequality j−1(x) ≤ j−1(yj)+ ′j−1(yj)(x−yj)) it can be shown that (3.39)
takes place for all x ∈ δj ∩ [j − 3

2 , j − 1
2 ] with j ∈ Z∩ [j∗, n]. This completes Step 3.

Step 4. Here we show that, if Q̃ is a log-concave function on R such that

(3.40) Q̃(x) ≥ QLin
n

(
x + 1

2

)
∀x ∈ R,

then Q̃ ≥ Q on R. In view of (3.37), it suffices to check that Q̃ ≥ Q on δj for
every j ∈ Z ∩ [j∗, n]. But, by (3.40), one has Q̃(yj) ≥ QLin

n

(
yj + 1

2

)
and Q̃(xj) ≥

QLin
n

(
xj + 1

2

)
. Hence, taking into account the log-concavity of Q̃ and (2.24) and

(3.37), one has, for all x ∈ δj with j ∈ Z ∩ [j∗, n] and δ as in (2.24),

Q̃(x) ≥ Q̃ (yj)
1−δ

Q̃ (xj)
δ ≥ QLin

n

(
yj + 1

2

)1−δ
QLin

n

(
xj + 1

2

)δ = QInterp
n (x; j) = Q(x).

The facts established in Steps 2, 3, and 4 imply that the function Q is indeed the
least log-concave majorant of the function x �→ QLin

n

(
x + 1

2

)
. Thus, Proposition 2.10

is proved.
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