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Invariance principle for stochastic

processes with short memory

Magda Peligrad1,∗ and Sergey Utev2

University of Cincinnati and University of Nottingham

Abstract: In this paper we give simple sufficient conditions for linear type
processes with short memory that imply the invariance principle. Various ex-
amples including projective criterion are considered as applications. In partic-
ular, we treat the weak invariance principle for partial sums of linear processes
with short memory. We prove that whenever the partial sums of innovations
satisfy the Lp–invariance principle, then so does the partial sums of its corre-
sponding linear process.

1. Motivation: linear processes

Encountered in various applications, the linear time series, moving averages, pro-
vide a reach class of examples that are widely studied. For a stationary sequence
of innovations (ξi)i∈Z and a sequence of constants (aj)j∈Z, the linear process is
defined by

(1) Xk =
∞∑

j=−∞
ajξk−j .

Of course, one needs to add some conditions in order for the process to be well
defined. In the classical time series analysis (ξi)i∈Z is assumed i.i.d. with E(ξ0) = 0
and E(ξ2

0) < ∞. Then, Xk is well defined when
∑∞

j=−∞ a2
j < ∞ and the central

limit theorem (CLT) holds for Sn/stdev(Sn) where Sn =
∑n

j=1 Xj [10]. This CLT
is not restricted to i.i.d sequences and the theorem was extended in [19, 21] to
martingales and other related structures. However, without additional assumptions
on the sequence of constants, the CLT for the general linear process cannot be ex-
tended to an invariance principle, not even for independent innovations, as pointed
out in [15, 23] and in [16]. A related example is given in Proposition 10 below.

To deal with the problem of the invariance principle, several authors imposed
certain regularity conditions on the sequence of constants together with restrictions
on the dependence structure of the innovations. Various invariance principles on this
line are given for example in [23, 24] and also in [15] among others.

In this paper we shall discuss the case when the coefficients aj are absolutely
summable,

(2)
∑
i∈Z

|ai| < ∞.
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This case is referred to as short memory, or sometimes as short range dependence.
For this situation [11] proved that the central limit theorem (CLT) is preserved
under the linear transformation, i.e. the CLT for partial sums of innovations S

(ξ)
n =∑n

j=1 ξj , properly normalized, implies the CLT for Sn under practically the same
normalization. This raises the question whether the invariance principle is also
preserved under the linear transformation with short memory, that is whenever it
holds for the innovations then it also holds for the corresponding linear process.

There are numerous papers dealing with this problem for particular time se-
ries with short range dependence and dependent innovations. All these results are
asserting that if the innovations have a certain dependence structure, (particular
classes of mixing, associated sequences, negative associated sequences, martingales,
martingale-like sequences and so on) and satisfy the invariance principle, so does
the short range dependent linear process.

To give an example of a result of this type, we mention the well known case when
the innovations form a stationary martingale difference sequence [4, 9]. Then, the
invariance principle holds,

(3)
S[nt]√

n
=⇒ ηAW (t) where A =

∑
i∈Z

ai , Sk =
k∑

j=1

Xj ,

where η is a random variable measurable with respect to the invariant σ–field of
the stationary sequence (ξi)i∈Z , denoted by I, W = {W (t) ; 0 ≤ t ≤ 1} is a
standard Brownian motion independent of the invariant σ–field I, [x] denotes the
integer part of x and =⇒ denotes weak convergence in D[0, 1], the space of cadlag
functions on [0, 1] endowed with the uniform topology.

In this paper we show that for the short range dependent case the dependence
structure is not important and, whenever the innovations satisfy the invariance
principle the corresponding short range dependent process is also convergent, pro-
vided a certain condition is imposed to E(max1≤j≤n |

∑j
k=1 ξk|). We also address

the question of the Lp− invariance principle (p ≥ 1) that is

(4) E( sup
0≤t≤1

|
S[nt]√

n
− ηAW (t)|p) → 0 as n → ∞

and we show that if the innovations satisfy an Lp− invariance principle so does the
linear process.

For dealing with this problem and other related facts, we develop first a general
device to compare the linear combination of processes to one of the initial processes.
Another general result will allow to prove the weak convergence for a linear com-
bination of processes by studying only a finite sum. The theory is not restricted to
real valued stochastic processes and it can be used for random fields and Hilbert
and Banach space valued processes. We then apply the general results to study
the asymptotic behavior of linear processes with short memory and to extend the
celebrated projective criterion of Hannan [9] to the nonstationary case. Various
examples will comment on the optimality of our results. We shall also point out
that, for a more general linear transformation with short memory, the invariance
principle for innovations does not imply in general, the invariance principle for the
linear process.

In this paper we shall use the following notations. The space B(T ) of bounded
functions on T ⊂ Rd is equipped with the supremum norm ‖x‖T = supt∈T |x(t)|.
The notation ‖X‖ =

√
E(X2) stays for the L2−norm. As already specified in
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(3), the notation Sn = X1 + · · · + Xn will be reserved for the partial sums of
the key sequence of interest (Xi)i. Throughout the paper, without changing the
distributions we shall redefine the innovations on a probability space rich enough
to support a standard Brownian motion.

2. The general device

A well-known powerful tool in the proofs of weak convergence results consists of
approximating the underlying sequence (Wn) by a double indexed sequence (W (m)

n ),
such that for any m, the sequence W

(m)
n → W (m) and then, we deduce the existence

of the limit of the original sequence (Wn) by studying the limit of (W (m)) as
m → ∞. (see for example, Theorem 3.2. in [1]).

In this section we shall establish two variants of this type of approximation,
aimed to study the linear combination of stochastic processes.

First, we present a coupling type approximation lemma. We consider a process
that can be expressed as a linear combination with short memory of stochastic
processes, and approximate it by an individual summand. The context is general
enough to be applied to processes indexed by countable sets allowing also the treat-
ment of random fields and, just a modification of language will lead us to higher
dimensional spaces and operators.

Lemma 1. Let ψ(n) = ψ(n)(t), t ∈ T, n = 1, 2, . . . be a sequence of stochastic
processes that admits the following representation

(5) ψ(n) =
∑
j∈I

ajU
(n)
j with

∑
j∈I

|aj | < ∞,

where I is a countable set, (aj)j∈I is a real valued sequence and U
(n)
j = U

(n)
j (t) ,

t ∈ T , j ∈ I, n = 1, 2, . . . is a double sequence of stochastic processes, satisfying the
following conditions.

(6) sup
n

sup
j

E(‖U (n)
j ‖T ) < ∞

and, for each pair i, j ∈ I,

(7) ‖U (n)
i − U

(n)
j ‖T → 0 in probability as n → ∞.

Fix e ∈ I. Then, with the notation A =
∑

j∈I aj , we have

‖ψ(n) − AU (n)
e ‖T → 0 in probability as n → ∞.

Moreover, if for a certain p ≥ 1 we have supn supj E(‖U (n)
j ‖p

T ) < ∞ and the
convergence in (7) is in Lp then

E(‖ψ(n) − AU (n)
e ‖p

T ) → 0 as n → ∞.

Proof of Lemma 1. First we find a sequence (Im)m≥0 of subsets of I such that
I0 = ∅, I = ∪Im, the set Im contains exactly m elements and Im ⊂ Im+1. Observe
that for any positive integer m and e ∈ I,

ψ(n) − AU (n)
e =

∑
j∈I

aj(U
(n)
j − U (n)

e )

=
( ∑

j∈I−Im

aj(U
(n)
j − U (n)

e )
)

+
( ∑

j∈Im

aj(U
(n)
j − U (n)

e )
)
.
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Hence, by the triangle inequality,

‖ψ(n) − AU (n)
e ‖T ≤

( ∑
j∈I−Im

|aj |(‖U (n)
j ‖T + ‖U (n)

e ‖T

)

+
(∑

j∈I

|aj |
)(

m max
j∈Im

‖U (n)
j − U (n)

e ‖T

)

and so, for ε > 0,

P (‖ψ(n) − AU (n)
e ‖T ≥ ε) ≤ 4

ε

( ∑
j∈I−Im

|aj |
)

sup
n

sup
j

E(‖U (n)
j ‖T )

+ P
(
m

∑
j∈I

|aj |max
j∈Im

‖U (n)
j − U (n)

e ‖T >
ε

2

)
.

We let first n → ∞, and notice that by condition (6) the second term vanishes.
Then, we let m → ∞ and the first term vanishes because

∑
j∈I−Im

|aj | → 0 as m → ∞.

If the convergence in (7) is in Lp and supn supj E(‖U (n)
j ‖p

T ) < ∞ then, obviously,
the convergence in the conclusion of the last part of this lemma holds also in Lp.

To comment on the conditions used in this lemma, we shall see later on that
condition (6) is in a particular context also a necessary condition. To verify condition
(7) one needs a certain linear structure of the process U

(n)
j . In our next lemma,

we avoid this condition. Moreover we show that for stochastic processes satisfying
condition (5) the asymptotic behavior is then identified by the limiting behavior of
roughly a sum of m sequences, where m is arbitrary fixed positive integer.

Lemma 2. Let ψ(n) = ψ(n)(t) , t ∈ T = [0, 1]d, n = 1, 2, . . . be a sequence of
stochastic processes satisfying conditions (5) and (6). Let I = ∪mIm for some
sequence of increasing subsets Im of I and assume that for each m,

(8)
∑

j∈Im

ajU
(n)
j =⇒ Zm as n → ∞

in C[0, 1]d (or in D[0, 1]d endowed with the uniform norm) where Zm is a continuous
stochastic process. Then, there exists a limiting stochastic process Zm =⇒ Z as
m → ∞ in C[0, 1]d and ψ(n) =⇒ Z as n → ∞ in C[0, 1]d.

Proof of Lemma 2. Let
ψ(n)

m =
∑

j∈Im

ajU
(n)
j

Notice that for h ≥ m,

E(‖ψ(n)
h − ψ(n)

m ‖T ) ≤ 2
( ∑

j∈I−Im

|aj |
)
(sup

n
sup

j
E(‖U (n)

j ‖T )) → 0

as h ≥ m → ∞.
Whence, by the Fatou lemma, the sequence of stochastic processes (Zm)m∈N

satisfies the Cauchy criterion

E(‖Zm − Zh‖T ) → 0 as m, h → ∞.
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Therefore, (Zm)m∈N has a limiting process Z that has sample paths in C[0, 1]d.
We also have

E(‖ψ(n) − ψ(n)
m ‖T ) ≤ 2

( ∑
j∈I−Im

|aj |
)
(sup

n
sup

j
E(‖U (n)

j ‖T )) → 0 as m → ∞

and thus, by Theorem 3.2. in Billingsley (1999), ψ(n) =⇒ Z as n → ∞ which proves
the lemma.

3. Examples

An i.i.d. example.

We begin by showing that somewhat surprisingly, condition (6) is not just a tech-
nical condition and it is necessary in some situations.

Proposition 3. Let (U (n)
j )j,n∈N be a double array of i.i.d. non-negative random

variables with finite mean, E(U (n)
1 ) < ∞. The following conditions are equivalent:

(i) U
(n)
1 →P 0 as n → ∞ and supn E(U (n)

1 ) < ∞.
(ii) For any non-negative sequence (aj)j∈N

if
∑
j∈N

aj < ∞ then
∞∑

j=1

ajU
(n)
j →P 0 as n → ∞.

Proof. Implication (i) → (ii) follows from Lemma 1. Now, to prove implication
(ii) → (i), we notice that for the fixed n, (U (n)

j )j∈N is an i.i.d. sequence and, the
Kolmogorov three series theorem then implies that

for any non-negative sequence (aj)j∈N with
∑
j∈N

aj < ∞

we have,
∞∑

j=1

Eg(ajU
(n)
j ) → 0 as n → ∞.

where g(x) = xI(x≤1) + I(I>1). Since for any positive a

Eg(aξ) = a

∫ 1/a

0

P (ξ ≥ t)dt

then,

∞∑
j=1

Eg(ajU
(n)
j ) =

∞∑
j=1

∫ 1/aj

0

P (U (n)
1 ≥ x)ajdx

=
∞∑

j=1

∫ ∞

0

P (U (n)
1 ≥ x)I(x≤1/aj)ajdx

=
∫ ∞

0

P (U (n)
1 ≥ x)ta(x)dx
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where

ta(x) =
∞∑

j=1

I(x≤1/aj)aj .

On the other hand, for any non-negative non-increasing function t(x) such that
t(x) ↓ 0 we can find aj ↓ 0 such that

t(x) ≤ ta(x) , for all x ≥ x0.

and so, for any non-negative non-increasing function t(x) such that t(x) ↓ 0 we have

(9)
∫ ∞

0

P (U (n)
1 ≥ x)t(x)dx → 0 as n → ∞

Now, we proceed by contradiction and, without loss of generality, assume that

(10) E(U (n)
1 ) → ∞ as n → ∞.

Then, we can find two increasing sequences nk ↗ ∞, Mk ↗ ∞ and a positive
sequence Qk → ∞ as k → ∞ such that

∫ Mk

Mk−1

P (U (nk)
1 ≥ x)dx ≥ Qk.

Now, we take t(x) = 1/Qk on the half open interval x ∈ (Mk−1, Mk] and t(x) = 0
for x ≤ x0. Then,

∫ ∞

0

P (U (nk)
1 ≥ x)t(x)dx ≥ 1

Qk

∫ Mk

Mk−1

P (U (nk)
1 ≥ x)dx ≥ 1 �→ 0 as k → ∞

and so (10) contradicts (9).

Linear stationary processes

Let (ξi)i∈Z be a stationary sequence with E(|ξ0|) < ∞ and E(ξ0) = 0 and let I be
its invariant σ–field. Define

(11) Xk =
∞∑

j=−∞
ajξk−j and assume

∞∑
i=−∞

|ai| < ∞.

In addition to the notations defined in (3), we remind the notation

S
(ξ)
k =

k∑
j=1

ξj .

Our next proposition allows to compare the partial sums of the innovations to
the partial sums of the linear process with short memory.

Proposition 4. Assume the representation (11) is satisfied and in addition, there
is a constant C > 0 and a sequence of positive reals bn → ∞ such that for all n,

(12) E

(
max

1≤j≤n
|S(ξ)

j |
)
≤ Cbn
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and

(13) b−1
n max

1≤j≤n
|ξj | →P 0 as n → ∞ .

Then,

(14)
1
bn

( max
1≤j≤n

|Sj − AS
(ξ)
j |) →P 0 as n → ∞ .

If the innovations are assumed in Lp, p ≥ 1, (12) is replaced by E(max1≤j≤n |S(ξ)
j |p)

≤ Cbp
n and the convergence in (13) holds in Lp , then

1
bp
n
E( max

1≤j≤n
|Sj − AS

(ξ)
j |p) → 0 as n → ∞ .

Proof. This proposition follows from Lemma 1 applied to the representation

1
bn

S[nt] =
∞∑

i=−∞
aiU

(n)
i where U

(n)
i =

1
bn

[nt]∑
k=1

ξk−i

so that conditions (5) and (6) follow from (11) and (12), while the convergence in
(7) follows from (13).

From this proposition, we derive

Theorem 5. Assume that representation (11) and condition (12) are satisfied.
Moreover assume that the innovations satisfy the invariance principle b−1

n S
(ξ)
[nt] =⇒

ηW (t) as n → ∞ where η is I–measurable and W is a standard Brownian mo-
tion [0, 1] independent on I. Then the linear process also satisfies the invariance
principle, i.e. b−1

n S[nt] =⇒ ηAW (t) as n → ∞ .

Proof. Notice that the convergence in probability in (13) follows from the invari-
ance principle b−1

n S
(ξ)
[nt] =⇒ ηW (t) as n → ∞ , since the modulus of continuity is

convergent to 0. All the conditions in Proposition 4 are then satisfied which imply
the conclusion of the theorem.

From Theorem 5 we easily derive the following useful consequence.

Corollary 6 (Lp-invariance principle). Assume the representation (11) holds
and p ≥ 1. Then,

If E( sup
0≤t≤1

|b−1
n S

(ξ)
[nt] − ηW (t)|p) → 0 then E( sup

0≤t≤1
|b−1

n S[nt] − ηAW (t)|p) → 0

as n → ∞.

Discussion

Applications

Theorem 5 and its Corollary 6 work for many dependent structures such as surveyed
in [3, 6, 17], Merlevède, Peligrad and Utev (2006). Various invariance principles can
be extended from the original sequence to the linear process with short memory.
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Here we mention some traditional and also recently developed dependence condi-
tions for innovations whose partial sums satisfy both a maximal inequality and the
invariance principle and therefore Theorem 5 applies.

Let us assume that (ξi)i∈Z is a stationary sequence with E(ξ2
0) < ∞ and E(ξ0) = 0

and let Fb
a be a σ–field generated by ξi with indexes a ≤ i ≤ b. For all the structures

bellow the family (max1≤k≤nS2
k/n)n≥1 is uniformly integrable and the conclusion

of Corollary 6 holds with bn =
√

n and with p = 2.
(i) Hannan [9], see also its extension to Hilbert space in [4]:

∞∑
n=1

‖P0(ξn)‖ < ∞ and E(ξ0|F−∞) = 0 a.s.

where Pk(X) = E(X|Fk) − E(X|Fk−1) is the projection operator.
(ii) Newman and Wright [18]: (ξi)i∈Z is a negatively associated sequence or, posi-
tively associated sequence with

∞∑
k=1

cov(ξk, ξ0) < ∞.

(iii) Doukhan, Massart and Rio [7]:

∞∑
k=1

∫ α̃(k)

0

Q2(u)du < ∞.

where Q denotes the cadlag inverse of the function t → P (|ξ0| > t) and α̃(k) =
α(F0,Fn

n ) = sup{|P (A∩B)−P (A)P (B)| ; A ∈ F0, B ∈ Fn
n} is the strongly mixing

coefficient.
(iv) Dedecker and Rio [5]:

E(X0Sn|F0) converges in L1 .

(v) Peligrad and Utev [20], by developing Maxwell and Woodroofe[12]:

∞∑
n=1

‖E(Sn|F0)‖2

n3/2
< ∞.

(vi) Peligrad, Utev and Wu [22], which guarantees the Lp-invariance principle: For
p ≥ 2.

∞∑
n=1

‖E(Sn|F0)‖p

n3/2
< ∞.

Remarks

(a) If E(ξ2
0) < ∞ and bn ≥ √

n, then condition (13) automatically holds.
(b) If the sequence of innovations is ergodic then there is a nonnegative constant

σ such that η = σ a.s.
(c) The set of indexes Z can be replaced by Zd where d is a positive integer

allowing for the treatment of random fields.
(d) A natural extension is to consider innovations with values in functional spaces

that also facilitate the study of estimation and forecasting problems for several
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classes of continuous time processes [2]. The linear processes are still defined
by the formula (1) with the difference that now, the innovations (ξk)k∈Z are
Hilbert space H-valued random elements and the sequence of constants is
replaced by the sequence of bounded linear operators {ak}k∈Z from H to H.
In [13], was treated the problem of the central limit theorem for this case
under the summability condition

∞∑
j=−∞

‖aj‖L(H) < ∞,

where ‖aj‖L(H) denotes the usual operators. It was discovered that, if this
condition is not satisfied, then the central limit theorem fails even for the case
of independent innovations. The approach developed in this paper shows that
the central limit theorem results stated can be strengthened to the invariance
principle (some results in this direction for strongly mixing sequences are
established in [14]).

Projective criteria

In this section we apply the general devise in Lemma 2 to derive a non-stationary
projective criteria. Let X be an integrable random variable and {Fj , j ∈ Z} be a
non-decreasing filtration of σ-fields, that is Fj ⊆ Fi for all j ≤ i. As before, define
the projection operator by

Pk(X) = E(X|Fk) − E(X|Fk−1).

The next proposition gives a linear representation of the process n−1/2S[nt] in
terms of a linear combination of processes involving the sequence of projections.

Proposition 7. Let (Xi)i∈Z be a square integrable centered sequence which is
adapted to the non-decreasing filtration (Fi)i∈Z. Let F−∞ =

⋂
i∈Z

Fi Assume that
for all k = 1, 2, . . .,

(15) E(Xk|F−∞) = 0 a.s.

and for all k = 1, 2 . . . and j = 0, 1, 2, . . .

(16) ‖Pk−j(Xk)‖ ≤ pj where pj > 0 and
∞∑

j=0

pj < ∞ .

Then, the process n−1/2S[nt] satisfies the representation (5) with

ai = pi and U
(n)
k = n−1/2

[nt]∑
i=1

Pk−i(Xk)p−1
i

and so (n−1/2S[nt]) satisfies the invariance principle when (8) holds.

Proof. From conditions (15) and (16) it follows the following martingale difference
decomposition

(17) Xk =
∞∑

i=0

Pk−i(Xk)
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which proves (5).
On the other hand, to check condition (6) we apply the Doob L2–maximal in-

equality

E

(
max

1≤j≤n

∣∣∣
j∑

k=1

Pk−i(Xk)
∣∣∣2

)
≤ 4

n∑
k=1

‖Pk−i(Xk)‖2 ≤ 4(
√

n)2(pi)2

which implies condition (6) and completes the proof of this proposition by Lemma 2.

If we impose more restrictive degrees of stationarity the conclusion can be
strengthen.

Proposition 8. Let (Xi)i∈Z be a centered, uniformly square integrable sequence
of random variables, adapted to the non-decreasing filtration (Fi)i∈Z. Assume that
conditions (15) and (16) are satisfied and in addition for each t ∈ [0, 1], and all
m = 0, 1, 2, . . .

(18)
1
n

[nt]∑
j=1

(Pj(Sj+m−1 − Sj−1))2 →P ηmB(t) as n → ∞

where B(t) is a non-random non-decreasing function. Then, there is a random
variable η such that n−1/2S[nt] =⇒ ηB(t)W (t) where W is a standard Brownian
motion independent of η.

Proof. We employ the martingale decomposition and then, we use a standard result
for martingales. By Proposition 7, we know that the limiting behavior of n−1/2S[nt]

is determined by the limiting behavior of the partial sum process

n−1/2

[nt]∑
k=1

Yk where Yk = Xk − E(Xk|Fk−m),

where m is a fixed arbitrary positive integer. Notice that E(Yj |Fj−m) = 0 almost
surely and so the following variables are properly defined

θk =
∞∑

j=k

E(Yj |Fk) =
k+m−1∑

j=k

E(Yj |Fk) = Yk + Qk a.s.

In particular, it is easy to see that

E(θk|Fk−1) = −Yk−1 +
∞∑

j=k−1

E(Yj |Fk−1) = −Yk−1 + θk−1

and we derive the following coboundary decomposition

S(Y )
n =

n∑
i=1

Yi = Mn + (Q0 − Qn) where Mn =
n∑

k=1

(θk − E(θk|Fk−1)).

By construction and the conditions of the proposition,

n−1/2 max
t∈[0,1]

|Q0 − Q[nt]| →P 0 as n → ∞
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and so, the limiting behavior of the partial sum process n−1/2S
(Y )
[nt] is determined

by the limiting behavior of the normalized discrete time martingale n−1/2M[nt],
t ∈ [0, 1] with uniformly square integrable martingale differences

θk − E(θk|Fk−1) = Pk(Sk+m−1 − Sk−1) .

Then the proposition follows easily by standard results for the functional central
limit theorem for martingales (see [8], or [1]).

We now define a stationary filtration as in [12], that is we assume that Xi = g(Yj ,
j ≤ i) where (Yi)i∈Z is an underlying stationary sequence. Denote by I its invariant
sigma field and by (Gi)i∈Z an increasing filtration of sigma fields Gi = σ(Yj , j ≤ i).
For the case when for every i, ξi = Yi, and g(Yj , j ≤ i) = Yi, then Gi is simply
the sigma algebra generated by ξj , j ≤ i. From the above Proposition 8, by using
the stationary ergodic theorem we easily derive the stationary projective criterion
contained in the next theorem.

We shall derive a class of invariance principles for linear type statistics. The
central limit theorem was treated in [19, 21].

Theorem 9. Let (Xi)i∈Z be a stationary sequence with E(X0) = 0 and E(X2
0 ) < ∞

and stationary filtration ( Gi)i∈Z. Let G−∞ =
⋂

i∈Z
Gi. Assume that

E(X0|G−∞) = 0 a.s. and
∑
i≥1

‖P0(Xi)‖2 < ∞ .

Then, there exists an I–measurable positive random variable η such that for any
Lipschitz function g,

n−1/2

[nt]∑
i=1

g(i/n)Xi =⇒ ηBg(t)W (t) as n → ∞

where W is a standard Brownian motion independent of η and Bg(t) =
√∫ t

0
g2(x)dx.

Proof. Since g(x) is Lipschitz, therefore bounded, by Proposition 8, we have only
to check condition (18) that reduces to establishing the convergence

(19)
1
n

[nt]∑
j=1

g2(j/n)(Pj(Sj+m−1 − Sj−1))2 →P ηm

∫ t

0

g2(x)dx

as n → ∞. Let

G(j/n) = g2(j/n) , ψj = Pj(Sj+m−1 − Sj−1).

Notice that by the Birkhoff-Khintchine ergodic theorem there exists the limit

1
n

n∑
j=1

ψj → ηm a.s., as n → ∞.

On the other hand, because the function G(x) = g2(x) is bounded and continuous,
therefore Riemann integrable, we derive

1
n

[nt]∑
j=1

G(j/n) →
∫ t

0

g(x)2dx as n → ∞,
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and, in order to prove (19) it is enough to show that

(20)
1
n

[nt]∑
j=1

G(j/n)(ψj − ηm) → 0 a.s., as n → ∞.

Let

Uj =
j∑

i=1

(ψi − ηm)

and notice that

(21) sup
j

(|Uj |/j) < ∞ and sup
j≥N

(|Uj |/j) → 0 as N → ∞

almost surely.
We easily get the representation

[nt]∑
j=1

G(j/n)(ψj − ηm) = G([nt]/n)U[nt] +
[nt]−1∑
j=1

(G(j/n) − G([j + 1]/n))Uj .

Clearly for any fixed t, G([nt]/n)U[nt]/n → 0 almost surely. On the other hand, since
g is Lipschitz, so is G = g2. Therefore there is a constant K such that |G(j/n) −
G([j − 1]/n)| ≤ K/n and thus

∣∣∣∣∣∣
1
n

[nt]−1∑
j=1

(G(j/n) − G([j + 1]/n))Uj

∣∣∣∣∣∣ ≤
1
n

n∑
j=1

j|G(j/n) − G([j + 1]/n)||Uj/j|

≤ 1
n

sup
j

|Uj/j|


[

√
n]∑

j=1

Kj

n


 +

1
n

sup
j≥√

n

|Uj/j|


 n∑

j=1

Kj

n




→ 0 as n → ∞

almost surely, which proves (20) and thus completes the proof of the theorem.

We notice that for stationary sequences, when the filtration is not stationary
the result is not true if we only assume the summability of projective norms. We
can have the decomposition in (5) but condition (6) will not be satisfied and the
invariance principle will fail.

Proposition 10. There exists a stationary Gaussian positively associated linear
process

Xk =
∞∑

i=0

tiYk−i

where ti ≥ 0 and Yi is an i.i.d. sequence of standard normal Gaussian variables and
a non-decreasing filtration Fk such that

(i) Xk is adapted to Fk.
(ii) E(Xk|F−∞) = 0 a.s. for all k.
(iii)

sup
k≥0

∑
j∈Z

‖Pj(Xk)‖ < ∞.



30 M. Peligrad and S. Utev

(iv) σ2
n = Var(Sn) is not regularly varying with index 1, more exactly, there exists

a positive c and a subsequence kn → ∞ such that Var(Skn) ≥ ck2
n/ ln4(kn) .

(v) σ−1
n S[nt] does not satisfy the invariance principle, i.e does not converge to the

standard Brownian motion.

Proof. Let (Yk)k∈Z be an i.i.d. sequence of standard normal variables. Let Gi =
σ(Yj , j ≤ i), G∞ = σ(Yj , j ∈ Z). For a positive integer r, let

nr = 4r and ur = (nr+1 − nr)−1/2r−4 = 1/(3r42r).

We take
tj = ur when nr < j ≤ nr+1, r = 1, 2, . . .

We also take ti = 0 when i < n1. Next, as a filtration we take

Fi = G−nr when − nr+1 < i ≤ −nr, r = 1, 2, . . .

and in addition
Fi = G∞ when i ≥ −n1.

We notice first that Xk is Fk–measurable and so the sequence (Xk)k∈Z is adapted
to the filtration (Fk)k∈Z, which proves (i).

Clearly,
F−∞ =

⋂
i∈Z

Fi =
⋂
r∈N

G−nr = G−∞,

therefore,
E(Xk|F−∞) = E(Xk|G−∞) = 0 a.s.

which proves (ii).
Now, let us compute the projection operator. For i ≥ −n1, we have for all Xk,

since they are G∞–measurable,

E(Xk|Fi) = E(Xk|G∞) = Xk a.s.

implying that, for i ≥ −n1,

Pi(Xk) = E(Xk|Fi) − E(Xk|Fi−1) = 0 a.s.

Now, for i such that −nr+1 < i − 1 < i ≤ −nr,

Pi(Xk) = E(Xk|Fi) − E(Xk|Fi−1)
= E(Xk|G−nr ) − E(Xk|G−nr ) = 0 a.s.

Finally, for i such that −nr+1 = i − 1 < i ≤ −nr,

Pi(Xk) = E(Xk|Fi) − E(Xk|Fi−1) = E(Xk|G−nr ) − E(Xk|G−nr+1)

= E

( ∞∑
j=0

tjYk−j |G−nr

)
− E

( ∞∑
j=0

tjYk−j |G−nr+1

)

=
( ∞∑

j=k+nr

tjYk−j

)
−

( ∞∑
j=k+nr+1

tjYk−j

)

=
k+nr+1∑

j=k+nr+1

tjYk−j a.s.
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and hence, for such an i,

‖Pi(Xk)‖2
2 =

k+nr+1∑
j=k+nr+1

t2j

By construction, the sequence tj is non-increasing and so

‖Pi(Xk)‖2
2 ≤

nr+1∑
j=nr+1

t2j = (nr+1 − nr)u2
r = r−8

which implies that

sup
k≥0

∑
j

‖Pj(Xk)‖2 ≤
∞∑

r=1

r−4 < ∞

proving (iii).
To compute the variance, we observe that

Var(Sn) =
∞∑

i=−∞

( n∑
k=1

tk−i

)2

.

So, for n = nr+1 , −[nr+1/3] ≤ i ≤ 0 and [nr+1/2] ≤ k ≤ nr+1, we have nr < k − i
and therefore

Var(Snr+1) ≥
0∑

i=−[nr+1/3]

( nr+1∑
k=[nr+1/2]

tk−i

)2

≥
0∑

i=−[nr+1/3]

( nr+1∑
k=[nr+1/2]

ur

)2

≥ (urnr+1)2nr+1/12 =
( 4r+1

3r42r

)2 4r+1

12
=

42(r+1)

9r8
=

n2
r+1

9r8

and so
Var(Snr+1) ≥ n2

r+1/(9 log4(nr+1))

which proves (iv). We conclude that the variance is not regularly varying with index
1. It is well known however that the weak convergence of σ−1

n S[nt] to W (t), standard
Brownian motion, implies that variance is regularly varying with index 1 and then
the invariance principle cannot hold.
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