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Stochastic integrals and asymptotic

analysis of canonical von Mises statistics

based on dependent observations

Igor S. Borisov1,∗ and Alexander A. Bystrov1,†

Sobolev Institute of Mathematics

Abstract: In the first part of the paper we study stochastic integrals of a
nonrandom function with respect to a nonorthogonal Hilbert noise defined on
a semiring of subsets of an arbitrary nonempty set.

In the second part we apply this construction to study limit behavior of
canonical (i.e., degenerate) Von Mises statistics based on weakly dependent
stationary observations.

1. Stochastic integrals of non-random kernels for non-orthogonal
noises.

1.1. Introduction and statement of the main result.

Let {Ω, Θ,P} be a probability space, X be an arbitrary nonempty set, and M be
a semiring with identity of its subsets (i.e., X ∈ M and, for all A, B ∈ M, we
have A ∩ B ∈ M and A \ B =

∑
i≤n Ci, where Ci ∈ M). We call a random process

{µ(A), A ∈ M} an elementary stochastic measure or a noise if µ(A) ∈ L2(Ω,P) for
all A ∈ M (i.e., µ(·) is a Hilbert process) and (N1) µ(A1∪A2) = µ(A1)+µ(A2) a.s.
if only A1 ∩ A2 = ∅ and A1 ∪ A2 ∈ M.

A noise µ is called orthogonal if
(N2) Eµ(A1)µ(A2) = m0(A1 ∩ A2),
where m0 a finite measure (the structure function) on σ(M) [14].

Typical Examples.

(i) Consider the following semiring of subsets of a closed interval [0, T ]:

M = {(t, t + δ]; 0 < t < t + δ ≤ T}
⋃

{[0, δ]; 0 < δ ≤ T}.

A random process ξ(t) defined on [0, T ] generates the noise

µ((t, t + δ]) := ξ(t + δ) − ξ(t),

where, in the case t = 0, this formula defines the measure of the closed interval [0, δ].
If ξ(t) is a process with independent increments then µ is an orthogonal noise.
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(ii) To construct multiple stochastic integrals the semiring Mk := M× · · · ×M

is considered, where M is defined above, and the following multiple noise is defined
by increments of a random process ξ(t):

µ((t, t + δ]) =
∏
i≤k

(ξ(ti + δi) − ξ(ti)),

where (t, t + δ] = (t1, t1 + δ1] × · · · × (tk, tk + δk].
It worth noting that, in general, in the second example the noise µ does not satisfy
condition (N2) even if the process ξ(t) has independent increments.

We note some significant results in the area under consideration:

I. Univariate stochastic integrals based on orthogonal noises:
N. Wiener, 1923.
A. N. Kolmogorov, H. Cramér, 1940.
I. I. Gikhman and A. V. Skorokhod, 1977.

II. Multiple stochastic integral with a multiple noise generated by a process with
independent increments:
N. Wiener, 1938, 1958.
K. Itô, 1951.
P. Major, 1981.

III. Univariate stochastic integral with a noise generated by increments of a Hilbert
process on the real line (nonorthogonal noise):
M. Loève, 1960.
S. Cambanis and S. Huang, 1978.
V. Pipiras and M. S. Taqqu, 2000.

IV. Multiple stochastic integral with a multiple noise generated by increments of a
Gaussian process on the real line (nonorthogonal noise):
S. Cambanis and S. Huang, 1978.
A. Dasgupta and G. Kallianpur, 1999.

General Case. We begin to study stochastic integrals with nonorthogonal noises
defined on semirings of subsets of an arbitrary measurable space. We follow the
generality considered in [14], where general stochastic integrals with orthogonal
noises were studied. Complete proofs of some statements in the first Section of the
paper are published in [4].

Introduce the function m(A × B) := Eµ(A)µ(B) indexed by elements of M2.

Main Assumption. The function m is a finite σ-additive signed measure (cova-
riance measure) on M2.

Example. Let Φ(t, s) := Eξ(t)ξ(s) be the covariance function of a centered Hilbert
random process ξ(t) defined on a closed interval [0, T ]. We say that the function
Φ(t, s) possesses a bounded variation if, for a constant C,

sup
{ti,si}

∑
i,j

|∆Φ(ti, sj)| ≤ C,

where ∆Φ(ti, si) := Φ(ti+1, sj+1) + Φ(ti, sj) − Φ(ti+1, sj) − Φ(ti, sj+1) (the double
difference); 0 = t0 < t1 < · · · < tn = T, 0 = s0 < s1 < · · · < sl = T are arbitrary
finite partitions of the interval [0, T ], and the supremum is taken over all such
partitions (see also [9]).
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Proposition 1. If Φ(t, s) has a bounded variation then the Main Assumption for
the corresponding covariance measure is valid

It is well known that any measure of such a kind can be uniquely extended onto
σ(M2). Moreover, m = m+ − m− (Hahn–Jordan decomposition), where m+ and
m− are nonnegative finite measures. Put |m| := m+ + m− (the total variation
measure).

Introduce the space of σ(M)-measurable functions:

S := {f :
∫

X2
f(t)f(s)m(dt × ds) < ∞}.

For any σ(M)-measurable functions f, g ∈ S consider the bilinear symmetric func-
tional

d(f, g) :=
∫

X2
f(t)g(s)m(dt × ds).

It is clear that d(f, f) ≥ 0. But, in general, the equation d(f, f) = 0 has not only
zero solution. Denote ‖f‖ := d(f, f)1/2 (seminorm). If S is the factor space w.r.t.
to the condition d(f, f) = 0 then S is an Euclidean space. But, in general, S may
be incomplete (i.e., is not Hilbert) ([22]).

Notice that the space S can also defined in such a way:

S = {f :
∫

X2
|f(t)f(s)||m|(dt × ds) < ∞}.

But the functional ‖f‖∗ :=
(∫

X2 |f(t)f(s)||m|(dt × ds)
)1/2 may not satisfy the tri-

angle inequality (‖f‖∗ is a seminorm iff |m| is nonnegatively defined).
For an orthogonal noise µ with a structure function m0 the following obvious

equality chain is valid: ‖f‖ = ‖f‖∗ = ‖f‖L2(X,m0).

Theorem 1. Let f ∈ (S, ‖ · ‖). Then there exists a sequence of step functions

(1) fn(x) :=
∑
k≤n

ckI(x ∈ Ak),

where ck ∈ R, Ak ∈ M, converging in (S, ‖ · ‖) to f as n → ∞. Moreover, the
sequence

(2) η(fn) :=
∑
k≤n

ckµ(Ak)

mean-square converges to a limit random variable η(f) which does not depend on
the sequence of step functions {fn}.
Proof. (For detail see [4]). Let {fn} be a sequence of step functions of the form (1)
converging to f in the seminorm ‖ · ‖. One can prove that the sequences of such a
kind exist. Then

‖η(fn) − η(fk)‖2
L2(Ω,P) =

∑
i,j

(c(n)
i − c

(k)
i )(c(n)

j − c
(k)
j )m(Ai × Aj)

≡ ‖fn − fk‖2 → 0

as n, k → ∞ due to the triangle inequality (i. e., {fn} is a Cauchy sequence in S).
Without loss of generality, we may assume here that the step functions fk and fn

are defined on a common partition {Ai}. Hence {η(fn)} is a Cauchy sequence in
the Hilbert space L2(Ω,P). Thus, in this Hilbert space, there exists a limit random
variable η(f) for the sequence {η(fn)}.
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Remark 1. Since, in general, the space S is incomplete then, in this case, one
cannot construct an isometry (one-to-one mapping preserving distances) between
the L2-closed linear span of all integral sums and S ([22]). Existence of such isometry
is a key argument of the classical construction of stochastic integrals with orthogonal
noises.

Remark 2. The generality in Theorem 1 allows us to define stochastic integrals
both for the univariate and multivariate cases studied by the predecessors mentioned
above. In the case of Gaussian noises generated by arbitrary centered Gaussian
processes on the real line, our construction differs from that in [9], where multiple
stochastic integrals are defined by the corresponding tensor power of the reproduc-
ing Hilbert space corresponding to the above-mentioned initial Gaussian process.
However, one can prove that, to define these multiple integrals in the Gaussian
case, the descriptions of the corresponding kernel spaces in these two constructions
coincide.

Remark 3. If we consider the introduced-above multiple stochastic integral with
the product–noise generated by a White noise with a structure function m0, and,
moreover, the kernel vanishes on all diagonal subspaces then our construction co-
incides with the classical Wiener – Itô multiple construction. Notice that, in this
construction, for the kernels with zero values on all diagonal subspaces, there exists
the isometry mentioned in Remark 1. In this case, the space S coincides with the
Hilbert space L2(Xk, mk

0), where k is the dimension of the multiple integral.

1.2. Infinitesimal analysis of covariance measures.

We now describe some function kernel spaces to define the stochastic integrals in
Theorem 1. We start with the univariate construction.

1.2.1. Univariate stochastic integral.

Consider a centered random process ξ(t) with a covariance function Φ(t, s). In all
the examples of Section I we put X = [0, T ]. This process generates the elementary
stochastic measure µ(dt) := dξ(t) introduced above.

Regular covariance functions. In the above-mentioned definition of the double
difference of the covariance function Φ we set tj+1 := tj + δ and sj+1 := sj + δ.
Assume that, for all δ > 0 and tj , sj , tj + δ, sj + δ ∈ [0, T ],

∆Φ(ti, si) =
∫ ti+δ

ti

∫ si+δ

si

q(t, s)λ(dt)λ(ds),

where λ is an arbitrary σ-finite measure. If∫
X2

|f(t)f(s)q(t, s)|λ(dt)λ(ds) < ∞

then f ∈ S (i.e.,
∫
X

f(t)dξ(t) is well defined.)

For example, the regular FBM has the covariance function

Φ(t, s) =
1
2
(t2h + s2h − |t − s|2h),
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where h ∈ (1/2, 1]. In this case, q(t, s) := h(2h − 1)|t − s|2h−2, t �= s, and λ(dt) :=
dt is the Lebesgue measure. Moreover, in this case one can prove the embedding
L1/h(X, dt) ⊆ S. ([22].)

Irregular covariance functions. Consider the class of factorizing covariance
functions

Φ(t, s) = G(min(t, s))H(max(t, s)).

It is known [3] that Φ(t, s) of such a kind is the covariance function of a nondegen-
erate on (0, T ) random process iff the fraction G(t)

H(t) is a nondecreasing positive func-
tion. In particular, any Gaussian Markov process with non-zero covariance function
admits such factorization: For example, a standard Wiener process has the com-
ponents G(t) = t and H(t) ≡ 1; a Brownian bridge on [0, 1] has the components
G(t) = t and H(t) = 1 − t; and, finally, an arbitrary stationary Gaussian process
on the positive half-line has the components G(t) = exp(αt) and H(t) = exp(−αt),
where α > 0.

Notice that, in this case, the function Φ(t, s) is nondifferentiable on the diagonal
if the components are nondegenerate functions.

Let, in addition, G(t) ↑, H(t) ↓ be monotone, positive on (0, T ), and absolutely
continuous w.r.t. the Lebesgue measure on [0, T ]. We prove that supp m− = [0, T ]2\
D, where D := {(t, s) : t = s}, is the main diagonal of the square [0, T ]2. Let
s < s + δ ≤ t < t + ∆. Then

m( (s, s + δ] × (t, t + ∆] )
= G(s)H(t) + G(s + δ)H(t + ∆) − G(s)H(t + ∆) − G(s + δ)H(t)
= (G(s + δ) − G(s))(H(t + ∆) − H(t)) < 0.

In other words, m− is absolutely continuous w.r.t. the bivariate Lebesgue measure
λ2 and the corresponding Radon – Nikodym derivative is defined by the formula

dm−

dλ2
(t, s) = G′(t)|H ′(s)|.

We now calculate m+-measure of an infinitesimal diagonal square:

m+((s, s + h] × (s, s + h])
= H(s + h)

(
G(s + h) − G(s)

)
− G(s)

(
H(s + h) − H(s)

)
=

∫ s+h

s

(
H(z)G′(z) − G(z)H ′(z)

)
dz + o(h).

Hence m+ is absolutely continuous w.r.t. the induced Lebesgue measure on the
diagonal.

Therefore, in the case under consideration, the measures m− and m+ are singu-
lar. Finally, to verify the condition f ∈ S we need to verify existence of the following
two integrals: ∫

X

f(t)2(H(t) + 1)dG(t),
∫

X

f(t)2(G(t) + 1)dH(t).
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Covariance functions of mixed type. Let {Xn; n ≥ 1} be a stationary se-
quence of r.v.’s satisfying ϕ-mixing condition. Consider a centered Hilbert process
(not necessarily Gaussian!) Y (t) with the covariance function which is well defined
under some restrictions on the ϕ-mixing coefficient (see the Gaussian case in [1]):

EY (s)Y (t) = F (min(s, t)) − F (t)F (s) +
∑
j≥1

(Fj(s, t) + Fj(t, s) − 2F (s)F (t)) ,

where F (t) is the distribution function of X1 which is assumed absolutely continuous
with a density p(t), and Fj(t, s) is the joint distribution functions of the pairs
(X1, Xj+1). Let all the functions Fj(t, s), j = 1, 2, . . . , have bounded densities
pj(t, s). For all t, s ∈ R, we assume that the series

b(t, s) :=
∑
j≥1

[pj(t, s) + pj(s, t) − 2p(t)p(s)]

absolutely converges and the corresponding series
∑

| · | is integrable on R2.

We note that, under the above-mentioned restrictions, we deal with a covariance
function represented as a sum of covariance functions from items A.1 and A.2. Hence
we may use the infinitesimal analysis of the corresponding covariance measures from
these items. Indeed,

m((t, t + ∆] × (s, s + ∆])

= P(X1 ∈ (t, t + ∆] ∩ (s, s + ∆]) +
∫ t+∆

t

∫ s+∆

s

(b(u, v) − p(u)p(v)) dudv.

So, under the conditions
∫

f2(t)p(t)dt < ∞ and
∫ ∫

|f(t)f(s)b(t, s)|dtds < ∞, we
can correctly define the stochastic integral

∫
f(t)dY (t).

1.2.2. Multiple stochastic integral.

We study multiple stochastic integrals (MSI) based on a product-noise defined in
Example (ii) by increments of a Gaussian process. In this case, to calculate the
covariance measure we use the following well-known convenient representation:

m((t1, t1 + δ] × · · · × (t2k, t2k + δ]) =
∑ ∏

∆Φ(ti, tj),

where the sum is taken over all partitions on pairs of the set {1, 2, . . . , 2k}, and
the product is taken over all pairs in a fixed such partition. Notice that, in the
sequel, to define multiple stochastic integrals we use only this property of Gaussian
processes. However, we may study the multiple integrals for the non-Gaussian case:
For example, if the integrating process ξ(t) can be represented as a polynomial
transform of a Gaussian process. In this case, to define the multiple integral, we
can obtain some restrictions on the kernel f close to the conditions below.

Remark 4. The Main Assumption for the covariance measure m(A1 × · · · × A2k)
introduced above follows from the Proposition 1 if only Φ(t, s) has a bounded
variation. This property of the covariance function is fulfilled in items B.1 – B.3
below.
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Regular covariance functions. Conditions to define MSI :∫
[0,T ]2k

|f(t1, . . . , tk)f(tk+1, . . . , t2k)|
∑ ∏

|q(ti, tj)|dt1 · · · dt2k < ∞,

where the sum and the product are introduced above, q(t, s) is the density (the
Radon–Nikodym derivative) of ∆Φ. As a consequence, we obtain the main result in
[7], for the regular FBM from item A.1. In this case we should set in this condition
q(t, s) := h(2h − 1)|t − s|2h−2.

Factorizing covariance functions. Let the factorizing components H and G
be smooth functions.
1) If ti = tj then, as δ → 0, we have the following asymptotic representation of the
double difference of Φ(·) on the infinitesimal cube (ti, ti + δ] × (tj , tj + δ] :

∆Φ(ti, tj) = δ(H(ti)G′(ti) − G(ti)H ′(ti)) + O(δ2),

2) If ti �= tj then, as δ → 0,

∆Φ(ti, tj) = δ2G′(min(ti, tj)H ′(max(ti, tj)) + o(δ2).

Denote
g1(t) := H(t)G′(t) − G(t)H ′(t),

g2(t, s) := G′(min(t, s))H ′(max(t, s)).

A set D(r1,...,rl) ⊂ [0, T ]2k is called a diagonal subspace determined by variables
of multiplicity r1, . . . , rl (ri ≥ 2,

∑
ri < 2k) if it defines by the following l chains

of equalities:
xij,1 = · · · = xij,rj

j = 1, . . . , l,

where ij,m �= in,d for any (j, m) �= (n, d).

Proposition 2 (see Borisov and Bystrov, 2006a). In the case under consider-
ation any covariance measure m has zero mass on any diagonal subspace D(r1,...,rl)

having at least one multiplicity ri > 2.

Given a kernel f(t1, . . . , tk) we set ϕf (t1 · · · t2k) := f(t1, . . . , tk)f(tk+1, . . . , t2k).
Conditions to define MSI: First, we need to verify the condition

∫
|ϕf (s1, s1, . . . sn, sn, t1, . . . t2(k−n))|

(3)
×

n∏
i=1

g1(si)
∑ ∏

|g2(ti, tj)|ds1 · · · dsndt1 · · · dt2(k−n) < ∞

for all n = 0, 1, . . . , k, and, second, to verify finiteness of all the analogous integrals

for all permutations of 2k arguments of the kernel ϕf . Here, by definition,
0∏

i=1

= 1.

If the kernel f(·) is symmetric and vanishes on all diagonal subspaces, and the
functions g1 and g2 are bounded then condition (3) is reduced to the restriction
f ∈ L2(Xk, dt1 · · · dtk). In particular, if the multiple noise is defined by increments
of a standard Wiener process then g1 ≡ 1 and g2 ≡ 0 (cf. [17, 19]).
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Covariance functions of mixed type. We now define the multiple stochastic
integral for a Gaussian process Y (t) with the covariance introduced in A.3. Let p(t)
and b(t, s) defined in A.3 be continuous functions. Then, as δ → 0, we have for
ti = tj (see A.3):

∆Φ(ti, tj) = δp(ti) + o(δ).

If ti �= tj then
∆Φ(ti, tj) = δ2 (b(ti, tj) − p(ti)p(tj)) + o(δ2).

So, we actually repeat the arguments from item B.2 and to define the multiple
stochastic integral for Y (t) we need to verify condition (3) for g1(t) := p(t) and
g2(t, s) := b(t, s).

2. Asymptotics of canonical von mises statistics.

In this Section we consider some applications of the MSI construction from Section I.
We study limit behavior of multivariate Von Mises functionals of empirical processes
based on samples from a stationary sequence of observations.

Let {Xn; n ≥ 1} be a stationary sequence of [0, 1]-uniformly distributed r.v.’s
satisfying the ψ-mixing condition: ψ(m) → 0 if m → ∞, where

(4) ψ(m) := sup
∣∣∣∣ P(AB)
P(A)P(B)

− 1
∣∣∣∣ , m = 1, 2, . . . ,

and the supremum is taken over all events A and B (having non-zero probabilities)
from the respective σ-fields Fk

1 and F∞
k+m, where Fk

l , l ≤ k, is the σ-field generated
by the random variables Xl, . . . , Xk, as well as over all natural k. This mixing
condition was introduced in Blum, Hanson and Koopmans, 1963.

Introduce the normalized d-variate Von Mises statistics (or V -statistics)

(5) Vn := n−d/2
∑

1≤i1,...,id≤n

f(Xi1 , . . . , Xid
), n = 1, 2, . . . ,

where the kernel f(·) satisfies the degeneracy condition

Ef(t1, . . . , tk−1, Xk, tk+1, . . . , td) = 0

for all t1, . . . , td ∈ [0, 1] and k = 1, . . . , d. Such canonical statistics were introduced
in [25], and [15], where, moreover, the so-called U -statistics were studied:

Un := (Cd
n)−1/2

∑
1≤i1<···<id≤n

f0(Xi1 , . . . , Xid
),

where, as a rule, the kernel f0 is symmetric w.r.t. all permutations of the arguments.
Notice that in the definitions above we may consider the observations {Xi} taking

values in an arbitrary measurable space and having an arbitrary distribution. If the
sample distribution has no atoms then an U -statistics with a symmetric kernel can
be easily reduced to a V -statistics with a new kernel having zero values on all diag-
onal subspaces. For the IID samples limit behavior of these statistics is well known
(for reference see Korolyuk and Borovskikh, 1994). In the case of one-dimensional
observations, using the corresponding quantile transforms, we may reduce these
statistics to those based on samples from the [0, 1]-uniform distribution.
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Introduce the normalized empirical process Sn(t) :=
√

n(F ∗
n(t)− t), where F ∗

n(t)
is the standard empirical distribution function based on the above-introduced sam-
ple X1, . . . , Xn with the [0, 1]-uniform marginal distribution. We now recall the
well-known key representation of the canonical V -statistics (5) by the Lebesgue
integral:

(6) Vn =
∫

[0,1]d

f(x1, . . . , xd) dSn(x1) · · · dSn(xd).

We recall that a diagonal subspace in [0, 1]d is determined as

Di∗,q∗ := {(t1, . . . , td) ∈ [0, 1]d :
ti1 = ti2 · · · = tiq1

, . . . , tiqr−1+1 = tiqr−1+2 · · · = tiqr
},

where i∗ := (i1, i2, . . . , iq1 , . . . , iqr−1+1, iqr−1+2, . . . , iqr) is a vector with pairwise
different integer coordinates from the set {1, . . . , d} and q∗ := (q1, . . . , qr), where
q1 ≥ 2, qr ≤ d and qi+1 − qi ≥ 2 if 1 ≤ i < r. In the sequel, to indicate diag-
onal subspaces, we will use natural parameter i instead of vector-valued (i∗, q∗)
renumbering all the diagonal subspaces.

The subspace of [0, 1]d defined by pairwise different coordinates ti is called the
main subspace and denoted by D0. Obviously,

D0 = [0, 1]d \
⋃
i≥1

Di.

Introduce the following function space

S0 := {f :
∑
i≥0

∫
Di

f2(t1, . . . , td)dtiq1
· · · dtiqr

< ∞},

where the subscripts iq1 , . . . , iqr determine the corresponding diagonal (or the main)
subspace Di of dimension r and the kernel f2(·) in the corresponding multiple
integral

∫
Di

of this notation has only r independent arguments. For example, if
Di = {(t1, t2, t3, t4) ∈ [0, 1]4 : t1 = t3, t2 = t4} then∫

Di

f2(t1, t2, t3, t4) dt3dt4 =
∫

[0,1]2
f2(t3, t4, t3, t4) dt3dt4.

Notice that, under the conditions of Theorem 2 below, the function space S0 is
a subspace of S introduced in Theorem 1 for d-fold product-noise generated by
increments of the stochastic processes Y (t) from items A.3 and B.3 since the series

b(t, s) =
∑
k≥1

(pk(t, s) + pk(s, t) − 2)

from item A.3 satisfies the restrictions we need and, moreover, it is uniformly
bounded on [0, 1]2 due to ψ-mixing condition (4) and the restrictions on the mix-
ing coefficient in Theorem 2 below. First of all, we observe that (4) implies exis-
tence of joint densities pk(t, s) since we may consider in (4) ‘infinitesimal events”
A := {X1 ∈ (t, t + dt)} and B := {Xk+1 ∈ (s, s + ds)} and take the relations
P(A) = dt and P(B) = ds into account. Moreover, we obtain the upper bound
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|b(t, s)| ≤
∑

k≥1 ψ(k). This fact allow us to estimate the covariance measure of the
corresponding product-noise generated by increments of Y (t).

Define on the space S0 the combined L2-norm

(7) ||f ||20 :=
∑
i≥0

∫
Di

f2(t1, . . . , td)dtiq1
· · · dtiqr

,

where in the case i = 0 (i. e., for the main subspace D0,) we put iqk
= k and r = d

in the corresponding summand on the right-hand side of (7). Notice that this norm
is stronger than || · || since in the case under consideration we have g1(t) := p(t) ≡ 1
on [0, 1] and g2(t, s) := b(t, s) is a bounded function as well (see B.3 and the upper
bounds in (20) and (21) below). In other words, in the case under considerations,
the linear normed space (S0, || · ||0) is embedded to the corresponding space (S, || · ||)
in Theorem 1.

Theorem 2. Under the above-mentioned restrictions let f ∈ S0 and

(8) Ψ(d) :=
∑
k≥1

ψ(k)k2d−2 < ∞.

Then, as n → ∞,

Vn
d→

∫
[0,1]d

f(t1, . . . , td)dY (t1) · · · dY (td),

where Y (t) is a centered Gaussian process with the covariance

EY (t)Y (s) = min(t, s) − ts +
∑
k≥1

(Fk(t, s) + Fk(s, t) − 2ts) .

Remark 5. In the IID case (ψ(·) ≡ 0, b(·, ·) ≡ 0, and Fk(t, s) = ts) the conditions
of Theorem 2 coincide with the traditional well-known restrictions in Mises, 1947,
Filippova, 1959, 1962, Borisov and Sakhanenko, 2000, and others. In this case, the
process Y (t) = W 0(t) is a Brownian bridge. Notice also that, in the IID case, the
multiple stochastic integral w.r.t the product-noise generated by W 0(t) in Theorem
2 coincides in distribution with the analogous integral w.r.t. a White noise (gener-
ated by a standard Wiener process W (t)) due to degeneracy of the kernel and the
well-known representation W 0(t) d= W (t) − tW (1).

If a kernel f(t1, . . . , td) vanishes on all diagonal subspaces then sufficient con-
ditions for f to be an element of S0 is as follows: f ∈ L2([0, 1]d, dt1 · · · dtd). The
kernels of such a kind are used to describe limit behavior of canonical U -statistics
(for example, see Major, 1994, and the corresponding comment above). Moreover,
to describe the Itô – Wiener construction of multiple integrals the kernels vanish-
ing on all diagonal subspaces provide the above-mentioned isometry between closed
linear span of multiple integral sums and the corresponding function space.

Remark 6. From the beginning, in the IID case, to describe limit behavior of
canonical U and V -statistics another representation of the limit distribution was
used. For instance, in the case d = 2, for a canonical U -statistics with a symmetric
kernel the limit random variable can be represented as the random series

(9)
∞∑

k=1

λk(τ2
k − 1),
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where {τk} are i.i.d. standard Gaussian random variables, {λk} are eigenvalues of
the integral operator in L2[0, 1] with the kernel f(s, t) (see [25]). Later this result
was extended to the general case d ≥ 2 (see [23]). In the general case the limit
random variable can be represented as a polynomial transform of {τk} in terms
of the Hermite–Chebyshev polynomials. Finally, using analogous representations of
multiple Wiener integrals noted in [27], and in [17], one can rewrite the limit random
variables as the corresponding multiple stochastic integral w.r.t. to a multiple White
noise (see, for example, Dynkin and Mandelbaum, 1983).

In the non-IID case an analog of (9) was obtained in [11], where {λk} are the
above-mentioned eigenvalues which are additionally assumed to be summable, and
{τk} is a Gaussian sequence with the covariance function depending of these eigen-
values as well as of the covariance function of the initial stationary sequence {Xi}
satisfying ϕ-mixing condition.

In the special case when the observations are defined by a nonrandom transform
of a Gaussian stationary sequence under another dependency restriction, limit be-
havior of canonical U -statistics were investigated in [8].

Proof of Theorem 2. We divide the proof into three steps (for detail see [5]). Let
{fk(x1, . . . , xd)} be a sequence of step functions of the form

(10) fk(x1, . . . , xd) :=
∑

j1,...,jd≤k

fj1,...,jd

d∏
i=1

I(xi ∈ Aji)

converging in (S0, || · ||0) to a function f(x1, . . . , xd) as k → ∞. Hence the functions
{fk} converge to f in the corresponding linear normed space (S, || · ||) in Theorem 1.
Then

S t e p I. For every fixed k, due to the multivariate central limit theorem for
finite-dimensional distributions of the empirical measure based on slowly dependent
observations (see, for example, [1]), as n → ∞,∫

[0,1]d
fk(x1, . . . , xd)dSn(x1) · · · dSn(xd)

d→
∫

[0,1]d
fk(x1, . . . , xd)dY (x1) · · · dY (xd).

Actually, this weak convergence is valid under weaker dependency conditions than
those in Theorem 2.

S t e p II. As k → ∞, by the above-mentioned construction of multiple stochastic
integrals (see Theorem 1 and the comment above) we have the following mean
square convergence:∫

[0,1]d
fk(x1, . . . , xd)dY (x1) · · · dY (xd)

L2→
∫

[0,1]d
f(x1, . . . , xd)dY (x1) · · · dY (xd).

S t e p III. As k → ∞, we should prove the following mean square convergence
uniformly on n:∫

[0,1]d
fk(x1, . . . , xd)dSn(x1) · · · dSn(xd)

L2→
∫

[0,1]d
f(x1, . . . , xd)dSn(x1) · · · dSn(xd).

It is easy to see that the assertion of Theorem 2 follows from items I – III.
So, we should prove only item III. To establish the last convergence, for every

step function gk of the form (10), it suffices to prove the estimate

(11) sup
n

E

(∫
[0,1]d

gk(x1, . . . , xd)dSn(x1) · · · dSn(xd)

)2

≤ C||gk||20,
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where the constant C depends on d and Ψ(d) only. Indeed, this estimate implies
the analogous upper bound for the step function fk − fl (see the corresponding
comment in the proof of Theorem 1), where fk and fl are arbitrary elements
of the above-mentioned sequence {fm} converging to the kernel f in the norm
|| · ||0. Therefore, as l → ∞, the corresponding L2-limit of the integral sums∫

fl(x1, . . . , xd)dSn(x1) · · · dSn(xd) exists and coincides with the Lebesgue integral
in (6) since this limit does not depend on a sequence of step functions approximating
to f . Thus, as k → ∞,

sup
n

E
(∫

fk(x1, . . . , xd)dSn(x1) · · · dSn(xd)

−
∫

f(x1, . . . , xd)dSn(x1) · · · dSn(xd)
)2

→ 0

for every sequence of step functions {fk} converging to the kernel f in (S0, || · ||0)
if only relation (11) is valid.

To prove (11) we need the following auxiliary statements.

Lemma 1. (see [21]) Let ξ and η be random variables measurable w.r.t. the Fk
1

and F∞
k+m (m ≥ 1) respectively. If E|ξ| < ∞ and E|η| < ∞ then

(12) |Eξη −EξEη| ≤ ψ(m)E|ξ|E|η|.

Introduce the following notation: Ĩk(A) := I(Xk ∈ A) − P (A), A ∈ A, where
the marginal P is the Lebesgue measure on [0, 1]. The following assertion is easy
proved by induction (for detail see [5]).

Lemma 2. For any natural numbers q and l1, . . . , lq, and for any pairwise disjoint
measurable subsets A1, . . . , Aq the following moment inequality is valid:

(13) E|Ĩ l1
k (A1) · · · Ĩ lq

k (Aq)| ≤ (q + 1)P (A1) · · ·P (Aq).

From Lemmas 1 and 2 we deduce the following upper bound.

Lemma 3. Let q1 < · · · < qs be arbitrary natural numbers and q0 = 0. Consider
s collections of sets {A1, . . . Aq1}, . . . , {Aqs−1+1, . . . Aqs}, where the measurable sub-
sets Ai inside of every collection are pairwise disjoint. Put

νki := Ĩ
lqi−1+1

ki
(Aqi−1+1) · · · Ĩ

lqi

ki
(Aqi).

Then, for any natural numbers k1 < · · · < ks and l1, . . . , lq1 , . . . , lqs , the following
estimate is valid:

(14) E|νk1 · · · νks | ≤ C(ψ(1), s, qs)P (A1) · · ·P (Aqs),

where the constant C(·) depends only on the arguments indicated.

Proof. By (13) we have E|νki | ≤ (qi − qi−1 + 1)P (Aqi−1+1) · · ·P(Aqi). It is clear
that the random variables {νki} satisfy ψ-mixing condition. Hence, by (12) and
(13) we obtain

E|νk1 · · · νks | ≤
s−1∏
j=1

(1 + ψ(kj+1 − kj))E|νk1 | · · ·E|νks |

≤
s−1∏
j=1

(1 + ψ(kj+1 − kj))
s−1∏
j=1

(qj − qj−1 + 1)P (A1) · · ·P (Aqs)

≤ C(ψ(1), s, qs)P (A1) · · ·P (Aqs).
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The Lemma is proved.

The main assertion to prove (11) is as follows:

Lemma 4. Let l1, . . . , lq be natural numbers such that l1 + · · · + lq = 2d, and let
A1, . . . , Aq be a collection of pairwise disjoint measurable sets. Under condition (8)
the following upper bound is valid:

(15) |ESl1
n (A1) · · ·Slq

n (Aq)| ≤ CP (A1) · · ·P (Aq).

where the constant C depends only on d and Ψ(d).

Remark 7. The statement of Lemma 4 is also contained in Sen, 1972. However,
the corresponding constant in this paper contains the factor (1 + ψ(0))2. It is easy
to see that if the marginal distribution has a continuous component (for example,
if it is the Lebesgue measure on [0, 1]) or infinitely many atoms then ψ(0) = ∞. To
verify this property we may put in (4) A = B, where A is an event from the σ-field
F1

1 . So, under the above-mentioned restrictions on the marginal P

ψ(0) ≥ sup
A∈F1

1 , P (A)>0

(1/P (A) − 1) = ∞.

In the sequel we will denote by the symbols C or Ci various positive constants
depending only on d and Ψ(d).

Proof of Lemma 4. We first write the simple estimate

|ESl1
n (A1) · · ·Slq

n (Aq)|
≤ n−d

∑
k1,...,k2d≤n

|EĨk1(A1) · · · Ĩkl1
(A1) · · · Ĩk2d−lq+1(Aq) · · · Ĩk2d

(Aq)|.

The initial sum on the right-hand side of this inequality can be estimated by a finite
sum of the following diagonal subsums

(16)
∑

k1<···<kr≤n

|Eνk1 · · · νkr |,

where νki := Ĩ
s1(i)
ki

(A1) · · · Ĩsq(i)
ki

(Aq), and the integers sj(i) are defined by the
corresponding diagonal subspace of subscripts in the initial multiple sum and satisfy
the conditions 0 ≤ sj(i) ≤ lj for all i ≤ r and j ≤ q, and

∑
i≤r

∑
j≤q sj(i) = 2d.

Let r ≤ d. Estimating by (14) each summand in (16) and taking the normalized
factor n−d and the number of summands in (16) into account we obtain the upper
bound we need.

Let now r > d. We call the random variable νki short product if
∑

j≤q sj(i) = 1,

i. e., νki = Ĩki(Aqi) for some qi ≤ q. Notice that if νki is a short product then
Eνki = 0.

We now consider the auxiliary multiple sum consisting of the random variables
νki defined in (16) for the fixed diagonal subspace of subscripts:

(17)
∑

kv1<···<kv2≤n

|Eνkv1
· · · νkv2

|,

where 1 ≤ v1 < v2 ≤ r and the value v := v2 − v1 + 1 is the dimension of the cor-
responding multiple sum. Introduce the following notation: ej(i) := min{1, sj(i)}.
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We first prove the following assertion: If, in the summands in (17), there are at
least m shorts products, where 0 ≤ m ≤ v, then the following upper bound is valid:

(18)
∑

kv1<···<kv2≤n

|Eνkv1
· · · νkv2

| ≤ Cnv−m/2
∏
j≤q

P (Aj)αj(v1,v2),

where αj(v1, v2) :=
v2∑

i=v1

ej(i). Notice that the set function αj(a, b) is additive on

intervals [a, b]. We prove this assertion by induction on m for all v1 and v2 such
that v ≥ m and v ≤ r. Let m = 1, i. e., the expectations in (17) contain at least one
short product. Denote it by νkl

, where kv1 ≤ kl ≤ kv2 . First we note that, in terms
of the notation above, we can rewrite the statement of Lemma 3 for the absolute
moment of each random product in (17) in such a way:

E|νkv1
· · · νkv2

| ≤ C
∏
j≤q

P (Aj)αj(v1,v2).

Taking this estimate into account we evaluate by (12) every summand in (17) setting
ξ := νkv1

· · · νkl
and η := νkl+1 · · · νkv2

:

∑
kv1<···<kv2≤n

|Eνkv1
· · · νkv2

|

≤
∑

kv1<···<kv2≤n

ψ(kl+1 − kl)E|νkv1
· · · νkl

|E|νkl+1 · · · νkv2
|

+
∑

kv1<···<kl≤n

|Eνkv1
· · · νkl

|
∑

kl+1<···<kv2≤n

E|νkl+1 · · · νkv2
|

≤ C1n
v−1

∏
j≤q

P (Aj)αj(v1,v2)
∑
i≥1

ψ(i)

+ C2n
v2−l

∏
j≤q

P (Aj)αj(l+1,v2)

×
∑

kv1<···<kl≤n

ψ(kl − kl−1)E|νk1 · · · νkl−1 |E|νkl
|

≤ (C3n
v−1 + C4n

v2−lnl−v1)
∏
j≤q

P (Aj)αj(v1,v2)

≤ C5n
v−1/2

∏
j≤q

P (Aj)αj(v1,v2)

which required. In this chain of relations the second inequality is valid due to (12)
and the equality Eνkl

= 0 as well.
We now assume that the upper bounds∑

kv1<···<kv2≤n

|Eνkv1
· · · νkv2

| ≤ Cnv−z/2
∏
j≤q

P (Aj)αj(v1,v2)

are true for all integers z < m, where z is the minimal possible number of short
products in the expectations under consideration, and for all possible dimensions
v : z ≤ v ≤ r of multiple sums of the form (17), and, moreover, the moments in
(17) contain at least m shorts products. Denote these products by νkl1

, . . . , νklm
.
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Consider the following m−1 pairs of neighboring products: νkls
νkls+1 , s = 1 . . . m−

1. Denote by t1, . . . , tm−1 differences between the subscripts in these pairs. We have∑
kv1<···<kv2≤n

|Eνkv1
· · · νkv2

| ≤ R1 + · · · + Rm−1,

where the subsum Rs is taken over the set of subscripts

Is := {(kv1 , . . . , kv2) : kv1 < · · · < kv2 ≤ n, ts = max ti}.

We now estimate by (12) each summand in Rs setting ξ := νkv1
· · · νkls

and
η := νkls+1 · · · νkv2

:

Rs ≤
∑
Is

ψ(kls+1 − kls)E|νkv1
· · · νkls

|E|νkls+1 · · · νkv2
|

(19)
+

∑
kv1<···<kls≤n

|Eνkv1
· · · νkls

|
∑

kls+1<···<kv2≤n

E|νkls+1 · · · νkv2
|.

Consider the first sum on the right-hand side of (19):∑
Is

ψ(kls+1 − kls)E|νkvl
· · · νkls

|E|νkls+1 · · · νkv2
|

≤ C
∏
j≤q

P (Aj)αj(v1,v2)
∑
Is

ψ(ts)

≤ C
∏
j≤q

P (Aj)αj(v1,v2)nv−(m−1)
∑

ti: ti≤ts

ψ(ts)

≤ C
∏
j≤q

P (Aj)αj(v1,v2)nv−m/2Ψ
(m

2

)
.

Notice that the last inequality is valid for m ≥ 2. Consider now the product of the
sums on the right-hand side of (19). Let the summands of the first sum contain
m1 short products indicated above, and, in the summands of the second sum,
there are m − m1 short products indicated above. By the construction we have
1 ≤ m1 ≤ m − 1. Hence, for these sums we can use the induction proposition.
Finally, we have ∑

kv1<···<kls≤n

|Eνkv1
· · · νkls

|
∑

kls+1<···<kv2≤n

|Eνkls+1 · · · νkv2
|

≤ Cnls−m1/2nv−ls−(m−m1)/2
∏
j≤q

P (Aj)αj(v1,v2)

= Cnv−m/2
∏
j≤q

P (Aj)αj(v1,v2)

which required. Thus, for Rs we obtained the upper bound we need. It means that
the analogous estimate is valid for whole sum (17). The induction is over.

To prove the assertion of Lemma 4 we should note that, first, by the definition,
αj(1, r) ≥ 1 for all j ≤ q, and, second, in the case r > d, the summands in (16)
contain at least 2(r − d) short products. So, we should put in (18) v1 := 1, v2 := r,
m := 2(r − d) and v := r. It means that, for the sum in (16), the following upper
bound is valid:∑

k1<···<kr≤n

|Eνk1 · · · νkr | ≤ Cnd
∏
j≤q

P (Aj)αj(1,r) ≤ CndP (A1) · · ·P (Aq).
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The Lemma is proved.

In conclusion we deduce from Lemma 4 the upper bound (11). For every step
function gk of the form (10) we have

sup
n

E

(∫
[0,1]d

gk(x1, . . . , xd)dSn(x1) · · · dSn(xd)

)2

= sup
n

E
∫

[0,1]2d

gk(x1, . . . xd)gk(xd+1, . . . x2d)dSn(x1) · · · dSn(x2d)
(20)

≤ sup
n

∑
i1,...,i2d

|gi1,...,id
||gid+1,...,i2d

|E|Sn(Ai1) · · ·Sn(Ai2d
)|

≤ C
∑
i≥0

∫
D

(2)
i

|gk(x1, . . . xd)||gk(xd+1, . . . x2d)|P (dxiq1
) · · ·P (dxiqr

),

where D
(2)
i is a diagonal (or the main) subspace in [0, 1]2d of dimension r which

is defined by the integers q1, . . . , qr by analogy with Di in [0, 1]d. Further, by the
Cauchy – Bunyakovskii inequality we estimate every multiple integral on the right-
hand side of (20):∫

D
(2)
i

|gk(x1, . . . xd)||gk(xd+1, . . . x2d)|P (dxiq1
) · · ·P (dxiqr

)

≤
(∫

Dj1

g2
k(x1, . . . xd)P (dxiv1

) · · ·P (dxivl
)

(21)

×
∫

Dj2

g2
k(x1, . . . xd)P (dxis1

) · · ·P (dxism
)

)1/2

≤ ||gk||20,

where Dj1 and Dj2 are the corresponding diagonal (or the main) subspaces in [0, 1]d

of respective dimensions l and m, where l + m ≥ r, defined by the integers {vj}
and {sj}. Thus, the upper bound in (11) is proved.
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