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Abstract: Consider the problem of testing multiple null hypotheses. A clas-
sical approach to dealing with the multiplicity problem is to restrict attention
to procedures that control the familywise error rate (FWER), the probabil-
ity of even one false rejection. However, if s is large, control of the FWER
is so stringent that the ability of a procedure which controls the FWER to
detect false null hypotheses is limited. Consequently, it is desirable to consider
other measures of error control. We will consider methods based on control
of the false discovery proportion (FDP ) defined by the number of false rejec-
tions divided by the total number of rejections (defined to be 0 if there are
no rejections). The false discovery rate proposed by Benjamini and Hochberg
(1995) controls E(FDP ). Here, we construct methods such that, for any γ
and α, P{FDP > γ} ≤ α. Based on p-values of individual tests, we consider
stepdown procedures that control the FDP , without imposing dependence as-
sumptions on the joint distribution of the p-values. A greatly improved version
of a method given in Lehmann and Romano [10] is derived and generalized to
provide a means by which any sequence of nondecreasing constants can be
rescaled to ensure control of the FDP . We also provide a stepdown procedure
that controls the FDR under a dependence assumption.

1. Introduction

In this article, we consider the problem of simultaneously testing a finite number
of null hypotheses Hi (i = 1, . . . , s). We shall assume that tests based on p-values
p̂1, . . . , p̂s are available for the individual hypotheses and the problem is how to
combine them into a simultaneous test procedure.

A classical approach to dealing with the multiplicity problem is to restrict at-
tention to procedures that control the familywise error rate (FWER), which is the
probability of one or more false rejections. In addition to error control, one must
also consider the ability of a procedure to detect departures from the null hypothe-
ses when they do occur. When the number of tests s is large, control of the FWER
is so stringent that individual departures from the hypothesis have little chance
of being detected. Consequently, alternative measures of error control have been
considered which control false rejections less severely and therefore provide better
ability to detect false null hypotheses.

Hommel and Hoffman [8] and Lehmann and Romano [10] considered the k-
FWER, the probability of rejecting at least k true null hypotheses. Such an error
rate with k > 1 is appropriate when one is willing to tolerate one or more false
rejections, provided the number of false rejections is controlled. They derived single
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step and stepdown methods that guarantee that the k-FWER is bounded above
by α. Evidently, taking k = 1 reduces to the usual FWER. Lehmann and Romano
[10] also considered control of the false discovery proportion (FDP ), defined as the
total number of false rejections divided by the total number of rejections (and equal
to 0 if there are no rejections). Given a user specified value γ ∈ (0, 1), control of the
FDP means we wish to ensure that P{FDP > γ} is bounded above by α. Control
of the false discovery rate (FDR) demands that E(FDP ) is bounded above by α.
Setting γ = 0 reduces to the usual FWER.

Recently, many methods have been proposed which control error rates that are
less stringent than the FWER. For example, Genovese and Wasserman [4] study
asymptotic procedures that control the FDP (and the FDR) in the framework
of a random effects mixture model. These ideas are extended in Perone Pacifico,
Genovese, Verdinelli and Wasserman [11], where in the context of random fields,
the number of null hypotheses is uncountable. Korn, Troendle, McShane and Simon
[9] provide methods that control both the k-FWER and FDP ; they provide some
justification for their methods, but they are limited to a multivariate permutation
model. Alternative methods of control of the k-FWER and FDP are given in van
der Laan, Dudoit and Pollard [17]. The methods proposed in Lehmann and Romano
[10] are not asymptotic and hold under either mild or no assumptions, as long as
p-values are available for testing each individual hypothesis. In this article, we offer
an improved method that controls the FDP under no dependence assumptions of
the p-values. The method is seen to be a considerable improvement in that the
critical values of the new procedure can be increased by typically 50 percent over
the earlier procedure, while still maintaining control of the FDP . The argument
used to establish the improvement is then generalized to provide a means by which
any nondecreasing sequence of constants can be rescaled (by a factor that depends
on s, γ, and α) so as to ensure control of the FDP .

It is of interest to compare control of the FDP with control of the FDR, and
some obvious connections between methods that control the FDP in the sense that

P{FDP > γ} ≤ α

and methods that control its expected value, the FDR, can be made. Indeed, for
any random variable X on [0, 1], we have

E(X) = E(X|X ≤ γ)P{X ≤ γ} + E(X|X > γ)P{X > γ}

≤ γP{X ≤ γ} + P{X > γ} ,

which leads to

(1.1)
E(X) − γ

1 − γ
≤ P{X > γ} ≤ E(X)

γ
,

with the last inequality just Markov’s inequality. Applying this to X = FDP , we
see that, if a method controls the FDR at level q, then it controls the FDP in the
sense P{FDP > γ} ≤ q/γ. Obviously, this is very crude because if q and γ are
both small, the ratio can be quite large. The first inequality in (1.1) says that if
the FDP is controlled in the sense of (3.3), then the FDR is controlled at level
α(1 − γ) + γ, which is ≥ α but typically only slightly. Therefore, in principle, a
method that controls the FDP in the sense of (3.3) can be used to control the
FDR and vice versa.

The paper is organized as follows. In Section 2, we describe our terminology
and the general class of stepdown procedures that are examined. Results from



On the false discovery proportion 35

Lehmann and Romano [10] are summarized to motivate our choice of critical values.
Control of the FDP is then considered in Section 3. The main result is presented in
Theorem 3.4 and generalized in Theorem 3.5. In Section 4, we prove that a certain
stepdown procedure controls the FDR under a dependence assumption.

2. A class of stepdown procedures

A formal description of our setup is as follows. Suppose data X is available from
some model P ∈ Ω. A general hypothesis H can be viewed as a subset ω of Ω. For
testing Hi : P ∈ ωi, i = 1, . . . , s, let I(P ) denote the set of true null hypotheses
when P is the true probability distribution; that is, i ∈ I(P ) if and only if P ∈ ωi.

We assume that p-values p̂1, . . . , p̂s are available for testing H1, . . . , Hs. Specifi-
cally, we mean that p̂i must satisfy

(2.1) P{p̂i ≤ u} ≤ u for any u ∈ (0, 1) and any P ∈ ωi,

Note that we do not require p̂i to be uniformly distributed on (0, 1) if Hi is true,
in order to accomodate discrete situations.

In general, a p-value p̂i will satisfy (2.1) if it is obtained from a nested set of
rejection regions. In other words, suppose Si(α) is a rejection region for testing Hi;
that is,

(2.2) P{X ∈ Si(α)} ≤ α for all 0 < α < 1, P ∈ ωi

and

(2.3) Si(α) ⊂ Si(α′) whenever α < α′.

Then, the p-value p̂i defined by

(2.4) p̂i = p̂i(X) = inf{α : X ∈ Si(α)}.

satisfies (2.1).
In this article, we will consider the following class of stepdown procedures. Let

(2.5) α1 ≤ α2 ≤ · · · ≤ αs

be constants, and let p̂(1) ≤ · · · ≤ p̂(s) denote the ordered p-values. If p̂(1) > α1,
reject no null hypotheses. Otherwise,

(2.6) p̂(1) ≤ α1, . . . , p̂(r) ≤ αr,

and hypotheses H(1), . . . , H(r) are rejected, where the largest r satisfying (2.6) is
used. That is, a stepdown procedure starts with the most significant p-value and
continues rejecting hypotheses as long as their corresponding p-values are small.

The Holm [6] procedure uses αi = α/(s− i+1) and controls the FWER at level
α under no assumptions on the joint distribution of the p-values. Lehmann and
Romano [10] generalized the Holm procedure to control the k-FWER. Specifically,
consider the stepdown procedure described in (2.6), where we now take

(2.7) αi =

{
kα
s i ≤ k
kα

s+k−i i > k

Of course, the αi depend on s and k, but we suppress this dependence in the
notation.
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Theorem 2.1 (Hommel and Hoffman [8] and Lehmann and Romano [10]).
For testing Hi : P ∈ ωi, i = 1, . . . , s, suppose p̂i satisfies (2.1). The stepdown
procedure described in (2.6) with αi given by (2.7) controls the k-FWER; that is,

(2.8) P{reject at least k hypotheses Hi with i ∈ I(P )} ≤ α for all P .

Moreover, one cannot increase even one of the constants αi (for i ≥ k) without
violating control of the k-FWER. Specifically, for i ≥ k, there exists a joint distri-
bution of the p-values for which

(2.9) P{p̂(1) ≤ α1, p̂(2) ≤ α2, . . . , p̂(i−1) ≤ αi−1, p̂(i) ≤ αi} = α.

Remark 2.1. Evidently, one can always reject the hypotheses corresponding to
the smallest k − 1 p-values without violating control of the k-FWER. However,
it seems counterintuitive to consider a stepdown procedure whose corresponding
αi are not monotone nondecreasing. In addition, automatic rejection of k − 1 hy-
potheses, regardless of the data, appears at the very least a little too optimistic. To
ensure monotonicity, our stepdown procedure uses αi = kα/s. Even if we were to
adopt the more optimistic strategy of always rejecting the hypotheses correspond-
ing to the k − 1 smallest p-values, we could still only reject k or more hypotheses
if p̂(k) ≤ kα/s, which is also true for the specific procedure of Theorem 2.1.

3. Control of the false discovery proportion

The number k of false rejections that one is willing to tolerate will often increase
with the number of hypotheses rejected. So, it might be of interest to control not the
number of false rejections (or sometimes called false discoveries) but the proportion
of false discoveries. Specifically, let the false discovery proportion (FDP ) be defined
by

(3.1) FDP =

{
Number of false rejections
Total number of rejections if the denominator is > 0
0 if there are no rejections

Thus FDP is the proportion of rejected hypotheses that are rejected erroneously.
When none of the hypotheses are rejected, both numerator and denominator of
that proportion are 0; since in particular there are no false rejections, the FDP is
then defined to be 0.

Benjamini and Hochberg [1] proposed to replace control of the FWER by control
of the false discovery rate (FDR), defined as

(3.2) FDR = E(FDP ).

The FDR has gained wide acceptance in both theory and practice, largely be-
cause Benjamini and Hochberg proposed a simple stepup procedure to control the
FDR. Unlike control of the k-FWER, however, their procedure is not valid with-
out assumptions on the dependence structure of the p-values. Their original paper
assumed the very strong assumption of independence of p-values, but this has been
weakened to include certain types of dependence; see Benjamini and Yekutieli [3].
In any case, control of the FDR does not prohibit the FDP from varying, even if
its average value is bounded. Instead, we consider an alternative measure of control
that guarantees the FDP is bounded, at least with prescribed probability. That is,
for a given γ and α in (0, 1), we require

(3.3) P{FDP > γ} ≤ α.
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To develop a stepdown procedure satisfying (3.3), let f denote the number of
false rejections. At step i, having rejected i − 1 hypotheses, we want to guarantee
f/i ≤ γ, i.e. f ≤ �γi�, where �x� is the greatest integer ≤ x. So, if k = �γi� + 1,
then f ≥ k should have probability no greater than α; that is, we must control the
number of false rejections to be ≤ k. Therefore, we use the stepdown constant αi

with this choice of k (which now depends on i); that is,

(3.4) αi =
(�γi� + 1)α

s + �γi� + 1 − i
.

Lehmann and Romano [10] give two results that show the stepdown procedure
with this choice of αi satisfies (3.3). Unfortunately, some joint dependence as-
sumption on the p-values is required. As before, p̂1, . . . , p̂s denotes the p-values
of the individual tests. Also, let q̂1, . . . , q̂|I| denote the p-values corresponding to
the |I| = |I(P )| true null hypotheses. So qi = pji , where j1, . . . , j|I| correspond to
the indices of the true null hypotheses. Also, let r̂1, . . . , r̂s−|I| denote the p-values
of the false null hypotheses. Consider the following condition: for any i = 1, . . . , |I|,

(3.5) P{q̂i ≤ u|r̂1, . . . , r̂s−|I|} ≤ u;

that is, conditional on the observed p-values of the false null hypotheses, a p-value
corresponding to a true null hypothesis is (conditionally) dominated by the uniform
distribution, as it is unconditionally in the sense of (2.1). No assumption is made
regarding the unconditional (or conditional) dependence structure of the true p-
values, nor is there made any explicit assumption regarding the joint structure of
the p-values corresponding to false hypotheses, other than the basic assumption
(3.5). So, for example, if the p-values corresponding to true null hypotheses are
independent of the false ones, but have arbitrary joint dependence within the group
of true null hypotheses, the above assumption holds.

Theorem 3.1 (Lehmann and Romano [10]). Assume the condition (3.5).
Then, the stepdown procedure with αi given by (3.4) controls the FDP in the sense
of (3.3).

Lehmann and Romano [10] also show the same stepdown procedure controls
the FDP in the sense of (3.3) under an alternative assumption involving the joint
distribution of the p-values corresponding to true null hypotheses. We follow their
approach here.

Theorem 3.2 (Lehmann and Romano [10]). Consider testing s null hypothe-
ses, with |I| of them true. Let q̂(1) ≤ · · · ≤ q̂(|I|) denote the ordered p-values for the
true hypotheses. Set M = min(�γs� + 1, |I|).
(i) For the stepdown procedure with αi given by (3.4),

(3.6) P{FDP > γ} ≤ P{
M⋃
i=1

{q̂(i) ≤
iα

|I| }}.

(ii) Therefore, if the joint distribution of the p-values of the true null hypotheses
satisfy Simes inequality; that is,

P{{q̂(1) ≤
α

|I| }
⋃

{q̂(2) ≤
2α

|I| }
⋃

. . .
⋃

{q̂(|I|) ≤ α}} ≤ α,

then P{FDP > γ} ≤ α.
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Simes inequality is known to hold for many joint distributions of positively de-
pendent variables. For example, Sarkar and Chang [15] and Sarkar [13] have shown
that the Simes inequality holds for the family of distributions which is characterized
by the multivariate positive of order two condition, as well as some other important
distributions.

However, we will argue that the stepdown procedure with αi given by (3.4) does
not control the FDP in general. First, we need to recall Lemma 3.1 of Lehmann
and Romano [10], stated next for convenience (since we use it later as well). It is
related to Lemma 2.1 of Sarkar [13].

Lemma 3.1. Suppose p̂1, . . . , p̂t are p-values in the sense that P{p̂i ≤ u} ≤ u for
all i and u in (0, 1). Let their ordered values be p̂(1) ≤ · · · ≤ p̂(t). Let 0 = β0 ≤ β1 ≤
β2 ≤ · · · ≤ βm ≤ 1 for some m ≤ t.
(i) Then,

(3.7) P{{p̂(1) ≤ β1}
⋃

{p̂(2) ≤ β2}
⋃

· · ·
⋃

{p̂(m) ≤ βm}} ≤ t

m∑
i=1

(βi − βi−1)/i.

(ii) As long as the right side of (3.7) is ≤ 1, the bound is sharp in the sense
that there exists a joint distribution for the p-values for which the inequality is an
equality.

The following calculation illustrates the fact that the stepdown procedure with
αi given by (3.4) does not control the FDP in general.

Example 3.1. Suppose s = 100, γ = 0.1 and |I| = 90. Construct a joint distri-
bution of p-values as follows. Let q̂(1) ≤ · · · ≤ q̂(90) denote the ordered p-values
corresponding to the true null hypotheses. Suppose these 90 p-values have some
joint distribution (specified below). Then, we construct the p-values corresponding
to the 10 false null hypotheses conditional on the 90 p-values. First, let 8 of the
p-values corresponding to false null hypotheses be identically zero (or at least less
than α/100). If q̂(1) ≤ α/92, let the 2 remaining p-values corresponding to false
null hypotheses be identically 1; otherwise, if q̂(1) > α/92, let the 2 remaining p-
values also be equal to zero. For this construction, FDP > γ if q̂(1) ≤ α/92 or
q̂(2) ≤ 2α/91. The value of

P{q̂(1) ≤
α

92

⋃
q̂(2) ≤

2α

91
}

can be bounded by Lemma 3.1. The lemma bounds this expression by

90
(

α

92
+

2α
91 − α

92

2

)
≈ 1.48α > α.

Moreover, Lemma 3.1 gives a joint distribution for the 90 p-values corresponding
to true null hypotheses for which this calculation is an equality.

Since one may not wish to assume any dependence conditions on the p-values,
Lehmann and Romano [10] use Theorem 3.2 to derive a method that controls the
FDP without any dependence assumptions. One simply needs to bound the right
hand side of (3.6). In fact, Hommel [7] has shown that

P{
|I|⋃
i=1

{q̂(i) ≤
iα

|I| }} ≤ α

|I|∑
i=1

1
i
.
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This suggests we replace α by α(
∑|I|

i=1(1/i))−1. But of course |I| is unknown. So
one possibility is to bound |I| by s which then results in replacing α by α/Cs, where

(3.8) Cj =
j∑

i=1

1
i
.

Clearly, changing α in this way is much too conservative and results in a much less
powerful method. However, notice in (3.6) that we really only need to bound the
union over M ≤ �γs� + 1 events. This leads to the following result.

Theorem 3.3 (Lehmann and Romano [10]). For testing Hi : P ∈ ωi,
i = 1, . . . , s, suppose p̂i satisfies (2.1). Consider the stepdown procedure with con-
stants α′

i = αi/C�γs�+1, where αi is given by (3.4) and Cj defined by (3.8). Then,
P{FDP > γ} ≤ α.

The next goal is to improve upon Theorem 3.3. In the definition of α′
i, αi is

divided by C�γs�+1. Instead, we will construct a stepdown procedure with constants
α′′

i = αi/D, where D = D(γ, α, s) is much smaller than C�γs�+1. This procedure
will also control the FDP but, since the critical values α′′

i are uniformly bigger than
the α′

i, the new procedure can reject more hypotheses and hence is more powerful.
To this end, define

(3.9) βm =
m

max{s + m − �m
γ 	 + 1, |I|} m = 1, . . . , �γs�

and

(3.10) β�γs�+1 =
�γs� + 1

|I| .

where �x	 is the least integer ≥ x.
Next, let

(3.11) N = N(γ, s, |I|) = min{�γs� + 1, |I|, �γ(
s − |I|
1 − γ

+ 1)� + 1}.

Then, let β0 = 0 and set

(3.12) S = S(γ, s, |I|) = |I|
N∑

i=1

βi − βi−1

i
.

Finally, let

(3.13) D = D(γ, s) = max
|I|

S(γ, s, |I|).

Theorem 3.4. For testing Hi : P ∈ ωi, i = 1, . . . , s, suppose p̂i satisfies (2.1).
Consider the stepdown procedure with constants α′′

i = αi/D(γ, s), where αi is given
by (3.4) and D(γ, s) is defined by (3.13). Then, P{FDP > γ} ≤ α.

Proof. Let α′′ = α/D. Denote by

q̂(1) ≤ · · · ≤ q̂(|I|)

the ordered p-values corresponding only to true null hypotheses. Let j be the small-
est (random) index where the FDP exceeds γ for the first time at step j; that is, the
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number of false rejections out of the first j − 1 rejections divided by j exceeds γ for
the first time at j. Denote by m > 0 the unique integer satisfying m− 1 ≤ γj < m.
Then, at step j, it must be the case that m true null hypotheses have been rejected.
Hence,

q̂(m) ≤ α′′
j =

mα′′

s + m − j
.

Note that the number of true hypotheses |I| satisfies

|I| ≤ s + m − j.

Further note that γj < m implies that

(3.14) j ≤ �m

γ
	 − 1.

Hence, α′′
j is bounded above by βm defined by (3.9) whenever m − 1 ≤ γj < m.

Note that, when m = �γs� + 1, we bound α′′
j by using j ≤ s rather than (3.14).

The possible values of m that must be considered can be bounded. First of all,
j ≤ s implies that m ≤ �γs�+1. Likewise, it must be the case that m ≤ |I|. Finally,
note that j > s−|I|

1−γ implies that FDP > γ. To see this, observe that

s − |I|
1 − γ

= (s − |I|) +
γ

1 − γ
(s − |I|),

so at such a step j, it must be the case that

t >
γ

1 − γ
(s − |I|)

true null hypotheses have been rejected. If we denote by f = j − t the number of
false null hypotheses that have been rejected at step j, it follows that

t >
γ

1 − γ
f,

which in turn implies that

FDP =
t

t + f
> γ.

Hence, for j to satisfy the above assumption of minimality, it must be the case that

j − 1 ≤ s − |I|
1 − γ

,

from which it follows that we must also have

m ≤ �γ(
s − |I|
1 − γ

+ 1)� + 1.

Therefore, with N defined in (3.11) and j defined as above, we have that

P{FDP > γ} ≤
N∑

m=1

P
{
{q̂(m) ≤ α′′

j }
⋂

{m − 1 ≤ γj < m}
}

≤
N∑

m=1

P
{

q̂(m) ≤ α′′βm}
⋂

{m − 1 ≤ γj < m}
}
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≤
N∑

m=1

P

{
N⋃

i=1

{q̂(i) ≤ α′′βi}
⋂

{m − 1 ≤ γj < m}
}

≤ P

{
N⋃

i=1

{q̂(i) ≤ α′′βi

}
.

Note that βm ≤ βm+1. To see this, observed that the expression m+s−�m
γ 	+1

is monotone nonincreasing in m, and so the denominator of βm, max{m+s−�m
γ 	+

1, |I|}, is monotone nonincreasing in m as well. Also observe that βm ≤ m/|I| ≤ 1
whenever m ≤ N . We can therefore apply Lemma 3.1 to conclude that

P{FDP > γ} ≤ α′′|I|
N∑

i=1

βi − βi−1

i

=
α|I|
D

N∑
i=1

βi − βi−1

i
=

αS

D
≤ α,

where S and D are defined in (3.12) and (3.13), respectively.

It is important to note that by construction the quantity D(γ, s), which is defined
to be the maximum over the possible values of |I| of the quantity S(γ, s, |I|), does
not depend on the unknown number of true hypotheses. Indeed, if the number of
true hypotheses, |I|, were known, then the smaller quantity S(γ, s, |I|) could be
used in place of D(γ, s).

Unfortunately, a convenient formula is not available for D(γ, s), though it is
simple to program its evaluation. For example, if s = 100 and γ = 0.1, then
D = 2.0385. In contrast, the constant C�γs�+1 = C11 = 3.0199. In this case, the
value of |I| that maximizes S to yield D is 55. Below, in Table 1 we evaluate
D(γ, s) and C�γs�+1 for several different values of γ and s. We also compute the
ratio of C�γs�+1 to D(γ, s), from which it is possible to see the magnitude of the
improvement of the Theorem 3.4 over Theorem 3.3: the constants of Theorem 3.4
are generally about 50 percent larger than those of Theorem 3.3.

Remark 3.1. The following crude argument suggests that, for critical values of the
form dαi for some constant d, the value of d = D−1(γ, s) is very nearly the largest
possible constant one can use and still maintan control of the FDP . Consider the
case where s = 1000 and γ = .1. In this instance, the value of |I| that maximizes S
is 712, yielding N = 33 and D = 3.4179. Suppose that |I| = 712 and construct the
joint distribution of the 288 p-values corresponding to false hypotheses as follows:
For 1 ≤ i ≤ 28, if q̂(i) ≤ αβi and q̂(j) > αβj for all j < i, then let � i

γ 	 − 1 of the
false p-values be 0 and set the remainder equal to 1. Let the joint distribution of
the 712 true p-values be constructed according to the configuration in Lemma 3.1.
Note that for such a joint distribution of p-values, we have that

P{FDP > γ} ≥ P

{
28⋃

i=1

{q̂i ≤ αβi}
}

= α|I|
28∑

i=1

βi − βi−1

i
= 3.2212α.

Hence, the largest one could possibly increase the constants by a multiple and still
maintain control of the FDP is by a factor of 3.4179/3.2212 ≈ 1.061.
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Table 1

Values of D(γ, s) and C�γs�+1

s γ D(γ, s) C�γs�+1 Ratio

100 0.01 1 1.5 1.5
250 0.01 1.4981 1.8333 1.2238
500 0.01 1.7246 2.45 1.4206
1000 0.01 2.0022 3.0199 1.5083
2000 0.01 2.3515 3.6454 1.5503
5000 0.01 2.8929 4.5188 1.562
25 0.05 1.4286 1.5 1.05
50 0.05 1.4952 1.8333 1.2262
100 0.05 1.734 2.45 1.4129
250 0.05 2.1237 3.1801 1.4974
500 0.05 2.4954 3.8544 1.5446
1000 0.05 2.9177 4.5188 1.5488
2000 0.05 3.3817 5.1973 1.5369
5000 0.05 4.0441 6.1047 1.5095
10 0.1 1 1.5 1.5
25 0.1 1.4975 1.8333 1.2242
50 0.1 1.7457 2.45 1.4034
100 0.1 2.0385 3.0199 1.4814
250 0.1 2.5225 3.8544 1.528
500 0.1 2.9502 4.5188 1.5317
1000 0.1 3.4179 5.1973 1.5206
2000 0.1 3.9175 5.883 1.5017
5000 0.1 4.6154 6.7948 1.4722

It is worthwhile to note that the argument used in the proof of Theorem 3.4
does not depend on the specific form of the original αi. In fact, it can be used with
any nondecreasing sequence of constants to construct a stepdown procedure that
controls the FDP by scaling the constants appropriately. To see that this is the
case, consider any nondecreasing sequence of constants δ1 ≤ · · · ≤ δs such that
0 ≤ δi ≤ 1 (this restriction is without loss of generality since it can always be
acheived by rescaling the constants if necessary) and redefine the constants βm of
equations (3.9) and (3.10) by the rule

(3.15) βm = δk(s,γ,m,|I|) m = 1, . . . , �γs� + 1

where
k(s, γ, m, |I|) = min{s, s + m − |I|, �m

γ
	 − 1}.

Note that in the special case where δi = αi, the definition of βm in equation (3.15)
agrees with the earlier definition of equations (3.9) and (3.10). Maintaining the
definitions of N , S, and D in equations (3.11) - (3.13) (where they are now defined
in terms of the βm sequence given by equation (3.15)), we then have the following
result:

Theorem 3.5. For testing Hi : P ∈ ωi, i = 1, . . . , s, suppose p̂i satisfies (2.1). Let
δ1 ≤ · · · ≤ δs be any nondecreasing sequence of constants such that 0 ≤ δi ≤ 1 and
consider the stepdown procedure with constants δ′′i = αδi/D(γ, s), where D(γ, s) is
defined by (3.13). Then, P{FDP > γ} ≤ α.

Proof. Define j and m as in the proof of Theorem 3.4. We have, as before, that
whenever m − 1 ≤ γj < m

|I| ≤ s + m − j,

and
j ≤ �m

γ
	 − 1.
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Since j ≤ s, it follows that
q̂(m) ≤ δj ≤ βm,

where βm is as defined in (3.15). The remainder of the argument is identical to the
proof of Theorem 3.4 so we do not repeat it here.

As an illustration of this more general result, consider the nondecreasing se-
quence of constants given simply by ηi = i

s . These constants are proportional to
the constants used in the procedures for controlling the FDR by Benjamini and
Hochberg [1] and Benjamini and Yekutieli [3]. Applying Theorem 3.5 to this se-
quence of constants yields the following corollary:

Corollary 3.1. For testing Hi : P ∈ ωi, i = 1, . . . , s, suppose p̂i satisfies (2.1).
Then the following are true:
(i) The stepdown procedure with constants η′

i = αηi/D(γ, s), where D(γ, s) is defined
by (3.13), satisfies P{FDP > γ} ≤ α;
(ii) The stepdown procedure with constants η′′

i = γαηi/ max{C�γs�, 1}, where C0 is
understood to equal 0, satisfies P{FDP > γ} ≤ α.

Proof. The proof of (i) follows immediately from Theorem 3.5. To prove (ii), first
observe that N ≤ �γs� + 1 and that for this particular sequence, we have that
βm ≤ min{ m

γs , 1} =: ζm. Hence, we have that

P{
N⋃

i=1

{q̂(m) ≤ βm}} ≤ P{
�γs�+1⋃
m=1

{q̂(m) ≤ ζm}}.

Using Lemma 3.1, we can bound the righthand side of this inequality by the sum

|I|
�γs�+1∑
m=1

ζm − ζm−1

m
.

Whenever �γs� ≥ 1, we have that ζ�γs�+1 = ζ�γs� = s, so this sum can in turn be
bounded by

|I|
γs

�γs�∑
m=1

1
m

≤ 1
γ

C�γs�.

If, on the other hand, �γs� = 0, we can simply bound the sum by 1
γ . Therefore, if

we let C0 = 0, we have that

D(γ, s) ≤ 1
γ

max{C�γs�, 1},

from which the desired claim follows.

In summary, given any nondecreasing sequence of constants δi, we have derived
a stepdown procedure which controls the FDP , and so it is interesting to compare
such FDP -controlling procedures. Clearly, a procedure with larger critical values is
preferable to one with smaller ones, subject to the error constraint. The discussion
from Remark 3.1 leads us to believe that the critical values from a single procedure
will not uniformly dominate those from another, at least approximately. We now
consider some specific comparisons which may shed light on how to choose among
the various procedures.
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Table 2

Values of D(γ, s) and 1
γ

max{C�γs�, 1}

s γ D(γ, s) 1
γ

max{C�γs�, 1} Ratio

100 0.01 25.5 100 3.9216
250 0.01 60.4 150 2.4834
500 0.01 90.399 228.33 2.5258
1000 0.01 128.53 292.9 2.2788
2000 0.01 171.73 359.77 2.095
5000 0.01 235.94 449.92 1.9069
25 0.05 6.76 20 2.9586
50 0.05 12.4 30 2.4194
100 0.05 18.393 45,667 2.4828
250 0.05 28.582 62.064 2.1714
500 0.05 37.513 76.319 2.0345
1000 0.05 47.26 89.984 1.904
2000 0.05 57.666 103.75 1.7991
5000 0.05 72.126 122.01 1.6917
10 0.1 3 10 3.3333
25 0.1 6.4 15 2.3438
50 0.1 9.3867 22.833 2.4325
100 0.1 13.02 29.29 2.2496
250 0.1 18.834 38.16 2.0261
500 0.1 23.703 44.992 1.8981
1000 0.1 28.886 51.874 1.7958
2000 0.1 34.317 58.78 1.7129
5000 0.1 41.775 67.928 1.6261

To compare the constants from parts (i) and (ii) of Corollary 3.1, Table 2 dis-
plays D(γ, s) and 1

γ max{C�γs�, 1} for several different values of s and γ, as well as
the ratio 1

γ max{C�γs�, 1}/D(γ, s). In this instance, the improvement between the
constants from part (i) and part (ii) is dramatic: The constants η′

i are often at least
twice as large as the constants η′′

i .
It is also of interest to compare the constants from part (i) of the corollary with

those from Theorem 3.4. We do this for the case in which s = 100, γ = .1, and
α = .05 in Figure 1. The top panel displays the constants α′′

i from Theorem 3.4 and
the middle panel displays the constants η′

i from Corollary 3.1 (i). Note that the scale
of the top panel is much larger than the scale of the middle panel. It is therefore
clear that the constants α′′

i are generally much larger than the constants η′
i. But it

is important to note that the constants from Theorem 3.4 are not uniformly larger
than the constants from Corollary 3.1 (i). To make this clear, the bottom panel of
Figure 1 displays the ratio α′′

i /η′
i. Notice that at steps 7 - 9, 15 - 19, and 25 - 29

the ratios are strictly less than 1, meaning that at those steps the η′
i are larger than

the α′′
i . Following our discussion in Remark 3.1 that these constants are very nearly

the best possible up to a scalar multiple, we should expect that this would be the
case because otherwise the constants η′

i could be multiplied by a factor larger than
1 and still retain control of the FDP . Even at these steps, however, the constants
η′

i are very close to the constants α′′
i in absolute terms. Since the constants α′′

i

are considerably larger than the constants η′
i at other steps, this suggests that the

procedure based upon the constants α′′
i is preferrable to the procedure based on

the constants η′
i.

4. Control of the FDR

Next, we construct a stepdown procedure that controls the FDR under the same
conditions as Theorem 3.1. The dependence condition used is much weaker than
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Fig 1. Stepdown Constants for s = 100, γ = .1, and α = .05.

that of independence of p-values used by Benjamini and Liu [2].

Theorem 4.1. For testing Hi : P ∈ ωi, i = 1, . . . , s, suppose p̂i satisfies (2.1).
Consider the stepdown procedure with constants

(4.1) α∗
i = min{ sα

(s − i + 1)2
, 1}

and assume the condition (3.5). Then, FDR ≤ α.

Proof. First note that if |I| = 0, then FDR = 0. Second, if |I| = s, then FDR =
P{p̂(1) ≤ α∗

1} ≤
∑s

i=1 P{p̂i ≤ α∗
1} ≤ sα∗

1 = α.
Now suppose that 0 < |I| < s. Define q̂1, . . . , q̂|I| and r̂1, . . . , r̂s−|I| to be the p-

values corresponding, respectively, to the true and false hypotheses, and let q̂(1) ≤
· · · ≤ q̂(|I|) and r̂(1) ≤ · · · ≤ r̂(s−|I|) be their ordered values. Denote by j the largest
index such that r̂(1) ≤ α∗

1, . . . , r̂(j) ≤ α∗
j (defined to be 0 if r̂(1) > α∗

1). Define t to
be the total number of true hypotheses rejected by the stepdown procedure and
f to be the total number of false hypotheses rejected by the stepdown procedure.
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Using this notation, observe that

E(FDP |r̂1, . . . , r̂s−|I|) = E(
t

t + f
{t + f > 0}|r̂1, . . . , r̂s−|I|)

≤ E(
t

t + j
{t > 0}|r̂1, . . . , r̂s−|I|)

≤ |I|
|I| + j

E({t > 0}|r̂1, . . . , r̂s−|I|)

≤ |I|
|I| + j

P{q̂(1) ≤ α∗
j+1|r̂1, . . . , r̂s−|I|)

≤ |I|
|I| + j

|I|∑
i=1

P{q̂i ≤ α∗
j+1|r̂1, . . . , r̂s−|I|}

(4.2) ≤ |I|
|I| + j

|I|α∗
j+1

≤ |I|2
|I| + j

min{ sα

(s − j)2
, 1}

(4.3) ≤ |I|α
(s − j)

|I|s
(|I| + j)(s − j)

.

The inequality (4.2) follows from the assumption (3.5) on the joint distribution
of p-values. To complete the proof, note that |I| + j ≤ s. It follows that |I|α

(s−j) ≤ α

and (|I| + j)(s − j) − |I|s = j(s − |I|) − j2 = j(s − |I| − j) ≥ 0. Combining these
two inequalities, we have that the expression in (4.3) is bounded above by α. The
desired bound for the FDR follows immediately.

The following simple example illustrates the fact that the FDR is not controlled
by the stepdown procedure with constants α∗

i absent the restriction (3.5) on the
dependence structure of the p-values.

Example 4.1. Suppose there are s = 3 hypotheses, two of which are true. In this
case, α∗

1 = α
3 , α∗

2 = 3α
4 , and α∗

3 = min{3α, 1}. Define the joint distribution of the
two true p-values q1 and q2 as follows: Denote by Ii the half open interval [ i−1

3 , i
3 )

and let (q1, q2) ∼ U(Ii×Ij) with probability 1
6 for all (i, j) such that i �= j, 1 ≤ i ≤ 3

and 1 ≤ j ≤ 3. It is easy to see that (q(1), q(2)) ∼ U(Ii × Ij) with probability 1
3 for

all (i, j) such that i < j, 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3. Now define the distribution
of the false p-value r1 conditional on (q1, q2) by the following rule: If q(1) ≤ α/3,
then let r1 = 1; otherwise, let r1 = 0. For such a joint distribution of (q1, q2, r1), we
have that the FDP is identically one whenever q(1) ≤ α

3 and is at least 1
2 whenever

α
3 < q(1) ≤ 3α

4 . Hence,

FDR ≥ P{q(1) ≤
α

3
} +

1
2
P{α

3
< q(1) ≤

3α

4
}.

For α < 4
9 , we therefore have that

FDR ≥ 2α

3
+ (

3α

4
− α

3
) =

13α

12
> α.
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Remark 4.1. Some may find it unpalatable to allow the constants to exceed α.
In this case, one might consider replacing the constants α∗

i above with the more
conservative values α min{ s

(s−i+1)2 , 1}, which by construction are always less than
α. Since these constants are uniformly smaller than the α∗

i , our method of proof
shows that the FDR would still be controlled under the dependence condition (3.5).
The above counterexample, which did not depend on the particular value of α∗

3,
however, would show that it is not controlled in general.

Under the dependence condition (3.5), the constants (4.1) control the FDR in
the sense FDR ≤ α, while the constants given by (3.4) control the FDP in the
sense of (3.3). Utilizing (1.1), we can use the constants (4.1) to control the FDP
by controlling the FDR at level αγ. In Figure 2, we plot the constants (3.4) and
(4.1) for the special case in which s = 100 and we use both constants to control the
FDP for γ = .1, and α = .05.

The top panel displays the constants αi, the middle panel displays the constants
α∗

i , and the bottom panel displays the ratio αi/α∗
i . Since the ratios essentially

always exceed 1, it is clear that in this instance the constants (3.4) are superior to
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Fig 2. FDP Control for s = 100, γ = .1, and α = .05.
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Fig 3. FDR Control for s = 100 and α = .05.

the constants (4.1). If by utilizing (1.1) we use the constants (3.4) to control the
FDR, on the other hand, we find that the reverse is true. Control of the FDR
at level α can be achieved, for example, by controlling the FDP at level α

2−α and
letting γ = α

2 . Figure 3 plots the constants (3.4) and (4.1) for the special case in
which s = 100 and we use both constants to control the FDR at level α = .05.

As before, the top panel displays the constants αi, the middle panel displays the
constants α∗

i , and the bottom panel displays the ratio αi/α∗
i . In this case, the ratio

is always less than 1. Thus, in this instance, the constants α∗
i are preferred to the

constants αi. Of course, the argument used to establish (1.1) is rather crude, but
it nevertheless suggests that it is worthwhile to consider the type of control desired
when choosing critical values.

5. Conclusions

In this article we have described stepdown procedures for testing multiple hypothe-
ses that control the FDP without any restrictions on the joint distribution of the
p-values. First, we have improved upon a method proposed by Lehmann and Ro-
mano [10]. The new procedure is a considerable improvement in the sense that its
critical values are generally 50 percent larger than those of the earlier procedure.
Second, we have generalized the method of argument used in establishing this im-
provement to provide a means by which any nondecresing sequence of constants
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can be rescaled so as to ensure control of the FDP . Finally, we have also described
a procedure that controls the FDR, but only under an assumption on the joint
distribution of the p-values.

In this article, we focused on the class of stepdown procedures. The alternative
class of stepup procedures can be described as follows. Let

(5.1) α1 ≤ α2 ≤ · · · ≤ αs

be a nondecreasing sequence of constants. If p̂(s) ≤ αs, then reject all null hy-
potheses; otherwise, reject hypotheses H(1), . . . , H(r) where r is the smallest index
satisfying

(5.2) p̂(s) > αs, . . . , p̂(r+1) > αr+1.

If, for all r, p̂(r) > αr, then reject no hypotheses. That is, a stepup procedure
begins with the least significant p-value and continues accepting hypotheses as long
as their corresponding p-values are large. If both a stepdown procedure and stepup
procedure are based on the same set of constants αi, it is clear that the stepup
procedure will reject at least as many hypotheses.

For example, the well-known stepup procedure based on αi = iα/s controls the
FDR at level α, as shown by Benjamini and Hochberg [1] under the assumption
that the p-values are mutually independent. Benjamini and Yekutieli [3] generalize
their result to allow for certain types of dependence; also see Sarkar [14]. Benjamini
and Yekutieli [3] also derive a procedure controlling the FDR under no dependence
assumptions. Romano and Shaikh [12] derive stepup procedures which control the
k-FWER and the FDP under no dependence assumptions, and some comparisons
with stepdown procedures are made as well.
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