
CHAPTER 2

ABSTRACT LOGICS AS MODELS

OF SENTENTIAL LOGICS

In this chapter we consider abstract logics as models of sentential logics. Ab-
stract logics are suitable for modelling the metalogical properties that sentential
logics can have; in this they differ notably from matrices. Our purpose is to sin-
gle out for any sentential logic a class of abstract logics that exhibit some crucial
metalogical properties of it. This leads us to distinguish two types of models for
a sentential logic, the models “tout court” and the full models. The latter will be
suitable for our purpose of modelling metalogical properties, an issue that will be
dealt with specifically in the last section of this chapter, and also in Chapter 4.

2.1. Models and full models

We begin by using an abstract logic to define a logic on the algebra of for-
mulas by the ordinary semantic procedure; using it the notion of model will be
introduced.

DEFINITION 2.1. If L = 〈A,C〉 is any abstract logic, the relation |=L induced
by L on the formula algebra is defined, for any Γ ∪ {ϕ} ⊆ Fm, by:

Γ |=L ϕ ⇐⇒ for any h ∈ Hom(Fm,A) , h(ϕ) ∈ C
(
h[Γ ]

)
.

If L is any class of abstract logics, then it induces on the formula algebra the
relation |=L =

⋂
{|=L: L ∈ L}.

PROPOSITION 2.2. The relations |=L and |=L defined on the formula algebra
Fm are structural consequence relations on this algebra.

PROOF. It is easy to see that |=L is a consequence relation, that is, that the
operator defined as ϕ ∈ CnL(Γ ) iff Γ |=L ϕ is a closure operator on Fm.
Actually, CnL is the abstract logic on Fm projectively generated from L by the
family of all homomorphisms Hom(Fm,A). By Theorem XII.2 of Brown and
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Suszko [1973], it is structural. Moreover, the meet of any family of structural
closure operators is also a structural closure operator. a

PROPOSITION 2.3. If there is a bilogical morphism between the abstract logics
L and L′ then |=L = |=L′ ; in particular, |=L = |=L∗ .

PROOF. Let f : A → A′ be the epimorphism which is a bilogical morphism
between L and L′. Since for any h ∈ Hom(Fm,A) , f ◦ h ∈ Hom(Fm,A′),
using 1.4.(ii) we get that |=L′ ⊆ |=L. Conversely, given any g ∈ Hom(Fm,A′),
since f is surjective, there is (by the Axiom of Choice) an h ∈ Hom(Fm,A)
such that f ◦ h = g; then if Γ |=L ϕ we have h(ϕ) ∈ C

(
h[Γ ]

)
which implies

f
(
h(ϕ)

)
∈ f

[
C
(
h[Γ ]

)]
but since f ◦ C = C′ ◦ f by 1.4(iii), we obtain g(ϕ) ∈

C′
(
g[Γ ]

)
. This proves |=L ⊆ |=L′ . a

Now we introduce the general notion of an abstract logic being a model of a
sentential logic.

DEFINITION 2.4. An abstract logic L is a model of a sentential logic S when
for any Γ ∪ {ϕ} ⊆ Fm , Γ `S ϕ implies Γ |=L ϕ. The class of all models of S
will be denoted by ModS.
A sentential logic S is complete with respect to a class of abstract logics L when
for any Γ ∪ {ϕ} ⊆ Fm , Γ `S ϕ iff Γ |=L ϕ.

From Proposition 2.3 follows at once:

PROPOSITION 2.5.

(1) If there is a bilogical morphism between L and L′ then L is a model of S iff
L′ is; in particular, L is a model of S iff L∗ is.

(2) If S is complete with respect to a class L of abstract logics, then it is also
complete with respect to the class L∗. a

The structurality of a sentential logic S implies that S is a model of itself,
therefore so is its Lindenbaum-Tarski quotient S∗ = S/ ∼Ω(S); thus we have:

PROPOSITION 2.6. A sentential logic S is complete with respect to any class
L of its models that includes either S or S∗, and also with respect to the corre-
sponding reduced class L∗. In particular, S is complete with respect to the class
of all its models, and also with respect to the class of all its reduced models. a

Since h(ϕ) ∈ C
(
h[Γ ]

)
if and only if h(ϕ) ∈ T for every T ∈ C such that

h[Γ ] ⊆ T , it results at once that:
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PROPOSITION 2.7. An abstract logic L = 〈A,C〉 is a model of a sentential
logic S if and only if for every T ∈ C, the matrix 〈A, T 〉 is a matrix for S; that is,
if and only if C ⊆ FiSA. a

Thus for every algebra A, the whole family FiSA determines a model of S
on A having the finest closure system; therefore this model is the weakest model
of S on A, according to the ordering relation between abstract logics defined on
page 18.

The notion of model we have just defined corresponds to the notion of a gen-
eralized matrix of a sentential logic, defined by Wójcicki as an arbitrary family
of matrices over the same algebra in his [1969], [1973]. It is obvious that such a
family is a generalized matrix for some S if and only if the abstract logic whose
closure system is the one generated by the set of filters of the matrices in that
family is a model of S in our sense, and conversely every model of S can be
thought of as a generalized matrix for S. The same notion of model, in the form
of a closure operator rather than of a closure system, was put forward by Smiley
in [1962].

In principle it might seem that this notion of model is finer than the usual one
(a matrix), since each model possesses the same structure (a closure operator)
which the sentential logic has; actually with its help one can express the notion
of “being a model of a Gentzen-style rule” in a direct way (see Definition 4.3).
However, we have seen that any family of matrices makes a model; due to this
fact, models can be wildly different from what we intend them to model, and they
might not exhibit some crucial metalogical properties of a sentential logic, like
the Property of Disjunction or the Deduction Theorem, as discussed in Section
2.4 and in Chapter 4. For this reason we will define a more restricted kind of
models.

DEFINITION 2.8. If S is a sentential logic, then an abstract logic L = 〈A,C〉
is a full model of S iff L∗ is equal to the abstract logic 〈A∗,FiSA∗〉, that is, iff
the closure system of the reduction of L consists of all the S-filters of the quotient
algebra.

The class of all full models of S will be denoted by FModS, and the class of all
reduced full models of S by FMod∗S; and for each algebra A, the set of all full
models of S onA will be denoted by FModSA.

We begin our study of full models by confirming that they are indeed models
of the sentential logic, thus justifying the use of the term model in the name we
have chosen for this notion. Moreover, we see that they inherit some properties of
the sentential logic they model:
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PROPOSITION 2.9. Let L be a full model of a sentential logic S. Then:

(1) L is a model of S.
(2) L is finitary.
(3) L has theorems if and only if S has theorems.

PROOF. If L = 〈A,C〉 is a full model of S , then L∗ = 〈A∗,FiSA∗〉; but
an abstract logic of this kind is always finitary (because the union of an upwards
directed family of S-filters is an S-filter), and by 2.7 it is a model of S; since
the canonical projection from A onto A∗ is a bilogical morphism, by 1.17 and
2.5, L itself will also be finitary and a model of S , that is, (1) and (2) hold. If S
does not have theorems then the empty set is the least S-filter on any algebra, and
thus it must be a closed set of any full model of S . Conversely, if S has theorems
then any S-filter has to be non-empty, in particular the least closed set of any full
model of S. This proves (3). a

It is not true that every model is a full model: see Section 5.1.1. Actually, an
interesting problem is to find necessary and/or sufficient conditions for a model
to be full which are at the same time logically interesting and useful for applica-
tions. In Sections 4.2 and 4.3 we solve this problem for two particular classes of
sentential logics. Let us continue with elementary properties of full models of a
sentential logic.

PROPOSITION 2.10. For any algebraA, the abstract logic 〈A,FiSA〉 is a full
model of S, and it is indeed the weakest full model of S onA (i.e., the one having
the finest closure system)16.

PROOF. If we consider the reduction
〈
A∗, (FiSA)∗

〉
of 〈A,FiSA〉, then the

canonical projection π is a bilogical morphism, so by 1.22 (FiSA)∗ = FiSA∗.
As a consequence, 〈A,FiSA〉 is a full model of S. And by 2.9 it is obviously the
weakest one since it is simply the weakest model of S. a

In particular any sentential logic is a full model of itself, and it is actually the
weakest one on Fm.

PROPOSITION 2.11. The class FModS is closed under bilogical morphisms:
That is, if there is a bilogical morphism between two abstract logics L1 and L2

then L1 is a full model of S if and only if L2 is a full model of S . In particular,
an abstract logic L is a full model of S if and only if its reduction L∗ is.

16The full models of the form 〈A,FiSA〉 for an arbitrary algebra A have been called basic full
models of S in the later literature, beginning with Definition 2.10(i) in Font, Jansana, and Pigozzi
[2001].
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PROOF. If there is a bilogical morphism between L1 and L2 then L∗
1 is (log-

ically) isomorphic to L∗
2 . If one of them, say L1, is a full model of S, then

C∗1 = FiSA∗
1 and by 1.22 also C∗2 = FiSA∗

2 ; but since L∗
2 is reduced, this

implies that L2 is a full model of S. a

From Definition 2.8 and Propositions 2.10 and 2.11 it results at once:

COROLLARY 2.12. An abstract logic L is a full model of S if and only if there
is a bilogical morphism from L onto an abstract logic of the form 〈B,FiSB〉. a

COROLLARY 2.13. The class FModS is the smallest class of abstract logics
that contains all those of the form 〈B,FiSB〉 and is closed under bilogical mor-
phisms (i.e., under the operations of taking images and inverse images by bilogical
morphisms). a

We will use these facts very often, namely when we want to prove that some
property holds for every full model: If the property is preserved under bilogical
morphisms, then it is enough, and often simpler, to prove that it holds for every
abstract logic of the form 〈B,FiSB〉. Each of these abstract logics is the finest
full model on the corresponding algebra, and Corollary 2.13 tells us that all full
models have this form, perhaps modulo a bilogical morphism; this may be seen
as a justification of the use of the term full to describe the notion of full model.

Given an abstract logic L, consider the projection of A onto A∗ = A/
∼
Ω(L).

It is a particular case of the situation described in Proposition 1.20, which tells us
that the S-filters on A∗ are the result of reducing the S-filters F on A such that
∼
Ω(L) is compatible with F , that is, such that ∼Ω(L) ⊆ ΩA(F ). Then we obtain
the next characterization, which is particularly interesting for it offers another
view of the “fullness” of full models: An abstract logic L is a full model of S
if and only if its closure system consists of all the S-filters that correspond to an
S-filter on the reductionA∗ ofA by ∼Ω(L).

THEOREM 2.14. An abstract logic L = 〈A, C〉 is a full model of S if and only
if C =

{
F ∈ FiSA : ∼ΩA(C) ⊆ ΩA(F )

}
.

PROOF. (⇒): If L = 〈A, C〉 is a full model of S and F ∈ C, then by
Proposition 2.9 F ∈ FiSA, and in general ∼ΩA(C) ⊆ ΩA(F ), by Proposition
1.2. In order to prove the other inclusion assume that F ∈ FiSA is such that
∼
ΩA(C) ⊆ ΩA(F ), that is, ∼ΩA(C) is compatible with F . By Proposition 1.20
there is some G ∈ FiS

(
A/

∼
ΩA(C)

)
such that F = π−1[G], where π is the pro-

jection fromA ontoA/ ∼ΩA(C). Since π is a bilogical morphism from L onto L∗,
and C∗ = FiS

(
A/

∼
ΩA(C)

)
because L is a full model of S , it results that F ∈ C.

(⇐): Assume now that C =
{
F ∈ FiSA : ∼ΩA(C) ⊆ ΩA(F )

}
. Using Propo-

sition 1.20 again, we see that π is a bilogical morphism between L = 〈A, C〉
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and the abstract logic
〈
A/

∼
ΩA(C),FiS

(
A/

∼
ΩA(C)

)〉
. From this it follows that

C∗ = FiS
(
A/

∼
ΩA(C)

)
and as a consequence L is a full model of S. a

PROPOSITION 2.15. An abstract logic L is a full model of S if and only if
there is a full model of S, Lκ, on a formula algebra Fmκ of suitable cardinality,
and there is some θ ∈ ConFmκ such that L is isomorphic to Lκ/θ. And L is a
reduced full model of S iff L is isomorphic to the reduction of a full model of S
on Fmκ.

PROOF. Simply repeat the construction in the proof of Proposition 1.16 and
apply Proposition 2.11. The second part follows from the first and Proposition
1.13. a

2.2. S-algebras

From the previous properties it follows that the reduced full models of S are
exactly all those abstract logics of the form 〈A,FiSA〉 which are reduced. This
observation suggests that we should highlight the algebras for which this situation
happens:

DEFINITION 2.16. If S is a sentential logic, then an algebraA is an S-algebra
if and only if the abstract logic 〈A,FiSA〉 is reduced, that is, iff it is the algebraic
reduct of a reduced full model of S.

The class of all S-algebras will be denoted by AlgS.

Thus the Lindenbaum-Tarski algebra Fm∗ = Fm/
∼
Ω(S) is an S-algebra

as well. The term “S-algebra” has already been used in the literature, in some
algebraic approaches to smaller classes of sentential logics, to denote a class of
algebras naturally associated with a sentential logic S. Perhaps the most well-
known case is Rasiowa [1974], where this term, introduced in Rasiowa and Siko-
rski [1953], is used for a class of logics of implicative character, the so-called
standard systems of implicative extensional propositional calculi. In Czelakowski
[1980] Proposition 8.5 it is proved that in all these cases Rasiowa’s “S-algebras”
are the algebraic reducts of their reduced matrices; as we shall see, our Propo-
sition 3.2 will confirm that the class we call S-algebras coincides with the class
she called by this name. The first extension of this terminology was performed in
Czelakowski [1981] to equivalential logics with an algebraic semantics, a larger
class of logics that also falls under the scope of Proposition 3.2.

From the definition and previous results on full models we immediately have:
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PROPOSITION 2.17. For any abstract logic L = 〈A, C〉 the following condi-
tions are equivalent:

(i) L is a reduced full model of S.
(ii) L is reduced and C = FiSA.

(iii) A is an S-algebra and C = FiSA. a

PROPOSITION 2.18. Let L = 〈A,C〉 be a full model of S. Then the algebra
A∗ is an S-algebra, and so ∼Ω(L) ∈ ConAlgSA. a

It may be interesting to observe that in order to obtain the class of S-algebras
one does not need the notion of full model; the notion of model is enough:

PROPOSITION 2.19. For any sentential logic S, the class of S-algebras is the
class of the algebraic reducts of all the reduced models of S.

PROOF. For any A, the abstract logic 〈A,FiSA〉 is a model of S, and if A ∈
AlgS then it is reduced. Conversely, if L = 〈A, C〉 is any model of S then
C ⊆ FiSA by 2.7, therefore ∼Ω

(
〈A,FiSA〉

)
⊆ ∼
Ω(L); thus if L is reduced then

so is 〈A,FiSA〉, and this means thatA ∈ AlgS . a

PROPOSITION 2.20. The class of S-algebras is closed under isomorphisms.

PROOF. If A1 and A2 are two isomorphic algebras, then it is easy to prove,
using 1.19, that the latticesFiSA1 andFiSA2 are also isomorphic by the induced
mapping; therefore by 1.21 the abstract logics 〈A1,FiSA1〉 and 〈A2,FiSA2〉
are isomorphic abstract logics. Hence one of them is reduced iff the other one is.
ThereforeA1 is an S-algebra iffA2 is. a

Although it contains some redundancies, the next result is of interest since it
has a general form corresponding to many of Verdú’s results for particular S,
especially those in Font and Verdú [1988], [1989b], [1991] and those in Verdú
[1978], [1979], [1987]. See Chapter 5 for the exact correspondence between 2.21
and these particular results; as we show there, using 2.21, these particular results
give nice characterizations of full models of S in many cases where the S-algebras
and the S-filters on them have already been characterized.

PROPOSITION 2.21. For any abstract logic L = 〈A,C〉 the following condi-
tions are equivalent:

(i) L is a full model of S.
(ii) A/ ∼Ω(L) is an S-algebra and C/ ∼Ω(L) = FiS

(
A/

∼
Ω(L)

)
.

(iii) There is a bilogical morphism between the abstract logic L and an abstract
logic L′ = 〈A′,C′〉 such that A′ is an S-algebra and C′ = FiSA′. a
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Notice also that the characterizations of algebras in terms of closure operators
contained in Verdú [1985], having the form “an algebra belongs to such-and-such
class of algebras if and only if there is a closure operator on it satisfying some list
of properties and being reduced”, will become instances of the definition of S-
algebra for those S whose full models are characterized by that list of properties.

THEOREM 2.22 (Completeness Theorem). Any sentential logic S is complete
with respect to the following classes of abstract logics:

(1) The class of all full models of S.
(2) The class of all abstract logics of the form 〈A,FiSA〉 for all algebrasA.
(3) The class of all reduced full models of S, i.e., the class of all abstract logics

of the form 〈A,FiSA〉 for allA ∈ AlgS.

PROOF. The three classes consist of models of S, and S∗ belongs to all of
them. Therefore these classes satisfy the conditions of Proposition 2.6, so S is
complete with respect to each one of them. a

The usefulness of this result, especially its part (3), for a particular S, depends
on the characterizations we may have of the class AlgS and of the operator of
S-filter-generation on the algebras of this class.

We have seen that the relationship between AlgS and FModS is similar to
the one existing between Alg∗S and MatrS: in both cases the algebras are the
algebraic reducts of the reduced models under consideration. Now we determine
the precise relationship between the two classes of algebras.

THEOREM 2.23. For any sentential logic S, the class AlgS is the class of
all subdirect products of algebras in the class Alg∗S; in symbols: AlgS =
PSDAlg∗S.

PROOF. If A ∈ AlgS, we have that IdA = ∼
ΩA(FiSA) =

⋂
{ΩA(F ) :

F ∈ FiSA}. In this situation we know that A is a subdirect product of the
quotients {A/ΩA(F ) : F ∈ FiSA}, and it is always true that A/ΩA(F ) ∈
Alg∗S when F ∈ FiSA. Conversely, let A be a subdirect product of a family
{Ai : i ∈ I} ⊆ Alg∗S; thus for each i ∈ I there is some Fi ∈ FiSAi such
that ΩAi

(Fi) = IdAi
. Now consider the closure system C generated on A by

the family of subsets {π−1
i [Fi] : i ∈ I}, where πi is the canonical epimorphism

from A onto Ai. The abstract logic 〈A, C〉 is obviously a model of S, and it is
reduced: If 〈a, b〉 ∈ ∼

ΩA(C) =
⋂
{ΩA(T ) : T ∈ C} then for each i ∈ I , 〈a, b〉 ∈

ΩA
(
π−1
i [Fi]

)
= π−1

i

[
ΩAi

(Fi)
]

= π−1
i [IdAi

] = kerπi , that is, πi(a) = πi(b)
for all i ∈ I , which implies a = b. We have proved that 〈A, C〉 is a reduced model
of S. By Proposition 2.19,A ∈ AlgS. a
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COROLLARY 2.24. For any sentential logic S, Alg∗S ⊆ AlgS; and Alg∗S =
AlgS if and only if the class Alg∗S is closed under subdirect products. a

Among the many consequences of Theorem 2.23 is that the class AlgS is al-
ways closed under subdirect products; hence it is also closed under direct prod-
ucts. Since quasivarieties are always closed under subdirect products, it may be
interesting to record the following:

COROLLARY 2.25. If the class Alg∗S is a quasivariety, then Alg∗S = AlgS.
In particular, this holds when Alg∗S is a variety. a

This covers many of the common sentential logics, whose associated classes
of algebras are quasivarieties or varieties. Moreover, in Chapter 3 we prove that
for all protoalgebraic sentential logics, a rather wide class, the equality Alg∗S =
AlgS also holds, even if this class is not a variety or a quasi-variety; the logic LJ
of the “last judgement” invented by Herrmann [1993b] is an example where this
class is not even elementary. In addition, the converse of Corollary 2.25 is not
true, that is, AlgS can be a quasivariety, or even a variety, without being equal
to Alg∗S; again the {∧,∨}-fragment of classical logic is an example, see Section
5.1.1.

Another consequence of Theorem 2.23 is that, even if they are different, these
two classes generate the same quasivariety, and a fortiori the same variety:

PROPOSITION 2.26. For each sentential logic S, the classes of algebras AlgS
and Alg∗S generate the same quasivariety and the same variety; this variety is
the class KS , that is, the variety generated by the Lindenbaum-Tarski algebra
Fm∗.

PROOF. From the result in Theorem 2.23 it follows that the quasivariety gen-
erated by AlgS is included in the quasivariety generated by Alg∗S; but since by
Corollary 2.24 Alg∗S ⊆ AlgS, the opposite inclusion also holds, and the two
quasivarieties are equal. As a consequence, the varieties generated by them also
coincide, and by Proposition 1.23 this variety is KS . a

This result adds further support, from within our theory, to the common idea
that if one insists on associating a variety with every sentential logic in a uniform
way, then the variety KS generated by the Lindenbaum-Tarski algebra is the most
natural one; but we have already mentioned that there are cases where there is no
point in doing so.

PROPOSITION 2.27. If S and S ′ are two sentential logics, and S ′ is stronger
than S, then AlgS ′ ⊆ AlgS and Alg∗S ′ ⊆ Alg∗S.
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PROOF. If S 6 S ′ then for any A , FiS′A ⊆ FiSA, and this directly implies
Alg∗S ′ ⊆ Alg∗S. Then, using Theorem 2.23, this implies AlgS ′ ⊆ AlgS. a

So far we have associated three classes of algebras with an arbitrary sentential
logic: Alg∗S ,AlgS ,KS . We have seen that Alg∗S ⊆ AlgS ⊆ KS ; the two
extreme ones have already been considered in the literature, but sometimes Alg∗S
is too small and Alg∗S  AlgS = KS , and sometimes KS is too large and
Alg∗S = AlgS  KS , as in several examples we have already mentioned. It is
then natural to ask the following question:

OPEN PROBLEM. Is there a sentential logic S such that the three classes of
algebras are all different, that is, such that Alg∗S  AlgS  KS ?17

By Proposition 3.2, a logic with this property cannot be protoalgebraic, and by
Corollary 2.25 the first two classes cannot be quasivarieties. Moreover, by the
results we will find in Chapter 4, such a logic cannot be selfextensional and at the
same time satisfy the Property of Conjunction, or the Deduction Theorem.

2.3. The lattice of full models over an algebra

In this section we will prove that the ordered set 〈FModSA,6〉 and the ordered
set 〈ConAlgSA,⊆〉 are isomorphic through the Tarski operator (Theorem 2.30)
and that the second one is a complete lattice (Theorem 2.31); as a consequence
the set of all full models of S over an algebra will also become a complete lattice.
We begin by introducing a construction which will turn out to be inverse to the
Tarski operator, and which has an interest of its own.

DEFINITION 2.28. Let A be any algebra. For any θ ∈ ConA, we denote
by
∼
HA(θ) = 〈A,Cθ〉 the abstract logic projectively generated on A from the

abstract logic
〈
A/θ,FiS(A/θ)

〉
by the canonical projection π ofA ontoA/θ.

Note that with this definition π becomes a bilogical morphism between
∼
HA(θ)

and the abstract logic〈A/θ,FiS(A/θ)〉. Now we record some general properties
of this construction.

LEMMA 2.29. For any θ ∈ ConA, it holds that θ ∈ Con
∼
HA(θ). Moreover,

it holds that
∼
HA(θ)/θ = 〈A/θ,FiS(A/θ)〉, that

∼
HA(θ) ∈ FModSA and that

the mapping θ 7→
∼
HA(θ) is order-preserving: If θ1, θ2 ∈ ConA are such that

θ1 ⊆ θ2 then
∼
HA(θ1) 6

∼
HA(θ2).

17This problem was solved in the affirmative in Bou [2001] in the context of the study of certain
subintuitionistic logics, and, independently, in Babyonyshev [2003] by an ad-hoc construcion.
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PROOF. If 〈a, b〉 ∈ θ then π(a) = π(b) and thus FiA/θS
(
π(a)

)
= FiA/θS

(
π(b)

)
,

therefore π−1
[
FiA/θS

(
π(a)

)]
= π−1

[
FiA/θS

(
π(b)

)]
. But by construction we

know that Cθ = π−1 ◦FiA/θS ◦π; therefore we get Cθ(a) = Cθ(b). Thus we have

proved that θ ∈ Con
∼
HA(θ). The second part of the statement comes directly

from the construction. Moreover, since
〈
A/θ,FiS(A/θ)

〉
is always a full model

of S , by 2.11
∼
HA(θ) is also a full model of S. To prove the last part of the Lemma,

take θ1, θ2 ∈ ConA and consider the natural projections π1 : A → A/θ1 and
π2 : A → A/θ2. If moreover θ1 ⊆ θ2 then the mapping j(a/θ1) = a/θ2 is an
epimorphism fromA/θ1 ontoA/θ2, and the following diagram

A
π1- A/θ1

A/θ2

j

?

π
2

-

commutes. As a consequence, if Z ∈ FiS(A/θ2) then j−1[Z] ∈ FiS(A/θ1).

Due to this, the closure system of
∼
HA(θ2), which is projectively generated from

FiS(A/θ2) by π2, satisfies

Cθ2 = {π−1
2 [Z] : Z ∈ FiS(A/θ2)} =

=
{
π−1

1

[
j−1[Z]

]
: Z ∈ FiS(A/θ2)

}
⊆

⊆
{
π−1

1 [X] : X ∈ FiS(A/θ1)
}

= Cθ1 ,

that is, it is contained in the closure system of
∼
HA(θ1), which is projectively

generated from FiS(A/θ1) by π1. Therefore,
∼
HA(θ1) 6

∼
HA(θ2) as was to be

shown. a

We will now prove18 that, when restricted to ConAlgSA, this mapping is ex-
actly the inverse of the Tarski operator, and that both mappings are order-isomor-
phisms.

THEOREM 2.30 (The Isomorphism Theorem). For any algebra A, the Tarski
operator ∼ΩA is an order-isomorphism between the ordered sets 〈FModSA,6〉
and 〈ConAlgSA,⊆〉; and the mapping

∼
HA is its inverse.

PROOF. As we have already observed in Proposition 2.18, if L ∈ FModSA
then ∼

ΩA(L) ∈ ConAlgSA. Dually, in Lemma 2.29 we have seen that if θ ∈

18For an essentially different proof, see Font, Jansana, and Pigozzi [2006].
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ConAlgSA then
∼
HA(θ) ∈ FModSA. So both mappings are well-defined. Now

we will see that they are bijections.
We first prove that

∼
HA

( ∼
ΩA(L)

)
= L assuming that L = 〈A,C〉 ∈ FModSA:

If L is a full model of S, we have already seen in 2.18 thatA∗ is an S-algebra, and
that ∼ΩA(L) ∈ ConAlgSA; moreover, C is projectively generated from its reduc-
tion C∗ = FiSA∗ by the canonical projection from A onto A∗ = A/

∼
ΩA(L).

By Definition 2.28, this is exactly
∼
HA

( ∼
ΩA(L)

)
, therefore

∼
HA

( ∼
ΩA(L)

)
= L.

Let now θ ∈ ConAlgSA; we now prove that ∼ΩA
(∼
HA(θ)

)
= θ: Observe

that ∼ΩA/θ
(
FiS(A/θ)

)
= IdA/θ precisely because θ ∈ ConAlgSA. Then, using

Proposition 1.7, we have
∼
ΩA

(∼
HA(θ)

)
= ∼
ΩA

(
π−1

[
FiS(A/θ)

])
= π−1

[ ∼
ΩA/θ

(
FiS(A/θ)

)]
= π−1[IdA/θ] = θ

Putting together the results of the last two paragraphs, we obtain that both map-
pings are bijections. Since by its own definition ∼

ΩA is order-preserving, and by
Lemma 2.29

∼
HA is also order-preserving, we conclude that they are order-iso-

morphisms between the two ordered sets. This ends the proof of the theorem. a

Independently of this result, we can determine that the set ConAlgSA involved
in the Isomorphism Theorem, ordered under ⊆, has a lattice structure.

THEOREM 2.31. For any algebraA, the ordered set 〈ConAlgSA,⊆〉 is a com-
plete lattice, where inf is intersection.

PROOF. Let {θi : i ∈ I} be a non-empty family of elements of ConAlgSA,
and put θ =

⋂
{θi : i ∈ I}; we will prove that θ ∈ ConAlgSA. First of all

we observe that for any a ∈ A , a/θ =
⋂
{a/θi : i ∈ I}, and consider, for

each i ∈ I , the mapping hi : A/θ → A/θi defined by hi(a/θ) = a/θi, which
is an epimorphism. By assumption, for every i ∈ I , the abstract logic Li =〈
A/θi,FiS(A/θi)

〉
is reduced, and we have to show that L =

〈
A/θ,FiS(A/θ)

〉
is reduced. Since h−1

i

[
FiS(A/θi)

]
⊆ FiS(A/θ) by Proposition 1.7 we have

∼
Ω(L) ⊆ ∼

ΩA/θ
(
h−1
i

[
FiS(A/θi)

])
=

= h−1
i

[ ∼
ΩA/θi

(
FiS(A/θi)

)]
= h−1

i [IdA/θi
]

because Li is reduced. Therefore if 〈a/θ, b/θ〉 ∈ ∼
Ω(L) then a/θi = b/θi for

each i ∈ I , and as a consequence a/θ = b/θ. This proves that L is reduced,
that is, that θ ∈ ConAlgSA. Thus ConAlgSA is closed under intersections of
non-empty families. On the other hand, if A is trivial (1-element) then either
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FiSA = {A}, if S has theorems, or FiSA = {∅ , A}, if S doesn’t; in either
case the abstract logic 〈A,FiSA〉 is reduced, and hence it is a full model of S,
which shows thatA ∈ AlgS. As a consequence, for an arbitraryA, the universal
congruence A × A ∈ ConAlgSA, which concludes the proof that the ordered set
ConAlgSA is a complete lattice. a

Since Theorem 2.30 establishes an order-isomorphism, we get immediately:

COROLLARY 2.32. For any A, the ordered set 〈FModSA,6〉 is a complete
lattice, and the Tarski operator is a lattice isomorphism between 〈FModSA,6〉
and 〈ConAlgSA,⊆〉. a

Note that, although FModSA is a subset of the complete lattice of all ab-
stract logics over A, it need not be a sublattice; indeed, we do not have nice
characterizations of the lattice operations in 〈FModSA ,6〉. The only thing we
can say is that, as a consequence of the preceding results, given any collection
{Li : i ∈ I} of full models of S on the same algebra A, its infimum in the
lattice of full models of S can be obtained as the abstract logic projectively gen-
erated from 〈A/θ,FiS(A/θ)〉 by the canonical projection ofA ontoA/θ, where
θ =

⋂
{ ∼Ω(Li) : i ∈ I}.

PROPOSITION 2.33. Let L1 and L2 be two full models of S , and let h be a
bilogical morphism between them. Then the mapping C 7→ {h[X] : X ∈ C} is
an isomorphism between the lattice of all full models of S on A1 extending L1

and the lattice of all full models of S onA2 extending L2. And also the principal
ideals of ConAlgSA1 and of ConAlgSA2 determined respectively by ∼

ΩA1(L1)
and by ∼ΩA2(L2) are isomorphic.

PROOF. In Corollary 1.6 we have seen that the mapping C 7→ ĥ(C) = {h[X] :
X ∈ C} is an isomorphism between the lattices of all abstract logics on A1

extending L1 and of all abstract logics on A2 extending L2. But this mapping
establishes in each case a bilogical morphism between the two abstract logics
whose closure systems are C and ĥ(C), and by Proposition 2.11 one of these is a
full model of S if and only if the other one is. a

And as a particular case we have:

COROLLARY 2.34. If A,B are algebras and h : A → B is an epimorphism
satisfying any of the equivalent conditions appearing in Proposition 1.21, then h
induces an isomorphism between the complete lattices FModSA and FModSB;
and also the lattices ConAlgSA and ConAlgSB are isomorphic.

PROOF. This is the conjunction of 1.21 and 2.33 taking into account that, by
2.10, the abstract logic 〈A,FiSA〉 is the weakest full model of S onA. a
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Finally we will use the language of categories to express the fact that, in some
sense, using S-algebras is “equivalent” to using reduced full models of S, and
that the process of reduction L 7−→ L∗ has a good behaviour when considered
globally, as a relationship between two categories of abstract logics.

THEOREM 2.35. The algebraic category of the S-algebras together with ho-
momorphisms is isomorphic to the category whose objects are the reduced full
models of S, and whose arrows are the logical morphisms between its objects.

PROOF. It is trivial to check that the class of abstract logics mentioned in the
statement is really a category, since the identity mapping is a logical morphism,
the composition of two logical morphisms is a logical morphism, and this com-
position is associative. To see that the category of S-algebras is isomorphic to
the category of reduced full models of S it is enough to consider the functor de-
fined on objects byA 7−→ 〈A,FiSA〉, and defined on arrows by the identity: We
know that ifA ∈ AlgS then 〈A,FiSA〉 ∈ FMod∗S, and that every reduced full
model of S is of this form, so this is a bijection between objects; and since for
every h ∈ Hom(A,B) and every F ∈ FiSB , h−1[F ] ∈ FiSA, h is a logical
morphism between 〈A,FiSA〉 and 〈B,FiSB〉, thus clearly this is a functor at
the arrows level, and this finishes the proof that this functor is an isomorphism
between the two categories. a

The category of reduced full models of S considered in 2.35 is trivially a full
subcategory of the category whose objects are all full models of S with logical
morphisms as arrows. But if we only use surjective arrows then we obtain a more
precise relationship between both categories of abstract logics:

THEOREM 2.36. The category L∗ of reduced full models of S with surjective
logical morphisms is a full reflective subcategory of the category L of all full
models of S with surjective logical morphisms; and the reflector is the functor
associated with the process of “reduction”: L 7−→ L∗.

PROOF. L∗ is trivially a full subcategory of L. In order to check that the
process of reduction L 7→ 〈L∗, πL〉 (where πL : L → L∗ is the canonical
projection) gives the announced reflector, it is enough to check (see Balbes and
Dwinger [1974] I.18.2, for instance) that for an arbitrary surjective logical mor-
phism f : L → L′ between an L ∈ FModS and an L′ ∈ FMod∗S there is
a unique surjective logical morphism f∗ : L∗ → L′ such that f∗ ◦ πL = f .
Since πL is a bilogical morphism, we can use Proposition 1.15 if we prove that
ker f ⊇ kerπL = ∼

Ω(L). For this, consider the logic L0 projectively generated
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from L′ by f ; since f is an epimorphism, it becomes a bilogical morphism be-
tween L0 and L′, and since by assumption f−1[T ] ∈ C for all T ∈ C′, it results
that L 6 L0. Now, using Proposition 1.7 and that L′ is reduced, we have that
kerπL = ∼

Ω(L) ⊆ ∼
Ω(L0) = f−1

[ ∼
Ω(L′)

]
= f−1[IdA′ ] = ker f . Then we can

use Proposition 1.15 to obtain a unique logical morphism f∗ : L∗ → L′ with
f∗ ◦ πL = f ; and this equality implies it is surjective. a

In Theorem 2.44 we will find a better result for a restricted class of sentential
logics, where this reflector will reflect all logical morphisms, and not just the
surjective ones.

2.4. Full models and metalogical properties

In this section we will see how some typical metalogical properties are inherited
by full models of a sentential logic, while others may require additional assump-
tions. We have already noted in Proposition 2.9 that every full model of S inherits
some of the basic properties of a sentential logic S: those of being finitary, of hav-
ing theorems and of not having theorems. Clearly the second of these properties
is inherited by arbitrary models, while it is easy to see that the first and the third
one are not.

In general, the metalogical properties under consideration must be such that
it makes sense to ask whether an arbitrary abstract logic satisfies them. That is,
they must be properties of the closure operator CnS associated with `S and of its
relationship with the algebraic structure of the underlying algebra. Most of them
can be expressed in the form of a Gentzen-style rule for the derivability relation
`S . In order to obtain a useful degree of precision we give the following definition
of Gentzen-style rule. A sequent will be a pair 〈Γ, ϕ〉, written Γ ` ϕ, where Γ is
a finite set of formulas and ϕ is a formula. A Gentzen-style rule is a pair which
consists of a finite set {Γi ` ϕi : i < k} of sequents and a sequent Γ ` ϕ, which
follows from the set according to the rule; the rule is often writen symbolycally
in the “fraction” form

{Γi ` ϕi : i < k}
Γ ` ϕ

, (2.7)

and one says that a sentential logic S satisfies the Gentzen-style rule represented
in (2.7) whenever for any substitution σ the following implication holds:

If for all i < k , σ[Γi] `S σ(ϕi) holds, then σ[Γ ] `S σ(ϕ) holds. (2.8)
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In practice Gentzen-style rules are often described by using schemes that group
together rules having a common form. For example, the expression

Γ, ψ1 ` ϕ Γ,ψ2 ` ϕ
Γ,ψ1 ∨ ψ2 ` ϕ

(2.9)

has to be understood as varying over all finite sets of formulas Γ and all formu-
las ϕ,ψ1, ψ2. Strictly speaking it describes an infinite set of Gentzen-style rules
which is closed under substitution instances (i.e. if it contains a rule, it contains
the rule we obtain by applying an arbitrary substitution to all its formulas). In
this way one does not need to use substitutions when characterizing the sentential
logics that satisfy it, and we have that the sentence “(2.9) is a (Gentzen-style) rule
of S” actually means that for all finite Γ and all ϕ,ψ1, ψ2, if Γ, ψ1 `S ϕ and
Γ, ψ2 `S ϕ then Γ, ψ1 ∨ ψ2 `S ϕ, as the rule scheme suggests.

Several of the properties considered in this section are of this kind, and one of
the ways of further formalizing these issues in a general setting is by the use of
Gentzen systems; we do this in Chapter 4.

By contrast, by a Hilbert-style rule of S we mean any sequent Γ ` ϕ such
that Γ `S ϕ holds. It is clear that both Hilbert-style and Gentzen-style rules can
be formulated for an abstract logic L = 〈A,C〉 by substituting the `S relation
by the closure operator C of L, in an obvious way. Hence, they are metalogical
properties of a sentential logic suitable to be investigated in the sense explained
above. Note that, actually, an abstract logic is a model of S iff it satisfies all
Hilbert-style rules of S.

The congruence property

Recall that, for an arbitrary closure operator C, we denote by CT the closure
operator whose closure system is CT = {T ′ ∈ C : T ⊆ T ′}. We introduce an
equivalence relation and a mapping naturally associated with any closure opera-
tor:

DEFINITION 2.37. Let C be a closure operator on a set A. Then the Frege
relation of C is:

Λ(C) =
{
〈a, b〉 ∈ A×A : C(a) = C(b)

}
.

The Frege operator is the mapping ΛC : F ⊆ A 7−→ ΛC(F ) = Λ(CF ).
If L = 〈A,C〉 is an abstract logic, it will be convenient to use the notations

Λ(L) and ΛL instead of Λ(C) and ΛC respectively.

Note that Λ(C) = ΛC

(
C(∅)

)
, and that ΛC is always order-preserving: if F ⊆

G then ΛC(F ) ⊆ ΛC(G). Moreover:
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PROPOSITION 2.38. A closure operator C on a set A is finitary iff the Frege
operator ΛC preserves unions of directed families of subsets of A; that is, for any
directed family D of subsets of A , ΛC(

⋃
D) =

⋃
{ΛC(F ) : F ∈ D}.

PROOF. Let D be any directed family of subsets of A. Since ΛC is always
order-preserving, we have ΛC(

⋃
D) ⊇

⋃
{ΛC(F ) : F ∈ D}. To prove the con-

verse inclusion, suppose that 〈a, b〉 ∈ ΛC(
⋃
D), that is, C(

⋃
D, a) = C(

⋃
D, b).

The finitarity of C implies that there are c1, . . . , cn ∈
⋃
D such that

C(c1, . . . , cn, a) = C(c1, . . . , cn, b),

but since D is directed there is some F ∈ D such that all ci ∈ F , which implies
C(F, a) = C(F, b), that is, 〈a, b〉 ∈ ΛC(F ), and therefore 〈a, b〉 ∈

⋃
{ΛC(F ) :

F ∈ D}. This proves that ΛC(
⋃
D) =

⋃
{ΛC(F ) : F ∈ D}, and thus that ΛC

preserves unions of directed families of subsets of A. Conversely, take any non-
empty X ⊆ A and put D = {F ⊆ X : F is finite }; this is a directed family with⋃
D = X . If a ∈ C(X) then for any b ∈ X it holds that C(X, a) = C(X, b) =

C(X) so in particular 〈a, b〉 ∈ ΛC(X) = ΛC(
⋃
D) =

⋃
{ΛC(F ) : F ∈ D} by

assumption. So there is a finite F ⊆ X with 〈a, b〉 ∈ ΛC(F ), that is, C(F, a) =
C(F, b) which implies a ∈ C(F, b). Since F ∪ {b} is a finite subset of X , this
proves that C is finitary. a

For any closure operator C, the Frege relation Λ(C) is trivially an equiva-
lence relation. If L = 〈A,C〉 is an abstract logic, then in general Λ(L) is
not a congruence of A; actually ConL =

{
θ ∈ ConA : θ ⊆ Λ(L)

}
, and

∼
Ω(L) = max ConL is precisely the greatest logical congruence of L included in
Λ(L).

DEFINITION 2.39. We say that an abstract logic L = 〈A,C〉 has the congru-
ence property when Λ(L) ∈ ConA, that is, when Λ(L) = ∼

Ω(L).

Note that a reduced abstract logic L = 〈A,C〉 has the congruence property if
and only if for all a, b ∈ A, C(a) = C(b) implies a = b; that is, when C(a) =
C(b) holds exactly when a = b. By this, we see that properties of the underlying
algebra can be expressed as properties of the closure operator, which can thus be
extended to greater classes of abstract logics (for instance, if they are preserved
under bilogical morphisms).

PROPOSITION 2.40. The congruence property is preserved by bilogical mor-
phisms. That is, if there is a bilogical morphism between two abstract logics then
one of them has the congruence property if and only if the other one has it.

PROOF. Suppose that h is a bilogical morphism between the abstract logics
L and L′. By Proposition 1.7 we have ∼

Ω(L) = h−1
[ ∼
Ω(L′)

]
. Now if L′
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has the congruence property and 〈a, b〉 ∈ Λ(C), it follows that
〈
h(a), h(b)

〉
∈

Λ(C′) = ∼
Ω(L′) and so 〈a, b〉 ∈ ∼

Ω(L); therefore Λ(C) = ∼
Ω(L) which means

that L has the congruence property. Conversely, suppose that L does have it,
and that 〈a′, b′〉 ∈ Λ(C′). Let a′ = h(a) and b′ = h(b) for some a, b ∈ A.
Then h

[
C(a)

]
= C′

(
h(a)

)
= C′

(
h(b)

)
= h

[
C(b)

]
, and by Proposition 1.5

C(a) = h−1
[
h
[
C(a)

]]
= h−1

[
h
[
C(b)

]]
= C(b), that is, 〈a, b〉 ∈ Λ(C) =

∼
Ω(L) = h−1

[ ∼
Ω(L′)

]
which yields 〈a′, b′〉 ∈ ∼Ω(L′). This proves that L′ has the

congruence property. a

These definitions apply obviously to sentential logics; the Frege relation is then
just interderivability, while for any theory Γ , the relationΛS(Γ ) is the interderiv-
ability relation modulo the theory Γ . With regard to the behaviour of these two
relations, we define two kinds of sentential logics of particular interest:

DEFINITION 2.41. A sentential logic S is selfextensional when, considered as
an abstract logic, it has the congruence property, that is, when Λ(S) = ∼

Ω(S).

A sentential logic S is strongly selfextensional19 when all its full models have the
congruence property, that is, when for any L ∈ FModS , ∼Ω(L) = Λ(L).

The notion of a selfextensional logic has been introduced and studied by Wój-
cicki (see Section 5.6 of his [1988]). A sentential logic S is selfextensional if and
only if it satisfies the following metalogical property:

If ϕi a`S ψi for all i < n, then $ϕ0 . . . ϕn−1 `S $ψ0 . . . ψn−1

for each basic operation$ of the similarity type, where n is the arity of the opera-
tion. A sentential logic is strongly selfextensional when this property is inherited,
in the obvious sense, by all its full models. In view of Proposition 2.40 and Corol-
lary 2.12, we observe:

PROPOSITION 2.42. A sentential logic S is strongly selfextensional iff every
abstract logic of the form 〈A,FiSA〉 has the congruence property. a

Thus the congruence property is hard-wired inside strongly selfextensional log-
ics, since by taking all filters on any algebra we always obtain it. It is clear that
any strongly selfextensional logic is also selfextensional.

OPEN PROBLEM. Is every selfextensional logic strongly selfextensional ?

19This property is defined by requiring that all full models satisfy the congruence property, which
defines selfextensionality for sentential logics. Accordingly, in later publications the more descriptive
term fully selfextensional has been adopted, beginning with Definition 16 in Font [2003b].
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In Chapter 4 we answer this affirmatively for two very large classes of logics,
those with Conjunction and those with the Deduction Theorem, but a general
answer is not known20.

Now we give two properties showing that sentential logics in these classes have
a nice behaviour.

PROPOSITION 2.43. Let S be any selfextensional sentential logic. Then an
equation ϕ ≈ ψ is valid in the variety KS if and only if ϕ a`S ψ .

PROOF. By (1.6), an equation ϕ ≈ ψ holds in KS iff γ(ϕ, ~q ) a`S γ(ψ, ~q )
for any γ(p, ~q ) ∈ Fm. By taking γ(p, ~q ) = p we obtain one of the implications,
which holds in general. Conversely, if ϕ a`S ψ and S is selfextensional, then
the congruence property implies the replacement property, that is, that for any
γ(p, ~q ) ∈ Fm , γ(ϕ, ~q ) a`S γ(ψ, ~q ), and this tells us that ϕ ≈ ψ holds in
KS . a

The next result is the improvement of Theorem 2.36 we announced before.

THEOREM 2.44. If S is a strongly selfextensional sentential logic, then the
category L∗

+ of all reduced full models of S with all logical morphisms is a full
reflective subcategory of the category L+ of all full models of S with all logical
morphisms; and the reflector is the functor associated with the process of “reduc-
tion”: L 7−→ L∗.

PROOF. The proof follows the lines of the proof of Theorem 2.36 except for
the proof of the central point. L∗

+ is trivially a full subcategory of L+. In order
to check that the process of reduction L 7→ 〈L∗, πL〉 (where πL : L → L∗ is
the canonical projection) gives the announced reflector, it is enough to check (see
Balbes and Dwinger [1974] I.18.2 for instance) that for any logical morphism
f : L → L′ between an L ∈ FModS and an L′ ∈ FMod∗S there is a unique
logical morphism f∗ : L∗ → L′ such that f∗ ◦ πL = f . Since πL is a bilogical
morphism, we can use Proposition 1.15 if we prove that ker f ⊇ kerπL = ∼

Ω(L).
Let a, b ∈ A with 〈a, b〉 ∈ ∼

Ω(L); since S is strongly selfextensional, L has the
congruence property, so we have 〈a, b〉 ∈ Λ(L), that is, for any T ∈ CL , a ∈ T
iff b ∈ T . Since L′ is a reduced full model of S, C′L = FiSA′, and since f is
a logical morphism, this implies that for any F ∈ FiSA′ , f−1[F ] ∈ CL, and
so f(a) ∈ F iff f(b) ∈ F , that is,

〈
f(a), f(b)

〉
∈ Λ(L′) = ∼

Ω(L′) = IdA′

again because L′ has the congruence property and is reduced. Thus f(a) = f(b)
which proves 〈a, b〉 ∈ ker f . Then by Proposition 1.15 there is a unique logical
morphism f∗ : L∗ → L′ with f∗ ◦ πL = f as was desired. a

20The general question was answered negatively in Babyonyshev [2003] by providing an example
of a selfextensional logic that is not strongly selfextensional.
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The Property of Conjunction

DEFINITION 2.45. Let L = 〈A,C〉 be an abstract logic of some similarity
type, and let ∧ be a binary operation symbol, either primitive or defined by a
term. We say that L has the Property of Conjunction (PC) with respect to ∧
when for any a, b ∈ A,

C(a , b) = C(a ∧ b). (PC)

In the literature it is also said that an abstract logic L is conjunctive or that the
binary term ∧ is a Conjunction for L when L has the PC with respect to ∧. Nor-
mally we will omit the reference “with respect to ∧” since the operation involved
will be clear from context. The following observations are straightforward and/or
well-known:

1. L has the PC iff for any T ∈ C and any a, b ∈ A , a ∧ b ∈ T iff a ∈ T and
b ∈ T .

2. The Property of Conjunction is preserved under bilogical morphisms (see Font
and Verdú [1991], Proposition 4.1). In particular, L has the PC iff L∗ has the
PC.

3. If L has the PC with respect to ∧ thenΛ(L) is a congruence with respect to ∧,
and for every F ⊆ A , ΛL(F ) is also a congruence with respect to ∧.

4. A sentential logic S has the PC iff the following rules hold for S:

ϕ ∧ ψ ` ψ , ϕ ∧ ψ ` ϕ and {ϕ,ψ} ` ϕ ∧ ψ.

5. If a sentential logic S has the PC then all its models also have the PC (with
respect to the same operation). In particular, all its full models have the PC.

Moreover we can prove:

PROPOSITION 2.46. Let S be a sentential logic with the PC. Then every fini-
tary model of S (having no theorems if S does not) which satisfies the congruence
property is a full model of S.

PROOF. Suppose that L is a finitary model for S, that is, C ⊆ FiSA, such
that ∅ ∈ C iff S does not have theorems, and with the congruence property. We
must prove that C∗ = FiSA∗. If F ∈ C∗ then also F ∈ FiSA∗ by Proposition
1.19, since π−1[F ] ∈ C. Conversely, let F ∈ FiSA∗. If F = ∅ then S cannot
have theorems, and by assumption ∅ ∈ C so also ∅ ∈ C∗. If F 6= ∅ then,
by finitarity of L∗, for any a ∈ C∗(F ) there are a1, . . . , an ∈ F such that
a ∈ C∗(a1, . . . , an). But L has the PC because it is a model of S, so L∗ also has
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it, therefore a ∈ C∗(a1∧(. . .∧an)
)

and this implies C∗(a∧(a1∧(. . .∧an)
))

=
C∗(a1∧(. . .∧an)

)
. But since L has the congruence property, by 2.40 L∗ also has

it, and since it is reduced, we conclude that a∧
(
a1∧(. . .∧an)

)
= a1∧(. . .∧an).

Now F is an S-filter and S has the PC; this implies that a1 ∧ (. . . ∧ an) ∈ F ,
therefore also a ∧

(
a1 ∧ (. . . ∧ an)

)
∈ F , and from this it follows that a ∈ F .

This proves that C∗(F ) = F , that is, F ∈ C∗. This completes the proof that
C∗ = FiSA∗, and so L is a full model of S. a

In Section 4.2 we will prove the converse of this result for selfextensional log-
ics: every full model of a selfextensional logic with the PC has the congruence
property, and therefore such a logic is strongly selfextensional. Thus we see that
the PC is a very strong property: it makes the congruence property (for all the
connectives of the language) to be inherited from the logic by all its full models.

The Deduction-Detachment Theorem

We will consider here only the more classical version of the Deduction Theo-
rem, that is, the one concerning only a binary connective, either primitive or de-
fined by a single term; more general versions, including weaker “Deduction The-
orems”, have been dealt with in Blok and Pigozzi [1991], [1989b], Czelakowski
[1985], [1986] and Czelakowski and Dziobiak [1991].

Strictly speaking, the name of Deduction Theorem is usually applied to just the
implication

Γ, ϕ `S ψ =⇒ Γ `S ϕ→ ψ , (DT)

while the converse one receives the name of Modus Ponens (MP) or Detachment;
we will follow this distinction, since the metalogical status of both properties
is very different: while the MP is equivalent to a Hilbert-style rule, and so is
inherited by all models of a sentential logic, this is not the case of the DT; the
latter is, however, inherited by all full models.

DEFINITION 2.47. Let → be a binary operation symbol, either primitive or
defined by a term, and let L = 〈A,C〉 be an abstract logic. We say that L
satisfies, with respect to→, the:

(1) Modus Ponens (MP) when for any a, b ∈ A and any X ⊆ A,

a→ b ∈ C(X) implies b ∈ C(X, a). (MP)

(2) Deduction Theorem (DT) when for any a, b ∈ A and any X ⊆ A,

b ∈ C(X, a) implies a→ b ∈ C(X). (DT)

(3) Deduction-Detachment Theorem (DDT) when it satisfies the MP and the DT.
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We will usually omit the reference “with respect to →” since only one such
operation will be considered. The following observations are straightforward or
well-known:

1. If an abstract logic L = 〈A,C〉 satisfies the DDT then it has theorems, namely
for any a ∈ A , C(a→ a) = C(∅). Some particular theorems of such abstract
logics will be used, specially in the case of sentential logics; we highlight the
following, for all a, b, c ∈ A:

a→ a

a→ (b→ a)

(a→
(
b→ c)

)
→
(
(a→ b)→ (a→ c)

)
2. As a consequence of 1, if a sentential logic S has the DDT then every S-filter

is non-empty, and thus every model of it, as well as every full model, has
theorems.

3. An abstract logic L has the MP iff for every a, b ∈ A , b ∈ C(a, a→ b), and
also iff for every closed set T ∈ C, if a ∈ T and a→ b ∈ T then b ∈ T ;
informally we refer to this property as being closed under the MP.

4. A sentential logic S has the MP if and only if the following is a rule of S:
{ϕ , ϕ→ ψ} `S ψ. As a consequence, each S-filter is closed under the MP
and every model of S (and hence every full model) also has the MP.

5. The DDT is preserved under bilogical morphisms (see the Corollary to Propo-
sition 6 of Verdú [1987]). In particular, L has the DDT iff L∗ has the DDT.
Actually this holds separately for the MP and for the DT.

6. If L has the DDT then for any F ⊆ A, the Frege relation ΛL(F ) is a congru-
ence with respect to→.

Thus the MP is inherited by all models of a sentential logic satisfying it. Next
we see that the DT (and hence the DDT) is inherited by full models, a fact that is
essentially contained in Theorem 2.2 of Czelakowski [1985].

THEOREM 2.48. If S has the DDT then every full model of S has the DDT.

PROOF. Assume that S has the DDT, that is, the MP and the DT. By Corollary
2.12, it will be enough to prove that every abstract logic of the form 〈A,FiSA〉
has the DDT. As we have already noticed, every S-filter is closed under the MP,
thus 〈A,FiSA〉 has the MP. Now we have to prove that for all X ⊆ A and all
a, b ∈ A, if b ∈ FiAS (X, a) then a→ b ∈ FiAS (X). We use the characterization of
FiAS (X, a) given in Lemma 1.18: FiAS (X, a) =

⋃
{Xn : n ∈ ω}, where the Xn

are defined as in 1.18, starting with X0 = X ∪ {a}. Then we prove by induction
on n that if b ∈ Xn then a→ b ∈ FiAS (X): Assume that n = 0 and b ∈ X0 =
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X ∪ {a}; if b ∈ X then since b→ (a→ b) ∈ FiAS (X) also a→ b ∈ FiAS (X),
and if b = a then a → b = a → a ∈ FiAS (X). Now assume n > 1 and the
thesis true for n, and let b ∈ Xn+1: there are a finite Γ ⊆ Fm and ϕ ∈ Fm

such that Γ `S ϕ and there is h ∈ Hom(Fm,A) such that h[Γ ] ⊆ Xn and
h(ϕ) = b. If Γ = ∅ then trivially b ∈ FiAS (X). Now assume Γ = {ψ1, . . . , ψk}.
Let q ∈ V ar be any variable not appearing in ψ1, . . . ψk, ϕ; using the DDT and
its consequences for `S we obtain {q→ ψi : i = 1, . . . , k} `S q→ ϕ. Define
h′ ∈ Hom(Fm,A) such that h′(p) = h(p) if p 6= q while h′(q) = a. By the
inductive hypothesis h′(q)→ h′(ψi) = a→ h(ψi) ∈ FiAS (X) for i = 1, . . . , k,
therefore a→ b = a→ h(ϕ) = h′(q)→ h′(ϕ) ∈ FiAS (X). This finishes the
inductive proof. Therefore a→ b ∈ FiAS (X). a

In Section 4.3 we will use the DT to find a characterization of full models
among the class of all (finitary) models; in the meantime we can prove a partial
result we will need there:

PROPOSITION 2.49. Let S be a sentential logic with the DDT. If L = 〈A,C〉
is a finitary model of S with the DT and with the congruence property, then L is
a full model of S.

PROOF. Suppose that L is a finitary model of S with the DT and the congru-
ence property. We have that C ⊆ FiSA, and we must prove that C∗ = FiSA∗.
If F ∈ C∗ then also F ∈ FiSA∗ by Proposition 1.19, since π−1[F ] ∈ C. Con-
versely, let F ∈ FiSA∗. Since S has the DDT, F 6= ∅, so by finitarity of L∗, for
any a ∈ C∗(F ) there are a1, . . . , an ∈ F such that a ∈ C∗(a1, . . . , an). But L
has the DDT by assumption, so L∗ also has it, therefore a1→

(
. . . (an→a) . . .

)
∈

C∗(∅) = C∗(a→a) and this implies C∗(a1→
(
. . . (an→a) . . .

))
= C∗(a→a).

But since L has the congruence property, by 2.40 L∗ also has it, and since it is
reduced, we conclude that a1→

(
. . . (an→ a) . . .

)
= a→ a ∈ F . Since F is an

S-filter and S has the MP, this implies that a ∈ F . This proves that C∗(F ) = F ,
that is, F ∈ C∗. This completes the proof that C∗ = FiSA∗, that is, L is a full
model of S. a

As we will prove in Corollary 4.30, if S is selfextensional then the converse of
this property also holds.

The Property of Disjunction

This property, which should not be confused with the so-called “Disjunction
Property” of some intermediate logics (stating that if `S ϕ ∨ ψ then `S ϕ or
`S ψ), corresponds to the method of Proof by Cases of traditional logic; in the
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literature it is also said that a logic L is disjunctive when it satisfies this property,
see Czelakowski [1984]:

DEFINITION 2.50. An abstract logic L = 〈A,C〉 satisfies the Property of Dis-
junction (PDI) with respect to a binary operation symbol ∨, either primitive or
defined by a term, when, for any X ⊆ A , a, b ∈ A,

C(X, a ∨ b) = C(X, a) ∩ C(X, b) . (PDI)

Some easy or well-known consequences are:

1. A sentential logic S satisfies the PDI iff the following rules hold: The two
Hilbert-style rules: ϕ `S ϕ ∨ ψ , ϕ `S ψ ∨ ϕ and the Gentzen-style rule:

Γ, ψ1 ` ϕ Γ,ψ2 ` ϕ
Γ,ψ1 ∨ ψ2 ` ϕ

.

2. If a sentential logic S satisfies the PDI then the following Hilbert-style rules
also hold: ϕ ∨ ψ a`S ψ ∨ ϕ and ϕ a`S ϕ ∨ ϕ.

3. The PDI is preserved under bilogical morphisms. In particular, L satisfies the
PDI iff L∗ satisfies it. See Font and Verdú [1991], Proposition 4.1.

4. If L = 〈A,C〉 satisfies the PDI then an easy inductive argument shows that for
any a1, . . . , an, b ∈ A and any X ⊆ A,

C(X, a1 ∨ b, . . . , an ∨ b) = C(X, a1, . . . , an) ∩ C(X, b).

LEMMA 2.51. Let S be a sentential logic satisfying the PDI and assume that
ψ1, . . . , ψn `S ϕ. Then for any ξ , ψ1 ∨ ξ, . . . , ψn ∨ ξ `S ϕ ∨ ξ.

PROOF. From the generalization of the PDI mentioned in item 4 above we
can obtain, as a particular case, that for any ψ1, . . . , ψn, ξ ∈ Fm, CnS(ψ1 ∨
ξ, . . . , ψn ∨ ξ) = CnS(ψ1, . . . , ψn) ∩ CnS(ξ). Now, ϕ ∈ CnS(ψ1, . . . , ψn)
by assumption, and obviously ξ ∈ CnS(ξ). But the PDI implies that ϕ ∨ ξ ∈
CnS(ϕ) ∩ CnS(ξ). Therefore we obtain ϕ ∨ ξ ∈ CnS(ψ1 ∨ ξ, . . . , ψn ∨ ξ) as
desired. a

Next we see that the PDI is inherited by full models; the essential part of the
proof is also mentioned in Czelakowski [1984].

THEOREM 2.52. If S is a sentential logic with the PDI then every full model
of S satisfies the PDI as well.

PROOF. By Corollary 2.12 it will be enough to prove that, for any A and any
X ∪ {a, b} ⊆ A , FiAS (X, a ∨ b) = FiAS (X, a) ∩ FiAS (X, b). From the Hilbert-
style rules mentioned in item 2 above it follows that FiAS (X, a∨b) ⊆ FiAS (X, a)∩
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FiAS (X, b). In order to establish the reverse inclusion we first prove that for any
a, b, c ∈ A,

c ∈ FiAS (X, a) implies c ∨ b ∈ FiAS (X, a ∨ b) . (∗)

For this consider the characterization FiAS (X, a) =
⋃
{Xn : n ∈ ω} of Lemma

1.18. Let us prove by induction on n that if c ∈ Xn then c ∨ b ∈ FiAS (X, a ∨ b).
Since X0 = X ∪ {a}, the case n = 0 is trivial. Assuming the property is true
for n, let c ∈ Xn+1: this means that there are ϕ,ψ1, . . . ψk ∈ Fm such that
ψ1, . . . ψk `S ϕ and there is h ∈ Hom(Fm,A) with h(ψi) ∈ Xn and h(ϕ) = c.
Now choose some variable q not appearing in these formulas, and modify h at q
in order to obtain h′ ∈ Hom(Fm,A) such that h′(q) = b and h′(ψi) = h(ψi).
By the induction hypothesis h′(ψi ∨ q) = h′(ψi) ∨ b ∈ FiAS (X, a ∨ b), and since
by Lemma 2.51 ψ1 ∨ q, . . . ψk ∨ q `S ϕ ∨ q, it follows that c ∨ b = h′(ϕ ∨ q) ∈
FiAS (X, a ∨ b). Thus (∗) is proved and using it we can now prove the remaining
part of the PDI: Take any c ∈ FiAS (X, a) ∩ FiAS (X, b). From c ∈ FiAS (X, a)
it follows c ∨ b ∈ FiAS (X, a ∨ b), and from c ∈ FiAS (X, b) it follows c ∨ c ∈
FiAS (X, b ∨ c). Since c ∈ FiAS (c ∨ c) and b ∨ c ∈ FiAS (c ∨ b) we conclude that
c ∈ FiAS (X, a ∨ b), as had to be proved. a

The fact that not every model of S inherits the PDI is shown in Section 5.1.1
by a simple example. The Property of Disjunction can be generalized by using a
finite set of terms instead of a single term.

The two forms of Reductio ad Absurdum

Now we consider the forms of Reductio ad Absurdum that hold in Intuitionistic
Logic and in Classical Logic:

DEFINITION 2.53. Let ¬ be a unary operation symbol, either primitive or de-
fined by a term. An abstract logic L = 〈A,C〉 satisfies the Property of Intuition-
istic Reductio ad Absurdum (PIRA) with respect to ¬ when for any X ⊆ A and
any a ∈ A,

¬a ∈ C(X) ⇐⇒ C(X, a) = A;

and it satisfies the Property of Reductio ad Absurdum (PRA) with respect to ¬
when for any X ⊆ A and any a ∈ A,

a ∈ C(X) ⇐⇒ C(X,¬a) = A.
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It is easy to see that an abstract logic satisfies the PRA if and only if it satisfies
both the PIRA and that a ∈ C(¬¬a). Speaking of sentential logics, this last prop-
erty is a Hilbert-style rule, which is inherited by all models; hence the problem of
inheritance of the PRA by full models reduces to that of the PIRA.

The PIRA is not inherited in general by all full models of a sentential logic
having it: Take as an example the¬-fragment S of intuitionistic logic: In Porȩbska
and Wroński [1975] it is proved that this fragment is characterized precisely by
the PIRA (it is the weakest sentential logic having it, when the language has just
negation), and it does not have theorems. Now every one-element set A = {a}
provides us with a counterexample, since we must have ¬a = a: ClearlyFiSA =
{∅, A} and the abstract logic 〈A,FiSA〉, which is a full model of S , does not
satisfy the PIRA: FiAS (a) = A but ¬a /∈ FiAS (∅) = ∅.

The difficulties revealed by the analysis of the general case of this problem
tell us that negation is a difficult connective to deal with alone. But one of the
main results of Section 4.2 will enable us to prove that if S is a selfextensional
logic with the PC and the PIRA then every full model of S has the PC and the
PIRA; and in the case where conjunction and negation are the only connectives of
the language we will be able to remove the assumption of selfextensionality; see
Propositions 4.34 and 4.35. At this moment we can treat the case of the DDT and
the PIRA together. Actually, in the presence of the DDT, the PIRA is equivalent
to a very simple requirement.

If L = 〈A,C〉 is an abstract logic, we say that an element ⊥ ∈ A is an in-
consistent element when C(⊥) = A; authors in the field of paraconsistent logics
sometimes prefer to call such elements trivial. Then:

LEMMA 2.54. Let L = 〈A,C〉 be an abstract logic with the DDT with re-
spect to a binary operation symbol→. Then L satisfies the PIRA with respect to
some unary operation symbol ¬ if and only if L has an inconsistent element ⊥.
Moreover, in this situation, C(¬a) = C(a→⊥) for any a ∈ A.

PROOF. It is trivial to check (using the DDT) that, if L satisfies the PIRA with
respect to ¬ then for any a ∈ A the element ¬(a→ a) is inconsistent, and that
if ⊥ is an inconsistent element, then L satisfies the PIRA with respect to the
operation ¬a = a→⊥. In general, if⊥ is inconsistent, from the MP it follows that
C(a, a→⊥) = A, and therefore by the PIRA ¬a ∈ C(a→⊥); since ¬a ∈ C(¬a),
we have that ⊥ ∈ C(a,¬a), and by the DDT this implies a → ⊥ ∈ C(¬a);
therefore we have shown that C(¬a) = C(a→⊥) . a

Since having an inconsistent element is a property clearly inherited by any
model, it follows from Theorem 2.48 and the previous lemma:
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COROLLARY 2.55. If a sentential logic satisfies the DDT and the PIRA then
all its full models satisfy them. a

Some rules of introduction of modality

One of the strongest metalogical properties of normal modal logics is the so-
called Rule of Necessitation. In its strong form it is:

ϕ ` �ϕ,

and like all Hilbert-style rules, it is inherited by every model; so it is not especially
interesting to consider it here. The same rule has a weak form, which has also been
considered in the literature:

If ` ϕ then ` �ϕ .

However, this Gentzen-style rule is but a particular case of the rule more com-
monly taken in many Gentzen-style formulations of systems of modal logic as a
rule for introduction of the necessity operator, see Zeman [1973],

(I�)
Γ ` ϕ
�Γ ` �ϕ

,

where �Γ = {�γ : γ ∈ Γ}. Actually, the same rule holds for the possibility op-
erator 3 in the place of�, and also for a number of other unary operators of modal
character (temporal, dynamic, etc.), and even for double negation ¬¬, which in
some logics has been shown to have a modal behaviour, see Došen [1986]. Ac-
cordingly, let # be an arbitrary unary operation symbol, either primitive or defined
by a term; we say that an abstract logic L = 〈A,C〉 is closed under introduction
of # when for any X ⊆ A , #C(X) ⊆ C(#X), that is, when a ∈ C(X) implies
#a ∈ C(#X). Then:

PROPOSITION 2.56. If S is a sentential logic closed under introduction of a
unary connective # then all its full models are also closed under introduction of
the same connective.

PROOF. In Jansana [1995] it has been proved that the property of being closed
under introduction of a unary connective is preserved under bilogical morphisms.
Therefore, as usual, it will be enough to prove, for anyA, anyX ⊆ A and any a ∈
A, that if a ∈ FiAS (X) then #a ∈ FiAS (#X). Put FiAS (X) =

⋃
{Xn : n ∈ ω} as

in Proposition 1.18, and prove by induction that if a ∈ Xn then #a ∈ FiAS (#X).
Since X0 = X , the case n = 0 is trivial. If a ∈ Xn+1 then for some formulas
ψ1, . . . , ψk `S ϕ and there is an homomorphism h such that h(ψi) ∈ Xn and
h(ϕ) = a. By induction h(#ψi) = #h(ψi) ∈ FiAS (#X), and by introduction of
# for S we have #ψ1, . . . ,#ψk `S #ϕ, therefore #a = #h(ϕ) = h(#ϕ) ∈
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FiAS (X). Therefore this holds for every n, and thus #FiAS (X) ⊆ FiAS (#X), that
is, the abstract logic 〈A,FiAS 〉 is closed under introduction of #. a


