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Abstract

We prove a continuity property in the sense of currents of a continuous family

of holomorphic functions which allows us to obtain a Łojasiewicz inequality with an

e¤ective exponent independent of the parameter.

1. Introduction

The Łojasiewicz inequality introduced in [12] is one of the most important
tools in singularity theory, both complex and real. The first result concerning a
parametrized family—but, of course, with an exponent that is independent of the
parameter—is due to Łojasiewicz and Wachta [13]. Fairly recently, we have
obtained in [8] an e¤ective Łojasiewicz inequality with parameter in complex
analytic geometry, using only complex analytic methods. This article is some-
how a continuation of that work, inspired to some extent by the observations
made in [7] and the intersection theory results introduced in [18].

Our best results are presented in the following theorem. Throughout the
paper we assume that the topological space T is 1st countable.

Theorem 1.1. Assume that f : T �W ! C is a continuous function where
T is a locally compact, connected topological space, W � Cm is a domain, and for
all t A T , ft A OðWÞ does not vanish identically. Assume moreover that 0 A W and
ftð0Þ ¼ 0 for any t. Then

(1) Zft ! Zft0
in the sense of currents, where Zft denotes the cycle of zeroes

of ft;
(2) there is a neighbourhood U � W of zero in which, for all t close enough

to t0,

j ftðxÞjb cðtÞ distðx; f �1
t ð0ÞÞa;
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where cðtÞ > 0 is a constant depending on the parameter, but the exponent
a ¼ ord0 f0 is uniform.

For the convenience of the reader let us recall two basic notions of conver-
gence of sets, especially useful in analytic geometry (see e.g. [4] and [19]). We
consider the following situation: T is a topological space and E � T � Rn is
a set with closed sections Et ¼ fx A Rn j ðt; xÞ A Eg and we put F :¼ pðEÞ for
pðt; xÞ ¼ t. Assume that t0 is an accumulation point of F .

Definition 1.2 (see e.g. [4]). We say that Et converges in the sense of
Kuratowski to a set A, when t ! t0, if

� for any x A A, for any neighbourhood U of x, there is a neighbourhood
V of t0 such that U \ Et 0j for all t A V \ Fnft0g, i.e. A � lim inf t!t0 Et

(the lower Kuratowski limit);
� if x is such that for any neighbourhood U C x and any neighbourhood
V C t0 there is a point t A Vnft0g such that U \ Et 0j, then x A A, i.e.
A � lim supt!t0

Et (the upper Kuratowski limit).

We write then Et !
K

A.

If for each t0, Et !
K

Et0 , then we say that E has continuously varying fibres.

Remark 1.3. It is easy to see (cf. [19], [4]) that this convergence for the
graphs of a sequence continuous functions is precisely the local uniform conver-
gence of the functions themselves.

We have the following straightforward observation:

Lemma 1.4. If any point in T has a countable basis of neighbourhoods, then

Et !
K

A when t ! t0 i¤
� if x A A, then for any sequence tn ! t0 we can find points Etn C xn ! x;
� if x is such that there is a sequence tn ! t0 and points Etn C xn ! x, then
x A A.

In complex analytic geometry this kind of convergence is very useful for
di¤erent purposes (Bishop’s Theorem, algebraic approximation as in [1] or alge-
braicity criteria as in [10]). We may refine it taking into account multiplicities
(cf. [18] and [2]). In order to do so, consider a sequence of positive pure
k-dimensional analytic cycles1 Zn, n ¼ 0; 1; 2; . . . in some open set W � Cm (of
course, everything can be carried over to manifolds).

Definition 1.5 (Tworzewski [18]). We say that Zn converges to Z0 in the

sense of Tworzewski, which we denote by Zn !
T

Z0, if

1A positive pure k-dimensional cycle Z is a formal sum
P

aiSi where ai > 0 are integers and fSig
is a locally finite family of irreducible k-dimensional analytic sets; then the analytic set jZj :¼

S
Si is

called the support of Z; for details see [18].
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� the supports jZnj !
K jZ0j;

� for any regular point a A RegjZ0j and any relatively compact manifold
M of complementary dimension, transversal to jZ0j at a and such that
M \ jZ0j ¼ fag, we have for the total number of intersection2 degðZn �MÞ
¼ degðZ0 �MÞ from some index n0 onwards.

We will call M a testing manifold for Z0 at a.

Remark 1.6. As noted by Alain Yger [22], this convergence is precisely
the weak convergence of the corresponding integration currents ½Zn�. See also the
general though not very precise discussion in [2] and the elegant construction in
[15].

By [18] Lemma 3.2 it is su‰cient to consider testing manifolds at a dense
subset of the regular points of jZ0j.

Of course, the definition may be extended to families fZtg where t belongs
to a topological space T .

It will be useful to state clearly the following observation being a mere
corollary to the result of [19]:

Proposition 1.7. If X0;Y0 are analytic subsets of an open set W � Cm of
pure dimensions p, q respectively, and if X0 \ Y0 has pure dimension pþ q�m,

then for any sequences Xn !
K

X0 and Yn !
K

Y0 of analytic subsets of W of pure
dimension p and q respectively, locally the intersections Xn \ Yn are proper (i.e. of
pure dimension pþ q�m) for all indices large enough.

Proof. By [19] we know that Xn \ Yn !
K

X0 \ Y0. Besides, at any a A
Xn \ Yn we obviously have dima Xn \ Yn b pþ q�m.

Now fix a point a A X0 \ Y0 and choose coordinates in such a way that in
a bounded neighbourhood W ¼ U � V � Cpþq�m � C2m�p�q of a the natural
projection onto U restricted to the set Z0 ¼ X0 \ Y0 is a branched covering. We
may ask that ðU � qVÞ \ Z0 ¼ j. Write Zn :¼ Xn \ Yn \W . Then, by the con-
vergence, for all indices large enough, ðU � qVÞ \ Zn ¼ j, whereas Zn 0j.

This means that any such Zn projects properly on U . Therefore, if we pick
a point z A Zn and an arbitrarily small polydisc around it, then by the Remmert
Proper Map Theorem, dimz Zn a pþ q�m. This implies that all the Zn’s have
pure dimension pþ q�m.

Since any subsequence of Xn \ Yn converges to X0 \ Y0 the proof is
accomplished. r

Finally, we briefly recall the notion of c-holomorphic functions (cf. [16] and
[21]) i.e. complex continuous functions that are defined on an analytic set A

2By [19], almost all interesections jZnj \M are discrete and so finite. Then the total number

of intersection is the formal sum of the intersection points with their respective Draper intersection

indices [11] taken into account.
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and holomorphic at its regular points Reg A. We denote by OcðAÞ their ring for
a fixed A. Their study from the geometric point of view was carried to some
extent in [5]–[8]. They share many a property of holomorphic functions, though
they form a larger class without really useful di¤erential properties. Their main
feature is the fact that they are characterized among all the continuous func-
tions A ! C by the analycity of their graphs (see [21]). That allows the use of
geometric methods. In particular there is an identity principle on irreducible sets
(cf. [6]) and we can consider the order of vanishing (see [5] where it is introduced
and studied) at a point f ðaÞ ¼ 0 (when f 2 0) as

orda f :¼ maxfh > 0 j j f ðxÞja const:kxkh; in a neighbourhood of a A Ag:

For a holomorphic function defined in an open set this coincides with the degree
of the first non-zero form in the expansion into homogeneous forms at a.

2. Continuity principle

Lemma 2.1. Let E � Rk
t � Rn

x be a closed, nonempty set with continuously
varying sections Et over F :¼ pðEÞ where pðt; xÞ ¼ t. Then the function

dðt; xÞ :¼ distðx;EtÞ; ðt; xÞ A F � Rn

is continuous.

Proof. The function dðt; �Þ is 1-Lipschitz which means that limx!x0 dðt; xÞ ¼
dðt; x0Þ is uniform with respect to t. Therefore, in view of the Iterated Limits
Theorem, we need only to check that t 7! dðt; xÞ is continuous for all x. Indeed,
then

lim
ðt;xÞ!ðt0;x0Þ

dðt; xÞ ¼ lim
x!x0

dðt0; xÞ ¼ dðt0; x0Þ:

Fix ðt0; x0Þ. We know that Et ! Et0 in the sense of Kuratowski. Then let
d :¼ dðx0;Et0Þ. In particular, for any e > 0,

Bðx0; d þ eÞ \ Et0 0j and Bðx0; d � eÞ \ Et0 ¼ j:ðKÞ

Then, the convergence implies (cf. [4] Lemma 2.1) that for all t su‰ciently close
to t0, condition ðKÞ holds for Et instead of Et0 . That in turn implies that for all
such t,

d � e < distðx0;EtÞ < d þ e

and the proof is complete. r

Remark 2.2. Of course, the lemma is true for a product of metric spaces.
In particular we can replace the parameter space Rk by a 1st countable
topological space T , since for such a T the following general Iterated Limits
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Theorem holds3: if f : T � X ! Y where X , Y are metric spaces with Y com-
plete, is such that

� b limt!t0 f ðt; xÞ ¼ jðxÞ for any x A X ;
� b limx!x0 f ðt; xÞ ¼ cðtÞ uniformly in t,

then there exists limðt;xÞ!ðt0;x0Þ f ðt; xÞ ¼ limx!x0 f ðt0; xÞ ¼ cðt0Þ.

Proposition 2.3. Consider a pure ðk þ nÞ-dimensional analytic set A �
U � V � Cp with proper projection pðt; z;wÞ ¼ ðt; zÞ onto the product domain
U � V � Ck � Cn. Then

(1) The sections At vary continuously;
(2) The function d : U � ðV � CpÞ C ðt; xÞ 7! distðx;AtÞ A R is continuous.

Proof. Since A is closed, the sections At are upper semi-continuous, by [4]
Proposition 2.7, i.e. for any t0,

lim sup
t!t0

At � At0 :

We need to check that At0 � lim inf t!t0 At. This amounts to proving that for
any x A At0 and any tn ! t0 we can find points xn A Atn converging to x. Since p
is a branched covering on A, we see that the fibres p�1ðpðtn; xÞÞ \ A converge to
the fibre p�1ðpðt0; xÞÞ \ A containing ðt0; xÞ which gives exactly what we need and
the proof of (1) is complete.

Now (2) follows from the previous lemma. r

Remark 2.4. We stress once again that (2) is a simple consequence of (1).

Lemma 2.5. Let T be a locally compact topological space and X � Cm a
nonempty, locally closed set. If f : T � X ! C is continuous and we write
ftðxÞ ¼ f ðt; xÞ, then t ! t0 in T implies the convergence of graphs:

Gft !
K

Gft0
:

Proof. In view of Remark 1.3 we need only to check that for any tn ! t0,
ftn ! ft0 locally uniformly on X . Take a compact set K � X . Then K 0 ¼
ft0g � K is compact and for a fixed e > 0 and any x A K we find neighbourhoods
Ux � Bðx; rxÞ of ðt0; xÞ at points ðt; yÞ for which

j f ðt; yÞ � f ðt0; xÞj < e:

By compacity we choose a finite covering K 0 �
Sp

i¼1 Ui � Bðxi; riÞ and put U :¼Tp
i¼1 Ui, then for any ðt; xÞ A U � K we have ðt; xÞ A Ui � Bðxi; riÞ for some i

and so

j f ðt; xÞ � f ðt0; xÞj < e:

This ends the proof. r

3We do not have a reference for this fact, but the proof is obvious.
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Proposition 2.6. Let T be a locally compact, connected topological space, A
a pure k-dimensional analytic subset of some open set W � Cm and f : T � A ! C
a continuous function such that for each t A T , ftðxÞ :¼ f ðx; tÞ is c-holomorphic on
A. Then t ! t0 in T implies

Gft !
T

Gft0
:

Proof. By Lemma 2.5 we have

Gft !
K

Gft0
:

This means that on Reg A, for any tn ! t0, we have a sequence of holomorphic
functions converging locally uniformly.

Now, observe that for any g A OcðAÞ, GgjReg A
� Reg Gg is dense. For a

testing M at a A Gft0 jReg A we have the equality TaM \ TaGft0
¼ f0g where TaGft0

denotes the tangent space at a, and so degðM � Gft0
Þ ¼ 1. But since in the holo-

morphic case, the local uniform convergence is a convergence with the tangents,
we easily conclude that for su‰ciently large indices n, M is transversal to the
manifold (near a) Gft and so degðM � GftÞ ¼ 1, too (there are no multiplicities
attached to the graphs). To be somewhat more precise, if a ¼ ða 0; ft0ða 0ÞÞ, then

Tða 0; ftn ða 0ÞÞGftn !
K

Tða 0; ft0 ða 0ÞÞGft0

and we apply [19] to conclude that M intersects Gft transversally. r

Recall (cf. [5]–[7]) that if f A OcðAÞ does not vanish identically on any
irreducible component of A, where A is a pure k-dimensional analytic subset of
a domain D � Cm, then we define the cycle of zeroes as the Draper proper
intersection cycle ([11])

Zf :¼ Gf � ðD� f0gÞ:

In the same way we may define the fibre cycle, namely

½ f �1ð f ðaÞÞ� :¼ Gf � ðD� f f ðaÞgÞ

and consider this as a cycle in D.
Now we can state the following Hurwitz-type theorem:

Theorem 2.7. Let T be a connected topological space, A a pure k-
dimensional analytic subset of some domain D � Cm, f : T � A ! C a continuous
function such that for each t A T , ftðxÞ :¼ f ðx; tÞ is c-holomorphic on A. Then if
ft0 2 0 on any irreducible component of A and f �1

t0
ð0Þ0j, we have

Zft !
T

Zft0
; t ! t0:

Proof. By the previous Proposition we have

Gft !
T

Gft0
:
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Of course, f �1
t0

ð0Þ is a hypersurface in A (cf. the identity principle from [6])
which means that the intersection Gft0

\ ðD� f0gÞ is proper (i.e of the minimal

dimension possible: k � 1). By [18] Lemma 3.5 (cf. Proposition 1.7) we con-
clude that for any sequence tn ! t0,

Gftn � ðD� f0gÞ !T Gft0
� ðD� f0gÞ:

This ends the proof. r

Corollary 2.8. Let g A OcðAÞ, g0 const: on any irreducible component of
A � D, where A is pure k-dimensional. Then for any t0 A A,

½g�1ðtÞ� !T ½g�1ðt0Þ�; t ! t0:

Proof. Let f : A� C C ðx; tÞ 7! gðxÞ � t A C. By [6], we conclude that all
the nonempty fibres of g have pure dimension k � 1. Then f satisfies the
assumptions of the preceding Theorem and

Zft ¼ Gft � ðD� f0gÞ
¼ Gg � ðD� ftgÞ

¼ ½g�1ðtÞ�;

since Fðx; sÞ ¼ ðx; sþ tÞ is an automorphism of D� C sending Gft to Gg and
D� f0g to D� ftg. This ends the proof. r

Before the next corollary recall that for any positive cycle Z ¼
P

aiSi we
define its local degree at a A jZj as dega Z :¼

P
ai dega Si, where dega Si is the

usual local degree (Lelong number) with the convention that dega Si ¼ 0 if a B Si.

Corollary 2.9. Under the assumptions of the preceding Theorem suppose in
addition that ftðaÞ ¼ 0 for all t A T and some fixed a A A. Then for all t close
enough to t0,

dega Zft a dega Zft0
;

for the local degrees at a.

Proof. Take any a‰ne subspace L through a, of dimension m� k þ 1 and
such that

L � Zft0
¼ dega Zft0

� fag:
Then by Theorem 2.7 together with [18] Lemma 3.5,

L � Zft !
T

L � Zft0

which ends the proof, since

L � Zft ¼
X

b AL\f �1
t ð0Þ

iðL � Zft ; bÞfbg

365on the complex Łojasiewicz inequality with parameter



and for each Draper intersection index (multiplicity) iðL � Zft ; bÞ we have

iðL � Zft ; bÞb degb Zft ;

for degb L ¼ 1. Therefore, we obtain by the convergence, for all t su‰ciently
close to t0,

dega Zft0
¼ degðL � Zft0

Þ

¼ degðL � ZftÞ

¼
X

b AL\f �1
t ð0Þ

iðL � Zft ; bÞ

b iðL � Zft ; aÞb dega Zft ;

as a A L \ f �1
t ð0Þ (for all t). r

3. On the Łojasiewicz inequality and the total degree

We recall one result from [17] (see also [7] Theorem 2.3) which is the basis
which we shall work upon.

Theorem 3.1 ([17] Theorem 1). Let f : W ! C be holomorphic in a (con-
nected ) neighbourhood W of 0 A Cm. If f is non-constant and f ð0Þ ¼ 0 then there
is a neighbourhood U of zero such that the following Łojasiewicz inequality
holds:

j f ðxÞjb const:distðx; f �1ð0ÞÞord0 f ; x A U

where ord0 f denotes the order of vanishing of f at zero. Moreover, this is the
best exponent possible.

As before we consider the intersection cycle of zeroes Zf ¼ Gf � ðW� f0gÞ:

Proposition 3.2 ([7] Proposition 2.1). In the setting introduced above,
deg0 Zf ¼ ord0 f .

We easily generalize these results to c-holomorphic functions, although only
in a weak sense (compare the following theorem with the results of [8]). Con-
sider a pure k-dimensional (kb 2) analytic subset A of a neighbourhood W
of 0 A Cm with 0 A A. Assume that f A OcðAÞ satisfies f ð0Þ ¼ 0 and does not
vanish identically on any irreducible component of A containing zero.

Theorem 3.3. In the c-holomorphic setting introduced above, there is a neigh-
bourhood W of zero such that

j f ðzÞjb const:distðz; f �1ð0ÞÞdeg0 Zf �deg0 f �1ð0Þ; z A W \ A:
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Proof. Write Cm ¼ Ck�1 � Cm�kþ1 with coordinates ðx; yÞ.
We may assume that the coordinates are chosen in such a way that the

projection pðx; yÞ ¼ x onto the first k � 1 coordinates is proper on Z :¼ f �1ð0Þ \
ðU � VÞ with covering number equal to the local degree deg0 f �1ð0Þ ¼: d. Here

U � V is a neighbourhood of the origin satisfying ðf0g � VÞ \ f �1ð0Þ ¼ f0g.
Applying Proposition 2.2 from [3] we find a holomorphic mapping

F : U � Cm�kþ1 ! Cp such that F �1ð0Þ ¼ f �1ð0Þ \ ðU � VÞ and

kF ðx; yÞkb distððx; yÞ;ZÞd ; ðx; yÞ A U � Cm�kþ1:ð�Þ

If we write F ¼ ðF1; . . . ;FpÞ we observe that F �1
j ð0Þ \ A � f �1ð0Þ \ ðU � VÞ

for all j. The intersection of the graph Gf with W� f0g being proper, we can
now apply the c-holomorphic Nullstellensatz from [6]. In other words, we find a
neighbourhood W � U � V of zero and p c-holomorphic functions hj on W \ A
for which

F d
j ¼ hj f on A \W ; j ¼ 1; . . . ; pð��Þ

with d ¼ deg0 Zf .
Combining (*) and (**) we eventually obtain the inequality looked for.

r

Proposition 3.4. Under the assumptions of the previous theorem,

deg0 Zf � deg0 f �1ð0Þb ord0 f :

Proof. This follows from Lemma 4.8 in [5]. r

Using Corollary 2.9 and Proposition 3.2 or simply looking at the expansion
into a (Hartogs) power series, we easily obtain

Lemma 3.5. If f ¼ f ðt; xÞ A Okþm is such that ftð0Þ :¼ f ðt; 0Þ ¼ 0 for all t
small enough and f0 ¼ f ð0; �Þ is non-constant, then

ord0 ft a ord0 f0

for all t su‰ciently close to zero.

Example 3.6. The inequality may be strict as we easily see by taking
f ðt; xÞ ¼ txþ x2; then for t0 0, ord0 ft ¼ 1 < ord0 f0 ¼ 2 ¼ ord0 f . But of
course there is no direct relation with ord0 f , it su‰ces to take f ðt; xÞ ¼
txþ x3 in order to have ord0 ft ¼ 1 < ord0 f ¼ 2 < ord0 f0.

The proof of Theorem 3.1 suggests the following result.

Proposition 3.7. Let V �W T Cm�1 � C be a bounded, connected neigh-
bourhood of zero (a polydisc) and let P A OðVÞ½t� be unitary and such that
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P�1ð0Þ � ðV �WÞ projects properly onto V. Then in V �W there is

jPðx; tÞjb distððx; tÞ;P�1ð0ÞÞd

with d ¼ degððf0gm�1 �WÞ � ZPÞ.

Proof. Recall from [7] that ZP ¼
P

ajSj where Sj are the irreducible
components of P�1ð0Þ and aj ¼ minfordz P j z A Reg Sjg is the generic order of
vanishing of P along Sj . Note that each Sj projects onto the whole of V .

Now, since the intersections ðfxg �WÞ \ P�1ð0Þ are proper, by [18] (see also
[2]) we conclude that for any xn ! 0 we have

ðfxng �WÞ � ZP !T ðf0gm�1 �WÞ � ZP

and so degððfxng �WÞ � ZPÞ ¼ d for su‰ciently large n.
Observe that for the generic x A V we have the following situation:

fxg �W intersects P�1ð0Þ transversally at d regular points bðiÞ ¼ ðx; tðiÞÞ, where
d is the multiplicity of the branched covering P�1ð0Þ ! V , each of these points
belongs to exactly one Sj , all the Sj ’s appear in this assignment, and ordbðiÞ P ¼ aj
for the unique j such that bðiÞ A Sj . Therefore, we may write

d ¼
X

b A ðfxg�W Þ\P�1ð0Þ
ordb P:

On the other hand, for any such point x we have

Pðx; tÞ ¼
Yd

i¼1

ðt� tðiÞÞni

with ni independent of the point chosen. We observe that ni ¼ ordbðiÞ P.
Indeed, if we write fxg �W as the zero-set of an a‰ne mapping l ¼ ðl1; . . . ;
lm�1Þ restricted to V �W , then the transversality of the intersection ðfxg �WÞ \
P�1ð0Þ implies by the Tsikh-Yuzhakov result (see [2]) that the multiplicity
mbðiÞ ðP; lÞ at each point bðiÞ of the proper mapping germ ðP; lÞ is equal to the
product of the orders of P and the lj’s, i.e. to ordbðiÞ P. On the other hand, by
[2] pp. 107–108 we easily see that

mbðiÞ ðP; lÞ ¼ ordtðiÞ Pjfxg�W ¼ ni:

Therefore, d ¼
Pd

i¼1 ni. This allows us to write, for the generic x A V , the
following inequalities:

jPðx; tÞj ¼
Yd

i¼1

jt� tðiÞjni

¼
Yd

i¼1

kðx; tÞ � ðx; tðiÞÞkni

b distððx; tÞ;P�1ð0ÞÞT
d

i¼1ni :

Extending this by continuity to the whole of V �W ends the proof. r
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Remark 3.8. The proof above is in fact an extrapolation of the proof of
Theorem 3.1, where we use the Weierstrass Preparation in a neighbourhood of
zero such that ðf0g �WÞ \ f �1ð0Þ ¼ f0g and ord0 f ¼ ord0 P.

Corollary 3.9. If f : V �W ! C is a holomorphic function such that
f �1ð0Þ projects properly onto V , then for some possibly smaller neighbourhood
U � V �W of zero, f satisfies the Łojasiewicz inequality in U with exponent
degððf0g �WÞ � Zf Þ.

Proof. In V �W we can apply the Weierstrass Preparation Theorem and
write f ¼ hP with a holomorphic function h such that h�1ð0Þ ¼ j. Shrinking the
neighbourhood (actually, we need only to shrink V if any), we may assume that
inf jhj > 0. Then Zf ¼ ZP, since ordb f ¼ ordb P. The preceding Proposition
gives the result. r

4. The Łojasiewicz inequality with parameter

Eventually, we are ready to prove the main result.

Theorem 4.1. Assume that f : T �W ! C is a continuous function where T
is a locally compact, connected topological space, W � Cm is a domain, and for
all t A T , ft A OðWÞ does not vanish identically. Assume moreover that 0 A W and
ftð0Þ ¼ 0 for any t. Then there is a neighbourhood U � W of zero such that, for
all t close enough to t0,

j ftðxÞjb cðtÞ distðx; f �1
t ð0ÞÞa; x A U

where cðtÞ > 0 is a constant depending on the parameter, but the exponent

a ¼ ord0 ft0

is uniform.

Proof. By Theorem 2.7 we know in particular that f �1
t ð0Þ !K f �1

t0
ð0Þ. Of

course these sets are hypersurfaces. The type of convergence implies that we can
choose coordinates in Cm in such a way that for some neighbourhood V �W �
Cm�1 � C of zero, V connected and W a disc, we have

f �1
t ð0Þ \ ðV � qWÞ ¼ j

for all t close enough to t0. This means that the zero-sets intersected with
V �W project properly onto V . Moreover, we may assume that

ðf0gm�1 �WÞ � Zft0
¼ ord0 ft0f0g:

In the situation considered, the proof of Proposition 3.7 shows that the
Łojasiewicz inequality for ft is satisfied in V �W with the exponent dt ¼
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degððf0gm�1 �WÞ � ZftÞ:

j ftðxÞjb cðtÞ distðx; f �1
t ð0ÞÞdt ; x A V �Wð�Þ

where cðtÞ > 0 is a constant.
But then, for t close enough to t0, the numbers dt fortunately coincide with

degðf0gm�1 �WÞ � Zft0
¼ ord0 ft0 by the convergence (Theorem 2.7).

This ends the proof. r

It seems hard to obtain a satisfactory c-holomorphic counter-part to this
Theorem due to the use of the Nullstellensatz with parameter. The best we were
able to obtain is the following Theorem.

Theorem 4.2. Assume that f : T � A ! C is a continuous function where
T is a locally compact, connected topological space, A is a pure k-dimensional
analytic subset of an open set W � Cm, 0 A A, and for all t A T , ft A OcðAÞ does
not vanish identically on any irreducible component of A through zero. Assume
moreover that ftð0Þ ¼ 0 for any t. Then there is a neighbourhood U � W of zero
such that, for all t close enough to t0,

j ftðxÞjb cðtÞ distðx; f �1
t ð0ÞÞa; x A A \U

where cðtÞ > 0 is a constant depending on the parameter, but the exponent

a ¼ ðdeg0 Zft0
Þ2

is uniform.

Proof. We give the proof in several steps.

Step 1. Choose coordinates in Cm in such a way that A projects properly
onto the first k coordinates and, moreover,

iððf0gk�1 � Cm�kþ1Þ � Zft0
; 0Þ ¼ deg0 Zft0

:

Let l : Cm ! Ck�1 be the linear epimorphism whose kernel is exactly f0gk�1 �
Cm�kþ1. Write

jt : A C x 7! ð ftðxÞ; lðxÞÞ A C� Ck�1

for t A T . Fix a polydisc V �W � Ck�1 � Cm�kþ1 centred at zero such that

ðf0gk�1 �WÞ \ f �1
t0

ð0Þ ¼ f0g:

In particular we may assume that f �1
t0

ð0Þ projects properly onto V .

Step 2. The latter intersection corresponds to ðV �W � f0gkÞ \ Gjt0
which

means that there is a polydisc P � Ck such that the pure k-dimensional analytic
set ðV �W � PÞ \ Gjt0

projects properly onto P along V �W . In other words,
jt0 jðV�WÞ\A is proper with image P.
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As in Lemma 2.5, the continuity of

F : T � A C ðt; xÞ 7! jtðxÞ A Ck

implies the Kuratowski convergence of the graphs Gjt !
K

Gjt0
as t ! t0. There-

fore, by the same argument as in Proposition 1.7, we conclude that for all t close
enough to t0, the restrictions of the natural projection

pt : ðV �W � PÞ \ Gjt ! P

are branched coverings. In particular, all these jt have the same image P. Let
qt denote the multiplicity of the branched covering jtjA\ðV�WÞ.

Step 3. By the choice of V �W and Theorem 2.7, we know (cf. the proof
of the previous Theorem) that for all t close enough to t0, the zero-sets f �1

t ð0Þ \
ðV �WÞ project properly onto V . Let dt denote the multiplicity of such a
branched covering.

Since by Theorem 2.7 we know that the cycles of zeroes of the restrictions
ftjA\ðV�W Þ converge with t ! t0 in the sense of Tworzewski, we easily conclude
from [18] Lemma 3.5 and [19] that

dt a degððf0gk�1 �WÞ � ZftÞ ¼ degððf0gk�1 �WÞ � Zft0
Þ ¼ deg0 Zft0

:ð?Þ
On the other hand, we observe that qt ¼ degððf0gk�1 �WÞ � ZftÞ and so

qt a deg0 Zft0
:ð??Þ

Indeed, it is easy to see that qt is in fact the multiplicity ~qqt of the projection

p : Ck�1 � Cm�kþ1 � C C ðu; v;wÞ 7! ðu;wÞ A Ck�1 � C

over P when restricted to Gt :¼ Gft \ ðV �W � CÞ, because for a generic point
ðx0;w0Þ A P, we have

~qqt ¼afðx; y; ftðx; yÞÞ j ðx; yÞ A V �W ; pðx; y; ftðx; yÞÞ ¼ ðx0;w0Þg

¼afy A W jw0 ¼ ftðx0; yÞg ¼af �1
t ðw0Þ \ ðfx0g �WÞ

¼afðx; y; ftðx; yÞ; lðx; yÞÞ j ðx; yÞ A V �W ;w0 ¼ ftðx; yÞ; lðx; yÞ ¼ x0g
¼afðx; y; jtðx; yÞÞ j ðx; yÞ A V �W ; ptðx; y; jtðx; yÞÞ ¼ ðx0;w0Þg ¼ qt:

The multiplicity ~qqt, in turn, by the classical Stoll Formula4, coincides with the
total degree of the intersection cycle p�1ð0Þ � Gt. In other words, we obtain

qt ¼ degððf0gk�1 �W � f0gÞ � GtÞ:

4 If the natural projection p : D� Cp ! D onto the domain D � Ck is proper on the pure

k-dimensional analytic set X � D� Cp with covering degree d, then Stoll’s Formula states that for

any y A D, d ¼
P

x Ap�1ð yÞ\X mxðpjX Þ where mxðpjX Þ denotes the local multiplicity of the projection at

the point x of the fibre. As already observed in [11], mxðpjX Þ ¼ iðX � p�1ðyÞ; xÞ, which means that

d ¼ degðX � p�1ðyÞÞ.
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However, in view of [20] Theorem 2.2, we can write

ðf0gk�1 �W � f0gÞ � Gt

¼ ðf0gk�1 �W � f0gÞ �V�W�f0g ððV �W � f0gÞ �V�W�C GtÞ

¼ ðf0gk�1 �W � f0gÞ �V�W�f0g ZftjA\ðV�WÞ

¼ ðf0gk�1 �WÞ �V�W Zft ;

whence qt ¼ degððf0gk�1 �WÞ � Zf Þ as required.

Step 4. As in the proof of Theorem 3.3, by [3] Proposition 2.2 we know
that for each t close to t0 there are pt ¼ dtðm� kÞ þ 1 holomorphic functions
Ft; j : V � Cm�kþ1 ! C whose common zeroes form coincide with the set f �1

t ð0Þ \
ðV �WÞ and for which

kðFt;1; . . . ;Ft;ptÞðxÞkb distðx; f �1
t ð0Þ \ ðV �WÞÞdt

for all x A V �W .
Now, we can apply Lemma 3.1 from [6] (compare [14]) in order to get on the

whole of A \ ðV �WÞ,

F
qt
t; j ¼ ht; j ft; j ¼ 1; . . . ; pt;

with some functions ht; j A OcðA \ ðV �WÞÞ.
This leads to the inequalities

j ftðxÞjb cðtÞ distðx; f �1
t ð0ÞÞdtqt ; x A A \ ðV �WÞðaÞ

for all t close to t0 and some constants cðtÞ > 0.

Step 5. Thanks to the continuity of the zero-sets (cf. Theorem 2.7),
Proposition 2.3 (cf. Remark 2.4) allows us to choose an arbitrarily small neigh-
bourhood T0 of t0 and a neighbourhood U � V �W of zero such that for all
t A T0 and all x A U , we have

distðx; f �1
t ð0ÞÞ < 1:

Therefore, we may increase ad libitum the exponent in ðaÞ, provided x A A \U .
The estimates ð?Þ and ð??Þ end the proof. r

Remark 4.3. In both theorems in this section the assumption that for
any t A T , ft does not vanish identically on the irreducible components of the
domain is automatically satisfied, if we just assume that ft0 does not vanish
identically on the irreducible componens of the domain (cf. Proposition 1.7 and
Theorem 2.7).
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