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CLASSIFICATION RESULTS OF QUASI EINSTEIN SOLITONS

Shu Yau Huang and Lin Feng Wang

Abstract

We classify ðr; tÞ-quasi Einstein solitons with ða; tÞ-concurrent vector fields. We

also give a necessary and su‰cient condition for a submanifold to be a ðr; tÞ-quasi
Einstein soliton in a Riemannian manifold equipped with an ða; tÞ-concurrent vector

field.

1. Introduction

Let M be an m-dimensional Riemannian manifold with metric g. We call g
ðr; tÞ-quasi Einstein if

1

2
LvgþRic� 1

t
v� n v� ¼ rRgþ lgð1:1Þ

holds for some potential field v and some constant l, where Ric is the Ricci
curvature tensor of M, Lvg is the Lie derivative of g with respect to v, r and
t > 0 are two given constants and v� is defined by v�ðXÞ ¼ gðv;X Þ for any vector
X tangent to M. A ðr; tÞ-quasi Einstein soliton is a manifold M whose metric
satisfies (1.1). Recall that a Ricci soliton is a manifold M whose metric satisfies

1

2
LvgþRic ¼ lgð1:2Þ

for some potential field v. Hence the ðr; tÞ-quasi Einstein soliton is a gener-
alization of the Ricci soliton.

Classification question for the ðr; tÞ-quasi Einstein soliton is complicated.
Now some additional conditions (for example, the pinching of the Ricci curva-
ture, the harmonicity of the Weyl tensor, the flatness of the Bach tensor, the
locally conformally flatness, the conditions at infinity of the scalar curvature
or the integral conditions of the potential function, etc) should be added. For
works in this direction, we can refer to [1, 2, 3, 9, 10] and the references therein.
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A vector field v is called ða; tÞ-concurrent if it satisfies

‘Xv ¼ aX þ 1

t
gðv;XÞvð1:3Þ

for any vector X tangent to M, where ‘ denotes the Levi-Civita connection
of M. Then an ða; 1Þ-concurrent vector field is a closed torse forming [7] and a
ð1;yÞ-concurrent vector field is a concurrent vector field [4]. A closed torse
forming is the generator of a biconcircular gradient vector field X , which satisfies
[6]

‘YX ¼ gðU ;YÞX þ gðX ;Y ÞU
for any vector Y tangent to M. It was proved in [11] that the concurrent vector
field is existed if the holonomy group of M leaves a point invariant. We can
refer to [4, 5, 7, 8] to see the study of concurrent vector fields.

In [4] Chen and Deshmukh classified Ricci solitons with concurrent potential
fields. They also derived a necessary and su‰cient condition for a submanifold
to be a Ricci soliton in a Riemannian manifold equipped with a concurrent
vector field. Inspired by Chen-Deshmukh’s work, we will classify ðr; tÞ-quasi
Einstein solitons with ða; tÞ-concurrent vector fields. We will also give a nec-
essary and su‰cient condition for a submanifold to be a ðr; tÞ-quasi Einstein
soliton in a Riemannian manifold equipped with an ða; tÞ-concurrent vector
field.

2. Classification results via the ða; tÞ-concurrent vector field

In this section we will classify ðr; tÞ-quasi Einstein solitons with ða; tÞ-
concurrent vector fields for some constant a0 0 and t > 0. We firstly state a
lemma.

Lemma 2.1. Let v be an ða; tÞ-concurrent vector field on an m-dimensional
Riemannian manifold M with metric g. Then for any unit vector X orthogonal
to v, the sectional curvature of M satisfies

KðX ; vÞ ¼ a

t
:ð2:1Þ

Proof. By (1.3) and the definition of the Riemannian curvature, we
have

RðX ; v;X ; vÞ ¼ gð‘X‘vv� ‘v‘Xv� ‘½X ; v�v;XÞ

¼ g ‘X avþ 1

t
jvj2v

� �
;X

� �
� g ‘v aX þ 1

t
gðv;XÞv

� �
;X

� �

� g a½X ; v� � 1

t
gð½X ; v�; vÞv;X

� �
:
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Since gðX ; vÞ ¼ 0 and

‘Xv� ‘vX � ½X ; v� ¼ 0;

we have

RðX ; v;X ; vÞ ¼ g ‘X

1

t
jvj2v

� �
;X

� �
� g ‘v

1

t
gðv;X Þv

� �
;X

� �

¼ 1

t
jvj2gð‘Xv;XÞ ¼ 1

t
jvj2g aX þ 1

t
ðX ; vÞv;X

� �
¼ a

t
jvj2:

Hence (2.1) holds. r

Lemma 2.1 tells us that the Ricci curvature of M satisfies

Ricðv; vÞ ¼ m� 1

t
ajvj2:ð2:2Þ

Now let’s state the main result in this section.

Theorem 2.2. Let t > 0; a0 0 and r be given constants. Then the metric g
of an m-dimensional Riemannian manifold M is ðr; tÞ-quasi Einstein, i.e., g satisfies
(1.1), for some constant l and some ða; tÞ-concurrent vector field v, if and only if
the following three conditions hold:

(a)

l ¼ aþm� 1

t
að1�mrÞ;ð2:3Þ

(b) Mm is an open part of a warped product manifold I �f ðsÞ F , where I is an
open interval with arclength s and F is an ðm� 1Þ-dimensional Einstein manifold
whose Ricci tensor satisfies RicF ¼ ðm� 2ÞgF , gF is the metric tensor of F ,

(c)

vðs; �Þ ¼ mðsÞ q
qs

:

Moreover, after applying a suitable translation and dilation,

f ðsÞ ¼

ffiffiffi
t

a

r
sin

ffiffiffi
a

t

r
s; a > 0

ffiffiffiffiffiffiffi
� t

a

r
sinh

ffiffiffiffiffiffiffi
� a

t

r
s; a < 0;

8>>><
>>>:

ð2:4Þ

mðsÞ ¼

ffiffiffiffiffi
at

p
tan

ffiffiffi
a

t

r
s; a > 0

�
ffiffiffiffiffiffiffiffiffi
�at

p
tanh

ffiffiffiffiffiffiffi
� a

t

r
s; a < 0:

8>>><
>>>:

ð2:5Þ
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Proof. The main idea comes from [4]. We firstly assume that g is ðr; tÞ-
quasi Einstein for some ða; tÞ-concurrent vector field v. Let us put v ¼ me1,
where e1 is a unit vector field tangent to Mm. Also let us extend e1 to a local
orthonormal frame fe1; . . . ; emg on Mm. Denote by fo1; . . . ;omg the dual frame
of 1-forms of fe1; . . . ; emg. Define the connection forms o

j
i ði; j ¼ 1; . . . ;mÞ on

Mm by

‘Xei ¼
Xm
j¼1

o
j
i ðXÞej; i ¼ 1; . . . ;m:ð2:6Þ

Letting X ¼ e1 in (1.3) we have

e1ðmÞe1 þ m‘e1e1 ¼ ae1 þ
m2

t
e1:

Since ð‘e1e1; e1Þ ¼ 0, we have

e1ðmÞ ¼ aþ m2

t
ð2:7Þ

and

‘e1e1 ¼ 0:ð2:8Þ
Put D1 ¼ Spanfe1g and D2 ¼ Spanfe2; . . . ; emg. It follows from (2.8) that D1 is
a totally geodesic distribution so that the leaves of D1 are geodesics of Mm.
Also, we may derive from (1.3) with X ¼ ei ði ¼ 2; . . . ;mÞ that

eiðmÞe1 þ m‘ei e1 ¼ aei; 2a iam:

Hence

e2ðmÞ ¼ � � � ¼ emðmÞ ¼ 0ð2:9Þ
and

m‘ei e1 ¼ aei; 2a iam:ð2:10Þ
Due to (2.6), we have

mo i
1ðeiÞ ¼ a;ð2:11Þ

o
j
1ðeiÞ ¼ 0; j0 i:ð2:12Þ

From Cartans structure equations, we have

do i ¼ �
Xm
j¼1

o i
j5o j; i ¼ 1; . . . ;m:ð2:13Þ

Thus, after applying (2.12) and (2.13), we obtain do1 ¼ 0. Hence we have
locally o1 ¼ ds for some function s on Mm. It follows from (2.12) that

gð½ei; ej�; e1Þ ¼ o1
j ðeiÞ � o1

i ðejÞ ¼ 0; 2a i0 jam:
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Therefore D2 is an integrable distribution. Moreover, from (2.11) we know that
the second fundamental form ĥh of each leaf L of D2 in Mm satisfies

ĥhðei; ejÞ ¼ � adij

m
e1; 2a i; jam;ð2:14Þ

which shows that the mean curvature of each leaf L is given by �am�1.
Equation (2.14) implies that each leaf of D2 is a totally umbilical hypersurface

of Mm whose mean curvature vector is ĤH ¼ � ae1

m
. Furthermore, by applying

(2.9) we conclude that D2 is a spherical distribution, i.e., the mean curvature
vector of each totally umbilical leaf is parallel in the normal bundle. Conse-
quently, as in [4] we know that Mm is locally a warped product manifold
I �f ðsÞ F whose warped metric is given by

g ¼ ds2 þ f 2ðsÞgF ;ð2:15Þ

such that e1 ¼
q

qs
. Hence (2.7) becomes

m 0ðsÞ ¼ aþ m2

t
:ð2:16Þ

Solving this equation and applying a suitable translation, we get (2.5).
Due to (2.15), a standard calculation shows that the sectional curvature of

Mm satisfies

KðX ; vÞ ¼ � f 00ðsÞ
f ðsÞ ;ð2:17Þ

for each unit vector X orthogonal to v. Now, after comparing (2.1) with (2.17)
we obtain

f 00ðsÞ ¼ � a

t
f ðsÞ:ð2:18Þ

Solving this di¤erential equation yields

f ðsÞ ¼
C1 sin

ffiffiffi
a

t

r
sþ C2 cos

ffiffiffi
a

t

r
s; a > 0

C1 sinh

ffiffiffiffiffiffiffi
� a

t

r
sþ C2 cosh

ffiffiffiffiffiffiffi
� a

t

r
s; a < 0:

8>>><
>>>:

From (2.11) we have

f 0ðsÞ
f ðsÞ ¼ a

mðsÞ :ð2:19Þ

Hence
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C1 cos

ffiffiffi
a

t

r
s� C2 sin

ffiffiffi
a

t

r
s

C1 sin

ffiffiffi
a

t

r
sþ C2 cos

ffiffiffi
a

t

r
s

¼
cos

ffiffiffi
a

t

r
s

sin

ffiffiffi
a

t

r
s

; a > 0

C1 cosh

ffiffiffi
a

t

r
sþ C2 sinh

ffiffiffi
a

t

r
s

C1 sinh

ffiffiffi
a

t

r
sþ C2 cosh

ffiffiffi
a

t

r
s

¼
cosh

ffiffiffi
a

t

r
s

sinh

ffiffiffi
a

t

r
s

; a < 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Hence C2 ¼ 0 and

f ðsÞ ¼
C1 sin

ffiffiffi
a

t

r
s; a > 0

C1 sinh

ffiffiffiffiffiffiffi
� a

t

r
s; a < 0:

8>>><
>>>:

Now after applying a suitable dilation of the metric tensor of F , we can choose
f ðsÞ as in (2.4).

On the other hand, by (1.3) and the definition of Lie-derivative we have

LvgðX ;YÞ ¼ gð‘Xv;Y Þ þ gð‘Yv;XÞð2:20Þ

¼ g aX þ 1

t
gðX ; vÞv;Y

� �
þ g aY þ 1

t
gðY ; vÞv;X

� �

¼ 2agðX ;YÞ þ 2

t
gðX ; vÞgðY ; vÞ

for any X , Y tangent to Mm. Combining (2.20) with (1.1) gives

RicðX ;YÞ ¼ ðrRþ l� aÞgðX ;YÞ:ð2:21Þ

Choosing X ¼ Y ¼ v and comparing (2.2) and (2.21) we get

rRþ l� a ¼ m� 1

t
a:ð2:22Þ

Tracing (2.21) leads to

R ¼ mðrRþ l� aÞ:ð2:23Þ

Solving (2.22) and (2.23) we get that

l ¼ aþm� 1

t
að1�mrÞ;ð2:24Þ

R ¼ mðm� 1Þ
t

a:ð2:25Þ
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Due to (2.15), a standard calculation shows that (see [10])

Ricðei; eiÞ ¼ f �2ðsÞ RicF ðei; eiÞ � ½ðlog f ðsÞÞ00 þ ðm� 1Þððlog f ðsÞÞ0Þ2�;
i ¼ 2; . . . ;m;

where RicF denotes the Ricci curvature tensor of F . Hence

RicF ¼ ðm� 2ÞgF :

Conversely, we assume that ðMm; gÞ satisfies conditions a), b) and c) in

Theorem 2.2. Let e1 ¼
q

qs
, e2; . . . ; em be a local orthonormal frame tangent to

Mm. Note f ðsÞ, mðsÞ satisfy (2.16), (2.18), (2.19). Then

‘eiðvÞ ¼ mðsÞ‘ei e1 ¼ mðsÞ f
0ðsÞ
f ðsÞ ei ¼ aei ¼ aei þ

1

t
gðv; eiÞv; 2a iam;

‘e1ðvÞ ¼ m 0ðsÞe1 þ mðsÞ‘e1e1 ¼ m 0ðsÞe1 ¼ aþ m2

t

� �
e1 ¼ ae1 þ

1

t
gðv; e1Þv:

Hence v is an ða; tÞ-concurrent vector field. On the other hand, due to (2.15), a
standard calculation shows that (see [10])

R1i ¼ �ðm� 1Þ½ðlog f ðtÞÞ00 þ ððlog f ðtÞÞ0Þ2�d1ið2:26Þ

and

Rij ¼ f �2ðtÞRF ; ij � ½ðlog f ðtÞÞ00 þ ðm� 1Þððlog f ðtÞÞ0Þ2�dij ; 2a i; jam;ð2:27Þ

where Rij and RF ; ij denotes the Ricci curvature of Mm and F respectively in the
local orthonormal frame. Since F is an Einstein ðm� 1Þ-manifold whose Ricci
tensor satisfies RicF ¼ ðm� 2ÞgF , we can verify (1.1) directly by using (2.3),
(2.20), (2.26) and (2.27). r

When we choose a ¼ 1, r ¼ 0 and let t ! y in Theorem 2.2, we will get the
following classification result, which was derived in [4].

Corollary 2.3. An m-dimensional Riemannian manifold ðM; gÞ is a Ricci
soliton, i.e., g satisfies (1.2), for some constant l and some concurrent vector field v,
if and only if the following three conditions hold:

(a) l ¼ 1,
(b) Mm is an open part of a warped product manifold I �s F , where I is an

open interval with arclength s and F is an Einstein ðm� 1Þ-manifold whose Ricci
tensor satisfies RicF ¼ ðm� 2ÞgF , gF is the metric tensor of F ,

(c) vðs; �Þ ¼ s
q

qs
.
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3. Submanifolds with ðr; tÞ-quasi Einstein metric

Let f : Mm ! Nn be an isometric immersion from an m-dimensional
Riemannian manifold ðMm; gMÞ into an n-dimensional Riemannian manifold
ðNn; gNÞ. We use ‘M , ‘N to denote the Levi-Civita connections on Mm and Nn

respectively. For vector fields X , Y tangent to Mm and h normal to Mm, the
Gauss formula and Weingarten formula are given respectively by [4]

‘N
X Y ¼ ‘M

X Y þ hðX ;Y Þ;ð3:1Þ
‘N
X h ¼ �AhX þDXh;ð3:2Þ

where hðX ;Y Þ is the normal components of ‘N
X Y , �AhX and DXh are the

tangential and normal components of ‘N
X h. These two formulas define the

second fundamental form h, the shape operator A, and the normal connection D
of Mm in the ambient space Nn. For any vector field v on Nn, we use vT and
v? to denote the tangential and normal components of v on Mm, respectively.

The following result gives a necessary and su‰cient condition, under which
the metric of a submanifold in a Riemannian manifold equipped with an ða; tÞ-
concurrent vector field is ðr; tÞ-quasi Einstein.

Theorem 3.1. Let ðNn; gNÞ be a Riemannian manifold endowed with an
ða; tÞ-concurrent vector field v. Then the metric of a submanifold Mm in N n is
ðr; tÞ-quasi Einstein for the potential field vT and some constant l, if and only if
the Ricci curvature of ðM; gÞ satisfies

RicMðX ;YÞ ¼ ðlþ rRM � 2aÞgMðX ;YÞ � gMðhðX ;Y Þ; v?Þð3:3Þ

for any X , Y tangent to M, where RM denotes the scalar curvature of M.

Proof. Since v ¼ vT þ v?, from (1.3), (3.1) and (3.2) we have

aX ¼ ‘N
X vT þ ‘N

X v? � 1

t
gNðv;X Þvð3:4Þ

¼ ‘M
X vT þ hðX ; vT Þ � Av?X þDXv

? � 1

t
gNðv;XÞðvT þ v?Þ:

By comparing the tangential and normal components of (3.4) we obtain

‘M
X vT ¼ Av?X þ aX þ 1

t
gMðvT ;X ÞvT

and

hðX ; vTÞ ¼ �DXv
? þ 1

t
gMðvT ;XÞv?:

Then for vector fields X , Y tangent to M,
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ðLvT gMÞðX ;Y Þ ¼ gMð‘M
X vT ;YÞ þ gMð‘M

Y vT ;XÞð3:5Þ

¼ gM Av?X þ aX þ 1

t
gMðvT ;XÞvT ;Y

� �

þ gM Av?Y þ aY þ 1

t
gMðvT ;YÞvT ;X

� �

¼ 2agMðX ;YÞ þ 2gMðAv?X ;Y Þ þ 2

t
gMðvT ;X ÞgMðvT ;Y Þ:

From (1.1) we have

1

2
LvTgMðX ;YÞ þRicMðX ;YÞ � 1

t
gMðvT ;X ÞgMðvT ;Y Þð3:6Þ

¼ rRgMðX ;Y Þ þ lgMðX ;Y Þ:

Plugging (3.5) into (3.6) leads to

RicMðX ;YÞ ¼ ðlþ rR� 2aÞgMðX ;YÞ � gMðAv?X ;Y Þ:

Since the shape operator and the second fundamental form are related by

gMðAv?X ;Y Þ ¼ gMðhðX ;YÞ; v?Þ:

We arrive at (3.3). r

Note that t does not appear in (3.3). If we let r ¼ 0, a ¼ 1 and t ! y in
Theorem 3.1, we can get the following result, which was proved in [4].

Corollary 3.2. Let ðNn; gNÞ be a Riemannian manifold endowed with a
concurrent vector field v. Then a submanifold Mm in N n is a gradient soliton for
the potential field vT and some constant l if and only if the Ricci curvature of
ðM; gÞ satisfies

RicMðX ;YÞ ¼ ðl� 2ÞgMðX ;YÞ � gMðhðX ;YÞ; v?Þ

for any X , Y tangent to M.

Recall that a Riemannian submanifold Mm is called h-umbilical (with respect
to a normal vector field h) if its shape operated satisfies Ah ¼ jI , where j is a
function on Mm and I is the identity map [4]. The following result can be
deduced from Theorem 3.1 easily.

Theorem 3.3. Let ðNn; gNÞ be a Riemannian manifold endowed with an
ða; tÞ-concurrent vector field v. We assume that the metric of a submanifold Mm

in N n is ðr; tÞ-quasi Einstein for the potential field vT and some constant l. Then
Mm is trivial in the sense that gM is Einstein if and only if Mm is v?-umbilical.
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Proof. Mm is v?-umbilical is equivalent to the fact that for all X , Y
tangent to M,

gMðhðX ;Y Þ; v?Þ ¼ jgMðX ;Y Þ:
Hence (3.3) is equivalent to

RicMðX ;YÞ ¼ ðlþ rRM � 2a� jÞgMðX ;YÞ:
Hence this theorem holds. r
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