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Abstract

We study the Grothendieck conjecture for the moduli spaces of hyperbolic curves of

genus one. A consequence of the main results is that the isomorphism class of a certain

moduli space of hyperbolic curves of genus one over a sub-p-adic field is completely

determined by the isomorphism class of the étale fundamental group of the moduli space

over the absolute Galois group of the sub-p-adic field. We also prove related results in

absolute anabelian geometry.

Introduction

A. Grothendieck has proposed that there is a class of varieties called
anabelian varieties such that, roughly speaking, the isomorphism class of a
variety that belongs to this class should be completely determined by the étale
fundamental group (cf. [1], [2]). He also suggested examples of varieties which
should be found in the class of anabelian varieties. This is now called the
Grothendieck conjecture of anabelian geometry. One may find moduli spaces of
hyperbolic curves among these examples suggested by Grothendieck.

The present paper focuses on the Grothendieck conjecture of anabelian
geometry for certain moduli spaces of hyperbolic curves of genus one. Let us
introduce some notational conventions as follows: Let k be a field of charac-
teristic zero and

P : ðEll=kÞ ! ðSetsÞ
a moduli problem for elliptic curves over k (cf. [5], (4.2), (4.13)), which thus
determines a contravariant functor of [5], (4.3.1)

MðPÞ : ðSch=kÞ ! ðSetsÞ;
i.e., the functor obtained by considering elliptic curves equipped with level P
structures. We shall say that the moduli problem P is hyperbolic (cf. Definition
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1.1) if P is represented by a hyperbolic curve over k, which we denote by

MP;1;

i.e., the modular curve with respect to P, and, moreover, the natural morphism
from MP;1 to the coarse moduli scheme ‘‘A1

k’’ of elliptic curves over k is non-
constant, i.e., dominant. For instance, if n is an integer greater than two, and
k contains a primitive n-th root of unity, then the moduli problem ½GðnÞ� over k
obtained by considering ‘‘GðnÞ-structures’’ (cf. [5], (3.1), (5.1)) is hyperbolic.

For a positive integer r, we shall write

MðP; rÞ : ðSch=kÞ ! ðSetsÞ
for the functor obtained by considering collections of data consisting of projective
smooth curves of genus one equipped with ordered distinct r points and level P
structures on the elliptic curves determined by the projective smooth curves of
genus one and the first marked points (cf. Definition 1.3). If P is hyperbolic,
then MðP; rÞ is represented by a smooth variety over k (cf. Proposition 1.5, (iii)),
which we denote by

MP; r:

A consequence of the main results of the present paper is as follows
(cf. Theorem 2.2 in the case where both ‘‘gM

a ’’ and ‘‘gM
b ’’ are positive):

Theorem. Let k be a sub-p-adic field for some prime number p; k an
algebraic closure of k: For x ¼ a; b, let Px be a hyperbolic (cf. Definition 1.1)
moduli problem for elliptic curves over k; rx b 1 an integer. Suppose that, for
x ¼ a; b, the modular curve MPx;1 with respect to Px is of positive genus. Then
the natural map

IsomkðMPa; ra ;MPb ; rbÞ ! IsomGk
ðp1ðMPa; raÞ; p1ðMPb ; rbÞÞ=Innðp1ðMPb ; rb nk kÞÞ

is bijective.

The proof is a combination of rather standard arguments in anabelian
geometry. A part of it is similar to some arguments in [3], which implies
Theorem in the case where either ra or rb is less than five.

After reviewing some definitions in section 0, we introduce, in section 1,
certain moduli spaces of hyperbolic curves of genus one, that are the main objects
of the present paper. We state the main results in section 2. In section 3, we
prove the main results. Finally, in section 4, we prove some variants in absolute
anabelian geometry.

Most of the results of the present paper are contained in the master thesis [6]
of the second author.

Acknowledgments. The authors would like to thank the referee for helpful
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JSPS KAKENHI Grant Numbers 24540016, 15K04780. The third author was
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The third author thanks J. C. for suggesting this paper.

0. Preliminaries

0.1. Let p be a prime number. A p-adic local field is defined as a finite
extension of Qp. A sub-p-adic field is defined as a field isomorphic to a subfield
of a finitely generated extension of a p-adic local field (cf. [8], Definition 15.4, (i)).
A generalized sub-p-adic field is defined as a field isomorphic to a subfield of a
finitely generated extension of the p-adic completion of the maximal unramified
extension of a p-adic local field (cf. [9], Definition 4.11).

0.2. For a connected noetherian scheme X , we denote by

p1ðXÞ

the étale fundamental group (well-defined up to conjugation) for some base point.
For a morphism X ! Y of connected noetherian schemes, we denote by

DX=Y � p1ðXÞ

the kernel of the induced outer homomorphism p1ðXÞ ! p1ðYÞ.

0.3. Let S be a scheme. For a pair of nonnegative integers ðg; rÞ with
2g� 2þ r > 0, a hyperbolic curve of type ðg; rÞ over S is defined as a scheme
X over S such that there are a scheme X cpt which is smooth, proper, geomet-
rically connected, and of relative dimension one over S and a closed subscheme
D � X cpt of X cpt which is finite and étale over S satisfying the following
conditions:

(i) Any geometric fiber of X cpt ! S is of genus g.
(ii) The finite étale covering D ,! X cpt ! S is of degree r.
(iii) X is isomorphic to X cpt \D over S.

A hyperbolic curve over S is defined as a hyperbolic curve of type ðg; rÞ over S for
some pair of nonnegative integers ðg; rÞ with 2g� 2þ r > 0.

0.4. For a hyperbolic curve X=S and a positive integer n, the n-th relative
configuration space Xn associated to X=S is defined as the complement in the fiber
product X n of n copies of X over S of the ði; jÞ-weak diagonals, where ði; jÞ
ranges over the pairs such that 1a i < ja n. Here, the ði; jÞ-weak diagonal is
the inverse image via the projection X n ! X 2 to the i-th and j-th factors of the
diagonal of X 2. The 0-th relative configuration space X0 associated to X=S is
defined as S.

For 1a ia n, by forgetting the i-th factor, we obtain a projection morphism
pi : Xn ! Xn�1. One verifies easily that the scheme Xn is, via the morphism pi, a
hyperbolic curve over Xn�1 of type ðg; rþ n� 1Þ. Therefore, Xn is a hyperbolic
polycurve over S in the sense of [3], Definition 2.1, (ii).
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1. Moduli spaces of hyperbolic curves of genus one

In this section, we introduce certain moduli spaces of hyperbolic curves of
genus one. Let k be a field of characteristic zero and

P : ðEll=kÞ ! ðSetsÞ

a moduli problem for elliptic curves over k (cf. [5], (4.2), (4.13)). Hence we have
a contravariant functor of [5], (4.3.1)

MðPÞ : ðSch=kÞ ! ðSetsÞ;

i.e., the functor obtained by considering elliptic curves equipped with level P
structures.

Definition 1.1. We shall say that P is hyperbolic if MðPÞ is represented
by a hyperbolic curve over k, and, moreover, the natural morphism from the
hyperbolic curve that represents MðPÞ to the coarse moduli scheme ‘‘A1

k’’ of
elliptic curves over k is nonconstant, i.e., dominant. If P is hyperbolic, then we
shall denote by

MP;1

the hyperbolic curve that represents MðPÞ.

Remark 1.2. An example of a hyperbolic moduli problem is as follows: If
n is an integer greater than two, and k contains a primitive n-th root of unity,
then the moduli problem ½GðnÞ� over k obtained by considering ‘‘GðnÞ-structures’’
(cf. [5], (3.1), (5.1)) is hyperbolic.

Definition 1.3. Let r be a positive integer. Then we shall write

MðP; rÞ : ðSch=kÞ ! ðSetsÞ
for the contravariant functor such that, for each k-scheme S, the set MðP; rÞðSÞ
is defined as the set of isomorphism classes of collections of data as follows:

(i) The elliptic curve E over S equipped with a level P structure (i.e., an
element of PðEÞ).

(ii) Ordered r sections x1; . . . ; xr : S ! E of the structure morphism E ! S
such that ImðxiÞ \ ImðxjÞ ¼ j for i0 j, and, moreover, x1 is the identity
section of E ! S.

Let r be a positive integer. Then it follows from the definition of MðP; rÞ
that we have a cartesian diagram of functors over k

MðP; rÞ M1; r
?
?
?
y

?
?
?
y

MðPÞ ¼ MðP; 1Þ ���! M1;1;

�������!
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where we write M1; r for the (functor represented by the) moduli stack of
projective smooth curves of genus one over k equipped with ordered distinct
r points (cf. [7]), the vertical arrows are the morphisms obtained by forgetting the
last r� 1 marked points, and the horizontal arrows are the morphisms obtained
by forgetting the data related to P. Since the right-hand vertical arrow is
representable (cf., e.g., the proof of [7], Theorem 2.7), we conclude that if P is
hyperbolic, then MðP; rÞ is represented by a scheme over k.

Definition 1.4. Suppose that P is hyperbolic. We shall denote by

MP; r

the scheme that represents MðP; rÞ. Hence we have a cartesian diagram of
stacks over k

MP; r ���! M1; r
?
?
?
y

?
?
?
y

MP;1 ���! M1;1:

Note that MP; r is a smooth variety over k (cf. Proposition 1.5, (iii), below).

Proposition 1.5. Suppose that P is hyperbolic. Then the following hold:
(i) MP;2 is, via the left-hand vertical arrow of the diagram of Definition 1.4,

a hyperbolic curve of type ð1; 1Þ over MP;1:
(ii) If rb 2, then MP; r is, via the left-hand vertical arrow of the diagram of

Definition 1.4, the ðr� 1Þ-st relative configuration space associated to the
hyperbolic curve MP;2=MP;1:

(iii) MP; r is a hyperbolic polycurve over k in the sense of [3], Definition 2.1,
(ii). In particular, MP; r is a smooth variety over k (cf. [3], Remark
2.1.1).

Proof. Assertions (i) and (ii) follow from the definition of MðP; rÞ.
Assertion (iii) follows from assertions (i), (ii). r

2. Main results

The main results of the present paper are as follows:

Theorem 2.1. Let k be a sub-p-adic field for some prime number p and k
an algebraic closure of k: For x ¼ a; b, let C x be a hyperbolic curve of type
ðgC

x ; r
C
x Þ over k; X x

1 a hyperbolic curve over C x of type ðgx; rxÞ; nx b 1 an integer;

X x the nx-th relative configuration space associated to X x
1 =C

x; Px ¼def p1ðX xÞ;
Px ¼def p1ðX x nk kÞ; Gk ¼def Galðk=kÞ: Thus, we have an exact sequence of pro-
finite groups

1 ! Px ! Px ! Gk ! 1:
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Assume that the following two conditions (1) and (2) hold:
(1) ga < gC

b or ra þ na � 1 < rCb :

(2) gb < gC
a or rb þ nb � 1 < rCa :

Then the natural map

IsomkðX a;X bÞ ! IsomGk
ðPa;PbÞ=InnðPbÞ

is bijective. If, moreover, IsomkðX a;X bÞ0j, then

ðgC
a ; r

C
a ; ga; ra; naÞ ¼ ðgC

b ; r
C
b ; gb; rb; nbÞ:

Theorem 2.2. Let k be a sub-p-adic field for some prime number p; k an
algebraic closure of k: For x ¼ a; b, let Px be a hyperbolic (cf. Definition 1.1)
moduli problem for elliptic curves over k; rx b 1 an integer. Write

MPx; rx

for the smooth variety over k representing the functor MðPx; rxÞ (cf. Definitions
1.3, 1.4); ðgM

x ; rMx Þ for the type of the hyperbolic curve MPx;1 over k: Assume that
the following two conditions (1) and (2) hold:

(1) 1a gM
b or ra a rMb :

(2) 1a gM
a or rb a rMa :

Then the natural map

IsomkðMPa; ra ;MPb ; rbÞ ! IsomGk
ðp1ðMPa; raÞ; p1ðMPb ; rbÞÞ=Innðp1ðMPb ; rb nk kÞÞ

is bijective. If, moreover, IsomkðMPa; ra ;MPb ; rbÞ0j, then

ðra; gM
a ; rMa Þ ¼ ðrb; gM

b ; rMb Þ:

Remark 2.3. Note that, in the situation of Theorem 2.1 (resp. Theorem
2.2), if either na a 3 or nb a 3 (resp. ra a 4 or rb a 4), then Theorem 2.1 (resp.
Theorem 2.2) follows from [3], Theorem B, without the conditions (1) and (2).

3. Proofs of Theorems 2.1 and 2.2

In this section, we prove Theorems 2.1 and 2.2. First, we prove the
following two lemmas:

Lemma 3.1. For x ¼ a; b, let kx be an algebraically closed field of charac-
teristic zero; Y x a hyperbolic curve over kx of type ðgx; rxÞ; nx b 1 an integer; Y x

nx
the nx-th relative configuration space associated to Y x=kx: Let

j : p1ðY a
na
Þ ! p1ðY b

nb
Þ

be an isomorphism of profinite groups. Then the following hold:
(i) na ¼ nb: If, moreover, na ¼ nb 0 1, then ðga; raÞ ¼ ðgb; rbÞ:
(ii) There exist integers 1a ia a na, 1a ib a nb such that

jðDY a
na
=Y a

na�1
Þ ¼ D

Y
b
nb
=Y b

nb�1

;
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where, for x ¼ a; b, we write Y x
nx�1 for the ðnx � 1Þ-st relative configura-

tion space associated to Y x=kx, and the morphism Y x
nx
! Y x

nx�1 implicit in
the kernel DY x

nx
=Y x

nx�1
is the composite of an automorphism of Y x

nx
over kx

and the projection morphism obtained by forgetting the ix-th factor.

Proof. These assertions follow immediately from [4], Theorem 2.5. r

Remark 3.2. Lemma 3.1, (i) (resp. (ii)), in the case where the isomorphism j
is compatible with the respective weight filtrations of p1ðY a

na
Þ, p1ðY b

nb
Þ follows

from [6], Theorem 2.1 (resp. 2.2).

Lemma 3.3. Let k be a generalized sub-p-adic field for some prime number p
and k an algebraic closure of k: For x ¼ a; b, let C x be a hyperbolic curve of type
ðgC

x ; r
C
x Þ over k; X x

1 a hyperbolic curve over C x of type ðgx; rxÞ; nx b 1 an integer;

X x the nx-th relative configuration space associated to X x
1 =C

x; Px ¼def p1ðX xÞ;
Px ¼def p1ðX x nk kÞ; Gk ¼def Galðk=kÞ: Thus, we have an exact sequence of pro-
finite groups

1 ! Px ! Px ! Gk ! 1:

Let

j : Pa ! Pb

be an isomorphism of profinite groups over Gk: Suppose that

jðDX a=C aÞ ¼ DX b=C b :

Then j arises from an isomorphism X a !@ X b over k. In other words, the element
of IsomGk

ðPa;PbÞ=InnðPbÞ determined by j is contained in the image of the
natural map

IsomkðX a;X bÞ ! IsomGk
ðPa;PbÞ=InnðPbÞ:

Moreover,

ðgC
a ; r

C
a ; ga; ra; naÞ ¼ ðgC

b ; r
C
b ; gb; rb; nbÞ:

Proof. Since jðDX a=C aÞ ¼ DX b=C b , the isomorphism j induces an isomor-
phism p1ðC aÞ !@ p1ðC bÞ over Gk. Write j0 : p1ðC aÞ !@ p1ðC bÞ for the isomor-
phism over Gk induced by j. Then it follows from [9], Theorem 4.12, that
j0 arises from an isomorphism f0 : C

a !@ C b over k, which thus implies that

ðgC
a ; r

C
a Þ ¼ ðgC

b ; r
C
b Þ. Let x be a geometric point of C a, Y a ¼def X a �C a x, and

Y b the base change of the projection morphism X b ! C b by the composite

x ! C a !f0 C b. Here, observe that, by [3], Proposition 2.4, (i), DX x=C x is
naturally isomorphic to p1ðY xÞ. Moreover, observe that Y x is the nx-th relative
configuration space associated to the hyperbolic curve Y x

1 ¼def X x
1 �C x x over x.

Thus, it follows from Lemma 3.1, (i), that na ¼ nb, which we denote by n.
Moreover, again by Lemma 3.1, (i), if n0 1, then ðga; raÞ ¼ ðgb; rbÞ. Further-
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more, by Lemma 3.1, (ii), there exist integers 1a ia, ib a n such that

jðDY a=Y a
n�1
Þ ¼ D

Y b=Y
b

n�1

;

where, for x ¼ a; b, we write Y x
n�1 for the ðn� 1Þ-st relative configuration space

associated to Y x
1 =x, and the morphism Y x ! Y x

n�1 implicit in the kernel DY x=Y x
n�1

is the composite of an automorphism of Y x over x and the projection morphism
obtained by forgetting the ix-th factor. In particular, since, for x ¼ a; b, the
homomorphism DY x=Y x

n�1
! DX x=X x

n�1
induced by the natural morphism Y x ! X x

is an isomorphism (cf. [3], Proposition 2.4, (ii)), we conclude that

jðDX a=X a
n�1
Þ ¼ D

X b=X b

n�1

;

where, for x ¼ a; b, we write X x
n�1 for the ðn� 1Þ-st relative configuration

space associated to X x
1 =C

x, and the morphism X x ! X x
n�1 implicit in the kernel

DX x=X x
n�1

is the composite of an automorphism of X x over C x and the projection

morphism obtained by forgetting the ix-th factor. Thus, the isomorphism j
induces an isomorphism p1ðX a

n�1Þ !
@

p1ðX b
n�1Þ over Gk. Write jn�1 : p1ðX a

n�1Þ !
@

p1ðX b
n�1Þ for the isomorphism over Gk induced by j. Note that it follows from

jðDX a=C aÞ ¼ DX b=C b that

jn�1ðDX a
n�1

=C aÞ ¼ D
X

b

n�1
=C b :

In the remainder of the proof, let us prove Lemma 3.3 by induction on n.

Suppose that jn�1 arises from an isomorphism fn�1 : X
a
n�1 !

@
X

b
n�1 over k. Write

h ! X a
n�1 for the generic point of X a

n�1, X
a
h ¼def X a �X a

n�1
h, and X b

h for the base

change of the projection morphism X b ! X
b
n�1 by the composite h ! X a

n�1 �!
fn�1

X
b
n�1. Then it follows from [3], Proposition 2.4, (ii), that j induces an iso-

morphism p1ðX a
h Þ !

@
p1ðX b

h Þ over p1ðhÞ. In particular, by [9], Theorem 4.12,

there exists an isomorphism X a
h !@ X b

h over h from which the isomorphism

p1ðX a
h Þ !

@
p1ðX b

h Þ arises, which thus implies that if n ¼ 1, then ðga; raÞ ¼ ðgb; rbÞ.
Hence it follows from [3], Lemma 2.10, that j arises from a morphism X a ! X b

over k. Therefore, by applying a similar argument to j�1, it follows from [3],
Proposition 3.2, (i), that j arises from an isomorphism X a !@ X b over k. This
completes the proof of Lemma 3.3. r

3.4. Let us prove Theorem 2.1. First, recall that the injectivity of the map
IsomkðX a;X bÞ ! IsomGk

ðPa;PbÞ=InnðPbÞ follows from [3], Proposition 3.2, (ii).
Let j be an element of IsomGk

ðPa;PbÞ. It follows from Lemma 3.3 that, to
prove Theorem 2.1, it su‰ces to show that

jðDX a=C aÞ ¼ DX b=C b :

To this end, let us consider the composite

DX a=X a
na�1

,! DX a=k !j DX b=k ! DC b=k;

where we denote by X a
na�1 the ðna � 1Þ-st relative configuration space associated

to X a
1 =C

a, and the morphism X a ! X a
na�1 implicit in the kernel DX a=X a

na�1
is the
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projection morphism obtained by forgetting the na-th factor. It follows from [3],
Proposition 2.4, (iii), (iv), that DX a=X a

na�1
is topologically finitely generated, and

DC b=k is elastic. (Here, let us recall that a profinite group G is elastic if the
following condition holds: Let H be a closed subgroup of G. Suppose that H
is topologically finitely generated and normal in an open subgroup of G that
contains H. Then H is either open in G or trivial.) Hence the image of the
above composite is either open or trivial. Suppose that the image is open.
Then, by the following discussion, we obtain a contradiction: Let x be a
closed point of X a

na�1 and x ! X a
na�1 a geometric point of X a

na�1 lying over x.

Then it follows from [3], Proposition 2.4, (i), that DX a=X a
na�1

is isomorphic to
p1ðX a �X a

na�1
xÞ. Hence, by [8], Theorem A, the above composite arises from

a dominant morphism X a �X a
na�1

x ! C b over k. On the other hand, such a
dominant morphism does not exist by the condition (1), together with the fact
that the hyperbolic curve X a �X a

na�1
x is of type ðga; ra þ na � 1Þ. Therefore,

we conclude that the image of the above composite is trivial, which thus implies
that the morphism Pa ! p1ðC bÞ induced by j factors through the projection
Pa ! p1ðX a

na�1Þ.
Moreover, by applying a similar argument to the argument of the preceding

paragraph inductively, we conclude that the morphism Pa ! p1ðC bÞ induced by j
factors through the projection Pa ! p1ðC aÞ, which thus implies that

jðDX a=C aÞ � DX b=C b :

Furthermore, by applying a similar argument to j�1, we obtain that

jðDX a=C aÞ ¼ DX b=C b :

This completes the proof of Theorem 2.1.

3.5. Let us prove Theorem 2.2. If either ra or rb is equal to one, then
Theorem 2.2 follows immediately from [3], Theorem B. Suppose that both ra
and rb are greater than one. Then MPx; rx is the ðrx � 1Þ-st relative configuration
space associated to the hyperbolic curve MPx;2=MPx;1 of type ð1; 1Þ (cf. Proposi-
tion 1.5, (i), (ii)). Hence it follows immediately from a similar argument to the
argument applied in the proof of Theorem 2.1 that, to prove Theorem 2.2, it
su‰ces to show the following assertion: If j : p1ðMPa; raÞ !

@
p1ðMPb ; rb Þ is an

isomorphism over Gk, then the image of the composite

DMPa ; ra=MPa ; ra�1
,! DMPa ; ra=k

!j DMPb ; rb
=k ! DMPb ; 1

=k

is not open. To this end, suppose that the image of the above composite is
open. Then, by [8], Theorem A, for any geometric point s of MPa; ra�1 which lies
over a closed point, there exists a dominant morphism

MPa; ra �MPa ; ra�1
s ! MPb ;1 �k s

from the hyperbolic curve MPa; ra �MPa ; ra�1
s over s of type ð1; ra � 1Þ to the

hyperbolic curve MPb ;1 �k s over s of type ðgM
b ; rMb Þ (cf. the discussion of the

second paragraph of the proof of Theorem 2.1).
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Suppose that gM
b > 1. Then it is immediate such a dominant morphism

does not exist. Thus, we obtain a contradiction.
Suppose that gM

b ¼ 0. Then it follows from the condition (1) that such a
dominant morphism does not exist. Thus, we obtain a contradiction.

Suppose that gM
b ¼ 1. Let us recall that, by the definition of a hyperbolic

moduli problem, the natural morphism from MPa;1 to the coarse moduli scheme
of elliptic curves over k is dominant. Thus, by varying s, for all but finitely
many j A k, one may take an elliptic curve over s (i.e., over k) whose j-invariant
is j A k as the smooth compactification of the source of the above dominant
morphism

MPa; ra �MPa ; ra�1
s ! MPb ;1 �k s:

Hence one may conclude that, for all but finitely many j A k, the smooth
compactification of the hyperbolic curve MPb ;1 �k s is isogenous to an elliptic
curve over s whose j-invariant is j A k. Thus, we obtain a contradiction. This
completes the proof of Theorem 2.2.

4. Absolute variants

In this section, we prove some variants of the results of section 2 in absolute
anabelian geometry.

Theorem 4.1. For x ¼ a; b, let kx be a finitely generated extension of Q;
kx an algebraic closure of kx; C

x a hyperbolic curve of type ðgC
x ; r

C
x Þ over kx; X

x
1 a

hyperbolic curve over C x of type ðgx; rxÞ; nx b 1 an integer; X x the nx-th relative

configuration space associated to X x
1 =C

x; Px ¼def p1ðX xÞ: Assume that the fol-
lowing two conditions hold:

(1) gb < gC
a or rb þ nb � 1 < rCa .

(2) ga < gC
b or ra þ na � 1 < rCb .

Then the natural map

IsomðX a;X bÞ ! IsomðPa;PbÞ=InnðPbÞ
is bijective. If, moreover, IsomðX a;X bÞ0j, then

ðgC
a ; r

C
a ; ga; ra; naÞ ¼ ðgC

b ; r
C
b ; gb; rb; nbÞ:

Proof. The injectivity follows from [3], Proposition 3.2, (ii), and [12],
Lemma 4.2, together with the well-known fact that the absolute Galois group
of a finitely generated extension of Q is center-free. Let j be an element of

IsomðPa;PbÞ. We consider the composite DX a=ka ,! Pa !j Pb ! Gkb . Since
DX a=ka is topologically finitely generated (cf. [3], Lemmas 1.5, 1.7), it follows from
[3], Proposition 3.19, (i), that the composite is trivial. By applying a similar

argument, it follows that the composite DX b=kb ,! Pb �!j
�1

Pa ! Gka is trivial.
Hence it follows that j lies over an isomorphism Gka !

@
Gkb . It follows from [3],

Proposition 3.19, (ii), that the isomorphism Gka !
@

Gkb arises from an isomor-
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phism kb !@ ka that determines an isomorphism kb !@ ka. Then, by taking the
base change of X b by the isomorphism Spec ka !@ Spec kb induced by kb !@ ka, it
follows from Theorem 2.1 that j arises from an isomorphism X a !@ X b, and
ðgC

a ; r
C
a ; ga; ra; naÞ ¼ ðgC

b ; r
C
b ; gb; rb; nbÞ. This completes the proof of Theorem 4.1.

r

Definition 4.2. Let k be a p-adic local field (for some prime number p)
and P a moduli problem for elliptic curves over k. Then we shall say that P is
of quasi-Belyi type if P is hyperbolic, and, moreover, the hyperbolic curve MP;1

over k is of quasi-Belyi type (cf. [10], Definition 2.3, (iii)), i.e., the hyperbolic
curve MP;1 over k is defined over a finite extension of Q, and, moreover, there
exist a connected finite étale covering Z ! MP;1 and a dominant morphism from
Z to the complement in the projective line of three rational points over a finite
extension of k.

Remark 4.3. In the situation of Definition 4.2, the example of a hyperbolic
moduli problem of Remark 1.2 is of quasi-Belyi type.

Theorem 4.4. For x ¼ a; b, let kx be a field of characteristic zero; kx an
algebraic closure of kx; Px a hyperbolic (cf. Definition 1.1) moduli problem for
elliptic curves over kx; rx b 1 an integer. Write

MPx; rx

for the smooth variety over kx representing the functor MðPx; rxÞ (cf. Definitions
1.3, 1.4); ðgM

x ; rMx Þ for the type of the hyperbolic curve MPx;1 over kx: Assume
that one of the following two conditions (i) and (ii) holds:

(i) The following conditions hold:
(1) For x ¼ a; b, the field kx is finitely generated over Q:
(2) 1a gM

b or ra a rMb :
(3) 1a gM

a or rb a rMa :
(ii) The following conditions hold:

(1) For x ¼ a; b, the field kx is px-adic local for some prime number px:
(2) ra < 2gM

b þ rMb � 1:
(3) rb < 2gM

a þ rMa � 1:
(4) For x ¼ a; b, the moduli problem Px is of quasi-Belyi type (cf.

Definition 4.2).
Then the natural map

IsomðMPa; ra ;MPb ; rbÞ ! Isomðp1ðMPa; raÞ; p1ðMPb ; rbÞÞ=Innðp1ðMPb ; rbÞÞ
is bijective. If, moreover, IsomðMPa; ra ;MPb ; rbÞ0j, then

ðra; gM
a ; rMa Þ ¼ ðrb; gM

b ; rMb Þ:

Proof. Suppose that the condition (i) holds. Then Theorem 4.4 follows
from a similar argument as in the proof of Theorem 4.1, together with Theorem
2.2.
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Suppose that the condition (ii) holds. The injectivity follows from [3],
Proposition 3.2, (ii), and [12], Lemma 4.2, together with the well-known fact that
the absolute Galois group of a p-adic local field is center-free. Let j be an
element of Isomðp1ðMPa; raÞ; p1ðMPb ; rb ÞÞ. It follows from [11], Corollary 2.8, (ii),
that jðDMPa ; ra=ka

Þ ¼ DMPb ; rb
=kb and pa ¼ pb.

Let us consider the composite

DMPa ; ra=MPa ; ra�1
,! DMPa ; ra=ka

!j DMPb ; rb
=kb ! DMPb ; 1

=kb :

It follows immediately from [3], Proposition 2.4, (iii), (iv), that DMPa ; ra=MPa ; ra�1

is topologically finitely generated, and DMPb ; 1
=kb is elastic. Hence the image of

the above composite is either open or trivial. Recall that the abelianization of
DMPa ; ra=MPa ; ra�1

(resp. DMPb ; 1
=kb ) is a free ẐZ-module of rank ra (resp. 2gM

b þ rMb � 1)

(cf. [3], Proposition 2.4, (v)). In particular, it follows from the condition (2) that
the above composite is trivial. Hence the morphism p1ðMPa; raÞ ! p1ðMPb ;1Þ
factors through the projection p1ðMPa; raÞ ! p1ðMPa; ra�1Þ.

Moreover, by applying a similar argument to the argument of the preceding
paragraph inductively, we conclude that the morphism p1ðMPa; raÞ ! p1ðMPb ;1Þ
induced by j factors through the projection p1ðMPa; raÞ ! p1ðMPa;1Þ, which thus
implies that

jðDMPa ; ra=MPa ; 1
Þ � DMPb ; rb

=MPb ; 1
:

Furthermore, by applying a similar argument to j�1, we obtain that

jðDMPa ; ra=MPa ; 1
Þ ¼ DMPb ; rb

=MPb ; 1
:

Hence we conclude that the isomorphism j induces an isomorphism p1ðMPa;1Þ !
@

p1ðMPb ;1Þ. In particular, by the condition (4), it follows from [10], Corollary
2.3, that this isomorphism arises from an isomorphism MPa;1 !

@
MPb ;1. Then,

by applying a similar argument to the argument applied in the proof of Lemma
3.3, it follows that j arises from an isomorphism MPa; ra !

@
MPb ; rb , and

ðra; gM
a ; rMa Þ ¼ ðrb; gM

b ; rMb Þ. This completes the proof of Theorem 4.4. r
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