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THE GROTHENDIECK CONJECTURE FOR THE MODULI SPACES
OF HYPERBOLIC CURVES OF GENUS ONE
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Abstract

We study the Grothendieck conjecture for the moduli spaces of hyperbolic curves of
genus one. A consequence of the main results is that the isomorphism class of a certain
moduli space of hyperbolic curves of genus one over a sub-p-adic field is completely
determined by the isomorphism class of the étale fundamental group of the moduli space
over the absolute Galois group of the sub-p-adic field. We also prove related results in
absolute anabelian geometry.

Introduction

A. Grothendieck has proposed that there is a class of varieties called
anabelian varieties such that, roughly speaking, the isomorphism class of a
variety that belongs to this class should be completely determined by the étale
fundamental group (cf. [1], [2]). He also suggested examples of varieties which
should be found in the class of anabelian varieties. This is now called the
Grothendieck conjecture of anabelian geometry. One may find moduli spaces of
hyperbolic curves among these examples suggested by Grothendieck.

The present paper focuses on the Grothendieck conjecture of anabelian
geometry for certain moduli spaces of hyperbolic curves of genus one. Let us
introduce some notational conventions as follows: Let k be a field of charac-
teristic zero and

2 : (Ell/k) — (Sets)
a moduli problem for elliptic curves over k (cf. [5], (4.2), (4.13)), which thus
determines a contravariant functor of [5], (4.3.1)
M(P) : (Sch/k) — (Sets),

i.e., the functor obtained by considering elliptic curves equipped with level 2
structures. We shall say that the moduli problem £ is hyperbolic (cf. Definition
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1.1) if 2 is represented by a hyperbolic curve over k, which we denote by
»'%7}717

i.e., the modular curve with respect to 2, and, moreover, the natural morphism

from .#» to the coarse moduli scheme “A;” of elliptic curves over k is non-

constant, i.e., dominant. For instance, if n is an integer greater than two, and

k contains a primitive n-th root of unity, then the moduli problem [I'(n)] over k

obtained by considering “I"(n)-structures” (cf. [5], (3.1), (5.1)) is hyperbolic.
For a positive integer r, we shall write

M(P,r) : (Sch/k) — (Sets)

for the functor obtained by considering collections of data consisting of projective
smooth curves of genus one equipped with ordered distinct r points and level 2
structures on the elliptic curves determined by the projective smooth curves of
genus one and the first marked points (cf. Definition 1.3). If £ is hyperbolic,
then .#(2,r) is represented by a smooth variety over k (cf. Proposition 1.5, (iii)),
which we denote by

-—ﬂ?ﬁ,r-

A consequence of the main results of the present paper is as follows
(cf. Theorem 2.2 in the case where both “g,””” and “g;”” are positive):

TurorREM. Let k be a sub-p-adic field for some prime number p; k an
algebraic closure of k. For &=o,f, let P: be a hyperbolic (cf. Definition 1.1)
moduli problem for elliptic curves over k; r: > 1 an integer. Suppose that, for
¢ =, p, the modular curve My, with respect to P is of positive genus. Then
the natural map

Isomk(<ﬂ%,rw ‘%y/;,rﬁ) - ISOIIl(;k (7[1 (’ﬂ%,m)’ 4 ('ﬂyﬁ,rﬁ))/lnn(nl (’ﬂyﬁ,f‘ﬁ O lz))

is bijective.

The proof is a combination of rather standard arguments in anabelian
geometry. A part of it is similar to some arguments in [3], which implies
Theorem in the case where either r, or rgz is less than five.

After reviewing some definitions in section 0, we introduce, in section 1,
certain moduli spaces of hyperbolic curves of genus one, that are the main objects
of the present paper. We state the main results in section 2. In section 3, we
prove the main results. Finally, in section 4, we prove some variants in absolute
anabelian geometry.

Most of the results of the present paper are contained in the master thesis [6]
of the second author.
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0. Preliminaries

0.1. Let p be a prime number. A p-adic local field is defined as a finite
extension of Q,. A sub-p-adic field is defined as a field isomorphic to a subfield
of a finitely generated extension of a p-adic local field (cf. [8], Definition 15.4, (i)).
A generalized sub-p-adic field is defined as a field isomorphic to a subfield of a
finitely generated extension of the p-adic completion of the maximal unramified
extension of a p-adic local field (cf. [9], Definition 4.11).

0.2. For a connected noetherian scheme X, we denote by
/4 (X)

the étale fundamental group (well-defined up to conjugation) for some base point.
For a morphism X — Y of connected noetherian schemes, we denote by

Ayy Cm(X)

the kernel of the induced outer homomorphism 7;(X) — 7;(Y).

0.3. Let S be a scheme. For a pair of nonnegative integers (g,r) with
2g—2+47r>0, a hyperbolic curve of type (g,r) over S is defined as a scheme
X over S such that there are a scheme X°P' which is smooth, proper, geomet-
rically connected, and of relative dimension one over S and a closed subscheme
D C X of X which is finite and étale over S satisfying the following
conditions:

(i) Any geometric fiber of X' — S is of genus g.

(ii) The finite étale covering D — X°P' — S is of degree r.

(iii) X is isomorphic to X°P\D over S.

A hyperbolic curve over S is defined as a hyperbolic curve of type (g,r) over S for
some pair of nonnegative integers (g,r) with 29 —2 4+ r > 0.

0.4. For a hyperbolic curve X /S and a positive integer n, the n-th relative
configuration space X, associated to X /S is defined as the complement in the fiber
product X" of n copies of X over S of the (i, j)-weak diagonals, where (i, j)
ranges over the pairs such that 1 <i < j<n. Here, the (i, j)-weak diagonal is
the inverse image via the projection X” — X2 to the i-th and j-th factors of the
diagonal of X2. The 0-th relative configuration space X, associated to X /S is
defined as S.

For 1 <i < n, by forgetting the i-th factor, we obtain a projection morphism
pi: Xy — X,—1. One verifies easily that the scheme X, is, via the morphism p;, a
hyperbolic curve over X,_; of type (g,r +n —1). Therefore, X, is a hyperbolic
polycurve over S in the sense of [3], Definition 2.1, (ii).
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1. Moduli spaces of hyperbolic curves of genus one

In this section, we introduce certain moduli spaces of hyperbolic curves of
genus one. Let k be a field of characteristic zero and

2 : (Ell/k) — (Sets)

a moduli problem for elliptic curves over k (cf. [5], (4.2), (4.13)). Hence we have
a contravariant functor of [5], (4.3.1)

M(P) : (Sch/k) — (Sets),

i.e., the functor obtained by considering elliptic curves equipped with level 2
structures.

DeriNITION 1.1, We shall say that 2 is hyperbolic if #(2) is represented
by a hyperbolic curve over k, and, moreover, the natural morphism from the
hyperbolic curve that represents .#(%) to the coarse moduli scheme “A}(” of
elliptic curves over k is nonconstant, i.e., dominant. If 2 is hyperbolic, then we
shall denote by

My
the hyperbolic curve that represents .#(2).

Remark 1.2.  An example of a hyperbolic moduli problem is as follows: If
n is an integer greater than two, and k contains a primitive n-th root of unity,
then the moduli problem [I"(n)] over k obtained by considering “T'(n)-structures”
(cf. [5], (3.1), (5.1)) is hyperbolic.

DerINITION 1.3. Let r be a positive integer. Then we shall write
M(P,r) : (Sch/k) — (Sets)

for the contravariant functor such that, for each k-scheme S, the set .#(2,r)(S)
is defined as the set of isomorphism classes of collections of data as follows:
(i) The elliptic curve E over S equipped with a level 2 structure (i.e., an
element of Z(E)).
(i) Ordered r sections xi,...,x,: S — E of the structure morphism E — S
such that Im(x;) N Im(x;) = 0 for i # j, and, moreover, x; is the identity
section of E — S.

Let r be a positive integer. Then it follows from the definition of .#(2,r)
that we have a cartesian diagram of functors over k

/%(ﬁ,r) —_—> ﬂ]ﬂr

l |

M(P) = MP,1) —— M1,
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where we write .#;, for the (functor represented by the) moduli stack of
projective smooth curves of genus one over k equipped with ordered distinct
r points (cf. [7]), the vertical arrows are the morphisms obtained by forgetting the
last r — 1 marked points, and the horizontal arrows are the morphisms obtained
by forgetting the data related to 2. Since the right-hand vertical arrow is
representable (cf., e.g., the proof of [7], Theorem 2.7), we conclude that if # is
hyperbolic, then .#(2,r) is represented by a scheme over k.

DEeriNITION 1.4, Suppose that £ is hyperbolic. We shall denote by
=ﬂ;”/’,)‘

the scheme that represents .#(%,r). Hence we have a cartesian diagram of
stacks over k

%{'}’,r — ﬂl‘r

|

%9]_]1 E— ﬂ]ﬁl.

Note that .#» , is a smooth variety over k (cf. Proposition 1.5, (iii), below).

ProprosITION 1.5.  Suppose that 2 is hyperbolic. Then the following hold:

() My is, via the left-hand vertical arrow of the diagram of Definition 1.4,
a hyperbolic curve of type (1,1) over Mz,.

(i) If r =2, then My, is, via the left-hand vertical arrow of the diagram of
Definition 1.4, the (r — 1)-st relative configuration space associated to the
hyperbolic curve My ] My, .

(ili) M, is a hyperbolic polycurve over k in the sense of 3], Definition 2.1,
(i). In particular, My, is a smooth variety over k (cf. [3], Remark
2.1.1).

Proof. Assertions (i) and (ii) follow from the definition of .#(2,r).
Assertion (iii) follows from assertions (i), (ii). O

2. Main results

The main results of the present paper are as follows:

THEOREM 2.1. Let k be a sub-p-adic field for some prime number p and k
an algebraic closure of k. For {=ua,p, let C¢ be a hyperbolic curve of type
(gfﬂ’g) over k; X; a hyperbolic curve over C¢ of type (gé,r§); ne > 1 an integer;
X< the ng-th relative configuration space associated to X\ /C<; TI¢ dgm(Xé);
e 7 (X< ®ck); G «f Gal(k/k). Thus, we have an exact sequence of pro-
finite groups

1 -1 -1 — G, — 1.
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Assume that the Sfollowing two conditions (1) and (2) hold:
(1) g« <qﬂ or 1y +n, — 1 <rﬁ
(2) gp<gf or rp+np—1<rf

Then the natural map

Isomy (X X#) — Isomg, (IT%, IT¥) /Inn(IT%)
is bijective. If, moreover, Isomy(X* X ﬂ) # 0, then
(gf7rfvga7rdana) = (g/)’car[j’c7gﬁar/ﬁnﬂ)'

THEOREM 2.2. Let k be a sub-p-adic field for some prime number p; k an
algebraic closure of k. For &=o,p, let P: be a hyperbolic (cf. Definition 1.1)
moduli problem for elliptic curves over k; re > 1 an integer. Write

My

&le
for the smooth Uariely over k representing the functor M(Pe,re) (¢f- Definitions
1.3, 1.4); (gg N “) for the type of the hyperbolic curve M.\ over k. Assume that
the following two conditions (1) and (2) hold:

() 1<gf orr, < r'ﬂ’”

2 1<g orrg<rft
Then the natural map

Isomk(ﬂ%,rw 'ﬂ%,r/;) - IsomGk (77:1 (‘%%yrac)7 a (*ﬂ-?/;-,r/;))/lnn(nl (‘%9’/;-1‘/3 <y ];))
is bijective. If, moreover, Isomy (. My, ,, Mp, ) # 0, then

(”17901 ’ oz//) (Vﬂ g/)’ >rﬂ )

Remark 2.3. Note that, in the situation of Theorem 2.1 (resp. Theorem
2.2), if either n, <3 or ng <3 (resp. r, <4 or rg <4), then Theorem 2.1 (resp.
Theorem 2.2) follows from [3], Theorem B, without the conditions (1) and (2).

3. Proofs of Theorems 2.1 and 2.2

In this section, we prove Theorems 2.1 and 2.2. First, we prove the
following two lemmas:

Lemma 3.1. For & =a,p, let ke be an algebraically closed field of charac-
teristic zero; Y< a hyperbolic curve over ks of type (gg7ré)' ne > 1 an integer; Yé
the ng-th relative configuration space assoczated to Y</ks. Let

p:m(Y,) = m(Y))
be an isomorphism of profinite groups. Then the following hold:
(i) ny, =ng. If, moreover, n, =ng # 1, then (g,,ry) = (gp,1p).
(ii) There exist integers 1 <i, <n,, 1 <ig <ng such that
A o o == A 9
( Y, /Y 1) /3/

e ng=1
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where, for &= o, [}, we write YC _, for the (ng — 1)-st relative configura-
tion space associated to Y < [k, and the morphism Y$ — Yg _1 lmpllat in
the kernel AY v is the composite of an automorphzsm of Y, q over kg

/1;—1

and the projection morphism obtained by forgetting the iz-th factor
Proof. These assertions follow immediately from [4], Theorem 2.5. I

Remark 3.2. Lemma 3.1, (i) (resp. (ii)), in the case where the isomorphism ¢
is compatible with the respective weight filtrations of m(Y,”), m(Yn//’; ) follows
from [6], Theorem 2.1 (resp. 2.2).

Lemma 3.3.  Let k be a generalized sub-p-adic field for some prime number p
and k an algebraic closure of k. For & = a, 8, let C< be a hyperbolic curve of type
(gc ST r&) over k; Xg a hyperbolic curve over C< of type (ge,re); n: > 1 an integer,

f
X< the ne-th relative configuration space associated to Xg/Cf & i (X¢);

Y 7 (X< ®k); Gy &f Gal(k/k). Thus, we have an exact sequence of pro-

finite groups
l—>ﬁf—>Hf—>Gk—>l.
Let
p: 1% =117
be an isomorphism of profinite groups over Gy. Suppose that

P(Axsjcx) = Axpscn-
Then ¢ arises from an isomorphism X* — X B over k. In other words, the element
of Tsomg, (I1*,117)/Inn(T1#) determined by ¢ is contained in the image of the
natural map

Isomy (X*, X#) — Isomg, (IT1*, I1#) /Inn(IT7).
Moreover,

(go(C7r(xC7gO(7rOf7nO(> = (gﬁcvrpc>g/)’7rﬁanﬂ)'

Proof. Since ¢(Ays/cx) = Ays/cs, the isomorphism ¢ induces an isomor-
phism 71(C*) = n;(CF) over Gy. Write ¢, : m(C*) = m(C/f) for the isomor-
phlsm over Gy induced by ¢. Then it follows from [9], Theorem 4.12, that
@, arises from an isomorphism fy: C* = CP over k, which thus 1mphes that
(95,1<) = (g5 rf). Let X be a geometric point of C* Y*'= ' X% xcx %, and
Y/ the base change of the projection morphism X# — CP by the composite
ot hoes Here, observe that, by [3], Proposition 2.4, (i), Aye/c: is
naturally isomorphic to 7;(Y<). Moreover, observe that Y¢ 1s the ne-th relative
configuration space associated to the hyperbolic curve yeE X, ¢ X e X Over X.
Thus, it follows from Lemma 3.1, (i), that n, =np, which we denote by n.
Moreover, again by Lemma 3.1, (i), if n#1, then (g, r.) = (gp,rp). Further-
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more, by Lemma 3.1, (ii), there exist integers 1 <i,, iz <n such that
(AY7/YG< ):AY/,)/Y/I 5

where, for & = x , B, we write Yf for the (n — 1)-st relative configuration space
associated to Y /x and the morphism Y¢ — Y¢ | implicit in the kernel A, ¢yt

is the composite of an automorphism of Y< over X and the projection morphlsm
obtained by forgetting the iz-th factor. In particular, since, for & =a,pf, the
homomorphism A, . jre, Ay X/xE induced by the natural morphism Yf — X¢
is an isomorphism (cf. [3], Proposmon 2.4, (ii)), we conclude that

P(Dxyxz ) = Ays xr s

where, for {=ua,f, we write X, <, for the (n—1)- st relative conﬁguratlon
space associated to X -/C¢, and the morphism X¢— X ~ implicit in the kernel
Ay, X/xE is the compos1te of an automorphism of X¢ over C< and the projection

morphism obtained by forgetting the i:-th factor. Thus, the isomorphism ¢
induces an isomorphism 7; (X" ) — nl(Xf_l) over Gy. Write ¢, :m(X},) —
v (Xnﬁfl) for the isomorphism over Gj induced by ¢. Note that it follows from

¢(AX’/C“) = AX/f/C/‘ that
On1(Axz,jc2) = Byo sep-

In the remainder of the proof, let us prove Lemma 3.3 by induction on n.
Suppose that ¢,_, arises from an isomorphism o1 X1 > X ", over k. Write
n — X, for the generic point of X*,, X' & xo x X7, ;7, and X, 5 for the base
change of the projection morphism X/ — X b , by the comp0s1te n—X*, =— ]
Xﬁl Then it follows from [3], Proposmon 24 (i), that ¢ induces an iso-
morphism 7 (X*) = nl(Xﬁ) over m(;y). In particular by [9], Theorem 4.12,
there exists an 1som0rph1sm X=X B over n from which the isomorphism
m1 (X)) = m (X)) arises, which thus 1mp11es that if n =1, then (g,,7.) = (gp,7p)-
Hence it follows from [3], Lemma 2.10, that ¢ arises from a morphism X* — X
over k. Therefore, by applying a similar argument to ¢!, it follows from [3],
Proposition 3.2, (i), that ¢ arises from an isomorphism X* = X# over k. This
completes the proof of Lemma 3.3. O

3.4. Let us prove Theorem 2.1. First, recall that the injectivity of the map
Isomy (X *, X#) — Isomg, (I1%, T1¥) /Inn(I1#) follows from [3], Proposition 3.2, (ii).
Let ¢ be an element of Isomg, (IT*, 11%). It follows from Lemma 3.3 that, to
prove Theorem 2.1, it suffices to show that

P(Ax2/c) = Axryco-
To this end, let us consider the composite
Axopxz = Ay = Ay — Acne,

where we denote by X | the (n, — 1)-st relative configuration space associated
to X"/C”, and the morphism X* — X , implicit in the kernel Ay./yx- is the
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projection morphism obtained by forgetting the n,-th factor. It follows from [3],
Proposition 2.4, (iii), (iv), that Ay./x- is topologically finitely generated, and
Acsyi is elastic.  (Here, let us recall ‘that a profinite group G is elastic if the
following condition holds: Let H be a closed subgroup of G. Suppose that H
is topologically finitely generated and normal in an open subgroup of G that
contains H. Then H is either open in G or trivial.) Hence the image of the
above composite is either open or trivial. Suppose that the image is open.
Then, by the following discussion, we obtain a contradiction: Let x be a
closed point of X’ | and ¥ — X! | a geometric point of X, | lying over x.
Then it follows from (3], Proposmon 2.4, (i), that Ay Xz is 1somorphic to
(X" x Xz _ X). Hence, by [8], Theorem A, the above comp0s1te arises from
a dominant morphism X* x Xz X CP over k. On the other hand, such a
dominant morphism does not exist by the condition (1), together with the fact
that the hyperbolic curve X*xy- X is of type (gy,ry+n, —1). Therefore,
we conclude that the image of the above composite is trivial, which thus implies
that the morphism I1* — 7;(C#) induced by ¢ factors through the projection
M — m (X)),

Moreover, by applying a similar argument to the argument of the preceding
paragraph inductively, we conclude that the morphism IT* — 7;(C*) induced by ¢
factors through the projection IT* — 7;(C?*), which thus implies that

P(Ax=/cx) S Axpycs

Furthermore, by applying a similar argument to ¢~

, we obtain that

(P(AXx/C«) = Axﬁ/clf-
This completes the proof of Theorem 2.1.

3.5. Let us prove Theorem 2.2. If either r, or rg is equal to one, then
Theorem 2.2 follows immediately from [3], Theorem B. Suppose that both r,
and rg are greater than one. Then .Z5. ,. is the (r; — 1)-st relative configuration
space associated to the hyperbolic curve .#5, /.4 5.1 of type (1,1) (cf. Proposi-
tion 1.5, (i), (ii)). Hence it follows immediately from a similar argument to the
argument applied in the proof of Theorem 2.1 that, to prove Theorem 2.2, it
suffices to show the following assertion: If ¢: 7 (4y,,,) ;nl(,ﬂ%,rﬂ) is an
isomorphism over Gy, then the image of the composite

®
At vy s = Bt ke = Btk = Doty 1 Jk

is not open. To this end, suppose that the image of the above composite is
open. Then, by [8], Theorem A, for any geometric point § of .#», ,,_; which lies
over a closed point, there exists a dominant morphism

Mp, v, Xty S — Myt X S

from the hyperbolic curve .z, , X4, , 3§ over § of type (1,7, —1) to the
hyperbolic curve %5, 1 x; § over § of type (g Jﬁ , /,” ) (cf. the discussion of the
second paragraph of the proof of Theorem 2.1).
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Suppose that g/;;’/ > 1. Then it is immediate such a dominant morphism
does not exist. Thus, we obtain a contradiction.

Suppose that g;* = 0. Then it follows from the condition (1) that such a
dominant morphism does not exist. Thus, we obtain a contradiction.

Suppose that g;” = 1. Let us recall that, by the definition of a hyperbolic
moduli problem, the natural morphism from .#5, ; to the coarse moduli scheme
of elliptic curves over k is dominant. Thus, by varying §, for all but finitely
many j e k, one may take an elliptic curve over § (i.e., over k) whose j-invariant
is jek as the smooth compactification of the source of the above dominant
morphism

'ﬂ%,h Xl ot §— eﬂy/hl X S.

Hence one may conclude that, for all but finitely many jek, the smooth
compactification of the hyperbolic curve .#, 1 x, 5 is isogenous to an elliptic
curve over § whose j-invariant is j € k. Thus, we obtain a contradiction. This
completes the proof of Theorem 2.2.

4. Absolute variants

In this section, we prove some variants of the results of section 2 in absolute
anabelian geometry.

THEOREM 4.1. For &=o,p, let ke be a finitely generated extension of Q;
ke an algebraic closure of kg; C< a hyperbolic curve of type (gg,rg) over k; Xf a
hyperbolic curve over C¢ of type (ge,re); ne =1 an integer; X< the ng-th relative
configuration space associated to Xlé/Cé; Hfdgnl(Xf). Assume that the fol-
lowing two conditions hold:

(1) gp < gf or rg+np—1<rf.

(2) g¢. <gﬁc or ry+n, —1 <r/),c.
Then the natural map

Isom(X* X*) — Isom(I1*, T17) /Inn(I1#)
is bijective. If, moreover, Isom(X* XF) # 0, then
(go(c>rxcvga7rouna) = (g[?ur[§>gﬂvrﬂanﬂ)'

Proof. The injectivity follows from [3], Proposition 3.2, (ii), and [12],
Lemma 4.2, together with the well-known fact that the absolute Galois group
of a finitely generated extension of Q is center-free. Let ¢ be an element of
Isom(IT* I17). We consider the composite Ay, — II” L - Gy,. Since
Ay, is topologically finitely generated (cf. [3], Lemmas 1.5, 1.7), it follows from
[3], Proposition 3.19, (i), that the composite is trivial. By applying a similar
argument, it follows that the composite Ay, — n’ . n* - Gy, is trivial.
Hence it follows that ¢ lies over an isomorphism Gy, — Gj,. It follows from [3],
Proposition 3.19, (ii), that the isomorphism Gy, — Gy, arises from an isomor-
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phism Eﬁ = k, that determines an isomorphism kg = ky,. Then, by taking the
base change of X/ by the isomorphism Spec k, — Spec kg induced by kg = ky, it
follows from Theorem 2.1 that ¢ arises from an isomorphism X* = X# and
(9578 gas T2y na) = (9,75, 9p,7p,np).  This completes the proof of Theorem 4.1.

]

DerINITION 4.2. Let k be a p-adic local field (for some prime number p)
and 2 a moduli problem for elliptic curves over k. Then we shall say that 2 is
of quasi-Belyi type if 2 is hyperbolic, and, moreover, the hyperbolic curve .#y
over k is of quasi-Belyi type (cf. [10], Definition 2.3, (iii)), i.e., the hyperbolic
curve .#» 1 over k is defined over a finite extension of Q, and, moreover, there
exist a connected finite étale covering Z — .#»,1 and a dominant morphism from
Z to the complement in the projective line of three rational points over a finite
extension of k.

Remark 4.3. 1In the situation of Definition 4.2, the example of a hyperbolic
moduli problem of Remark 1.2 is of quasi-Belyi type.

THEOREM 4.4, For &=, f, let ks be a field of characteristic zero; k: an
algebraic closure of kg; Pe a hyperbolic (c¢f. Definition 1.1) moduli problem for
elliptic curves over kg, re =2 1 an integer. Write

%7} T

& e

Jor the smooth variety over kg representing the functor M (Pe,re) (cf. Definitions
1.3, 1.4); (gg”,r‘g/’) Jor the type of the hyperbolic curve M.\ over ks. Assume
that one of the following two conditions (i) and (ii) holds:
(i) The following conditions hold:
(1) For &=o,p, the field k: is finitely generated over Q.
2) 1<gyf orr,<rf.
(B)1<g orrg<r.
(i) The following conditions hold:
(1) For & =ua,p, the field ks is pe-adic local for some prime number pe.
(2) Fy < Zg./// + r,/// 1.
(3) rp <29 +rf —1.
(4) For ¢=uoa,p, the moduli problem 2: is of quasi-Belyi type (cf-
Definition 4.2).
Then the natural map

Isom(M 5, r,, M2, ;) — Isom(zi (M, ,,), 71 (M) [ Ion(7) (M 5,,1,))
o bUeC[iUE. Iﬁ moreover, Isom('ﬂ%,mﬂ%,w) # 0, then
(rar g5, 75") = (5, g ri").

Proof. Suppose that the condition (i) holds. Then Theorem 4.4 follows
from a similar argument as in the proof of Theorem 4.1, together with Theorem
2.2.
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Suppose that the condition (i) holds. The injectivity follows from [3],
Proposition 3.2, (ii), and [12], Lemma 4.2, together with the well-known fact that
the absolute Galois group of a p-adic local field is center-free. Let ¢ be an
element of Isom(r|(45,,,),n1(M,,,)). 1t follows from [11], Corollary 2.8, (ii),
that ¢(A 4, ,,/k,) = Doy, i, a0d pa = pp.

Let us consider the composite

2
Aty ity = Bt vy e = Dottty = Bty iy

It follows immediately from [3], Proposition 2.4, (iii), (iv), that A4, /4, |
is topologically finitely generated, and A 4, ,, is elastic. Hence the image of
the above composite is either open or trivial. Recall that the abelianization of
Atlp )t (1D Ay, i) s @ free Z-module of rank r, (resp. 295 +r —1)
(cf. [3], Proposition 2.4, (v)). In particular, it follows from the condition (2) that
the above composite is trivial. Hence the morphism 7i(45,,,) — 71 (Mz, 1)
factors through the projection (.4, ,,) — ni( M, r,—1).

Moreover, by applying a similar argument to the argument of the preceding
paragraph inductively, we conclude that the morphism 7(.4y, ,,) — 7 (Mp,1)
induced by ¢ factors through the projection ny(.#2», ,,) — n1(.#5, 1), which thus
implies that

P Aty tl) S Bty 1), 1

Furthermore, by applying a similar argument to ¢~', we obtain that

Q(A»ﬂyx,u /»/Ux,l) = A'/f/,wﬁ‘r/,/«//wﬁ,l'

Hence we conclude that the isomorphism ¢ induces an isomorphism 7 (A4, 1) —
ni(Mp,,1). In particular, by the condition (4), it follows from [10], Corollary
2.3, that this isomorphism arises from an isomorphism %, ; — My 1. Then,
by applying a similar argument to the argument applied in the proof of Lemma
3.3, it follows that ¢ arises from an isomorphism .#,, , — My, and
(ray g 1) = (r/;,g/‘;’” ,r// ). This completes the proof of Theorem 4.4.

rgs
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