T. SETO KODAI MATH. J. 40 (2017), 577–583

A NOTE ON ATIYAH'S Γ-INDEX THEOREM IN HEISENBERG CALCULUS

Tatsuki Seto

Abstract

In this note, we prove an index theorem on Galois coverings for Heisenberg elliptic (but not elliptic) differential operators, which is analogous to Atiyah's Γ -index theorem. This note also contains an example of Heisenberg differential operators with non-trivial Γ -index.

Introduction

Let $\tilde{M} \to M$ be a Galois covering over a closed manifold M with a deck transformation group Γ and D an elliptic differential opeator on M. M. F. Atiyah [1] introduced the notion of the Γ -index $\operatorname{index}_{\Gamma}(\tilde{D})$ for a lifted elliptic differential operator \tilde{D} on \tilde{M} and proved that the Γ -index $\operatorname{index}_{\Gamma}(\tilde{D})$ equals the Fredholm index $\operatorname{index}(D)$ of the original operator D. Atiyah [1] also investigated properties of a Γ -trace $\operatorname{tr}_{\Gamma}$ at the same time. The Γ -trace is a trace of the Γ -trace operators, so it induces a homomorphism $(\operatorname{tr}_{\Gamma})_*$ from K_0 -group of the Γ -compact operators to the real numbers: $(\operatorname{tr}_{\Gamma})_* : K_0(\mathscr{K}_{\Gamma}) \to \mathbb{R}$. Out of a lifted elliptic differential operator \tilde{D} , we can define the Γ -index class $\operatorname{Ind}_{\Gamma}(\tilde{D}) \in K_0(\mathscr{K}_{\Gamma})$ by using the Connes-Skandalis idempotent [3, II.9. α (p. 131)]. We send it by the induced homomorphism $(\operatorname{tr}_{\Gamma})_*$, then the image $(\operatorname{tr}_{\Gamma})_*(\operatorname{Ind}_{\Gamma}(\tilde{D})) \in \mathbb{R}$ equals the Γ -index $\operatorname{index}_{\Gamma}(\tilde{D})$ and thus the Fredholm $\operatorname{index}(D)$ of the original operator D.

On the other hand, there is another pseudo-differential calculus on Heisenberg manifolds which is called the Heisenberg calculus; see, for instance [5]. Roughly speaking, Heisenberg calculus is "weighted" calculus and the product of the "Heisenberg principal symbols" is defined by convolution product. When the Heisenberg principal symbol of P is invertible, we call P a Heisenberg elliptic operator. Note that any Heisenberg elliptic operator is not elliptic. For a Heisenberg elliptic operator P, we can construct a parametrix by using its inverse, so P is a Fredholm operator if the base manifold is closed. Thus the Fredholm

²⁰⁰⁰ Mathematics Subject Classification. Primary 19K56; Secondary 46L87.

Key words and phrases. Index theory, Heisenberg calculus, Galois covering, Heisenberg structure, contact structure.

Received September 26, 2016; revised January 23, 2017.

TATSUKI SETO

index of P on a closed manifold is well defined, but a solution of an index problem of P does not obtained in general. However, index problems for Heisenberg elliptic operators on contact manifolds or foliated manifolds are solved by E. van Erp and P. F. Baum; see [2], [6], [7], [9].

In this note, we define the Γ -index $\operatorname{index}_{\Gamma}(\tilde{P})$ and the Γ -index class $\operatorname{Ind}_{\Gamma}(\tilde{P})$ for a lifted Heisenberg elliptic differential operator \tilde{P} . Once these ingredients are defined, the proof of the Γ -index theorem

$$\operatorname{index}_{\Gamma}(\boldsymbol{P}) = (\operatorname{tr}_{\Gamma})_*(\operatorname{Ind}_{\Gamma}(\boldsymbol{P})) = \operatorname{index}(\boldsymbol{P})$$

is straightforward; see subsection 2.1. We also investigate an example of Heisenberg differential operators on a Galois covering over the 3-torus with non-trivial Γ -index by using the index formula in [2]; see subsection 2.2.

1. Short review of Atiyah's Γ -index theorem

In this section, we recall Atiyah's Γ -index theorem in ordinary pseudodifferential calculus. The main reference of this section is Atiyah's paper [1]. Let $\tilde{M} \to M$ be a Galois covering with a deck transformation group Γ over a closed manifold M with a smooth measure μ and $D: C^{\infty}(E) \to C^{\infty}(F)$ an elliptic differential operator on Hermitian vector bundles $E, F \to M$. We lift these ingredients on \tilde{M} and denote by $\tilde{\mu}$ and $\tilde{D}: C^{\infty}(\tilde{E}) \to C^{\infty}(\tilde{F})$. Let $\operatorname{Ker}_{L^2}(\tilde{D})$ (resp. $\operatorname{Ker}_{L^2}(\tilde{D}^*)$) be the L^2 -solutions of $\tilde{D}u = 0$ (resp. $\tilde{D}^*u = 0$) and denote by Π_0 (resp. Π_1) the orthogonal projection on a closed subspace $\operatorname{Ker}_{L^2}(\tilde{D})$ (resp. $\operatorname{Ker}_{L^2}(\tilde{D}^*)$) of the L^2 -sections.

A Γ -invariant bounded operator T on the L^2 -sections $L^2(\tilde{E})$ of \tilde{E} is of Γ -trace class if $\phi T \psi \in L^2(\tilde{E})$ is of trace class for any compactly suppoted smooth functions ϕ , ψ on \tilde{M} . Denote by \mathscr{L}_{Γ}^1 the set of Γ -trace class operators and $\operatorname{tr}_{\Gamma}(T)$ the Γ -trace of a Γ -trace class operator T defined by

$$\operatorname{tr}_{\Gamma}(T) = \operatorname{Tr}(\phi T \psi) \in \mathbf{C} \text{ for } \sum_{\gamma \in \Gamma} \gamma^*(\phi \psi) = 1.$$

Here, the right hand side is the trace of a trace class operator $\phi T \psi$ and this quantity does not depend on the choice of functions ϕ and ψ . By using ellipticity of \tilde{D} , operators $\phi \Pi_0 \psi$ and $\phi \Pi_1 \psi$ are smoothing operators on compact sets. Thus Π_0 and Π_1 are of Γ -trace class and thus one obtains the Γ -index of \tilde{D} :

$$\operatorname{index}_{\Gamma}(D) = \operatorname{tr}_{\Gamma}(\Pi_0) - \operatorname{tr}_{\Gamma}(\Pi_1) \in \mathbf{R}.$$

In the context of the Γ -index theorem, the most important class of Γ -trace class operators is the lifts of almost local smoothing operators on M. Let S be an almost local smoothing operator with a smooth kernel k_S and \tilde{S} a lift of S. Then \tilde{S} is of Γ -trace class and its Γ -trace is calculated by the following:

(*)
$$\operatorname{tr}_{\Gamma}(\tilde{S}) = \int_{M} \operatorname{tr}(k_{S}(x, x)) \, d\mu = \operatorname{Tr}(S).$$

578

Denote by \mathscr{K}_{Γ} the C^* -closure of \mathscr{L}_{Γ}^1 and $K_0(\mathscr{K}_{\Gamma})$ the analytic K_0 -group. Then $\operatorname{tr}_{\Gamma}$ induces a homomorphism of abelian groups by substitution:

$$(\operatorname{tr}_{\Gamma})_*: K_0(\mathscr{K}_{\Gamma}) \to \mathbf{R}.$$

On the other hand, since D is an elliptic differential operator, there exist an almost local parametrix Q and almost local smoothing operators S_0 , S_1 such that one has $QD = 1 - S_0$ and $DQ = 1 - S_1$. Denote by \tilde{Q} , $\tilde{S_0}$ and $\tilde{S_1}$ lifts of these operators and then one has the same relations $\tilde{Q}\tilde{D} = 1 - \tilde{S_0}$ and $\tilde{D}\tilde{Q} = 1 - \tilde{S_1}$. Set

$$e_{\tilde{D}} = \begin{bmatrix} \widetilde{S_0}^2 & \widetilde{S_0}(1+\widetilde{S_0})\widetilde{Q} \\ \widetilde{S_1}\widetilde{D} & 1-\widetilde{S_1}^2 \end{bmatrix} \text{ and } e_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

By using $\tilde{Q}\widetilde{S_1} = \widetilde{S_0}\tilde{Q}$ and $\widetilde{S_1}\tilde{D} = \tilde{D}\widetilde{S_0}$, one has $e_{\tilde{D}}^2 = e_{\tilde{D}}$, that is, $e_{\tilde{D}}$ is an idempotent. Note that this idempotent $e_{\tilde{D}}$ is called the Connes-Skandalis idempotent; see, for instance [3, II.9. α (p. 131)]. Moreover, a difference $e_{\tilde{D}} - e_1$ is of Γ -trace class. Hence we can define a Γ -index class

$$\operatorname{Ind}_{\Gamma}(\boldsymbol{D}) = [e_{\tilde{\boldsymbol{D}}}] - [e_1] \in K_0(\mathscr{K}_{\Gamma}).$$

By the definition of the map $(tr_{\Gamma})_*$ and Atiyah's paper, one has the following:

THEOREM 1.1 (Atiyah's Γ -index theorem [1, Theorem 3.8]). In the above settings, we have the following equality:

$$\operatorname{index}_{\Gamma}(D) = (\operatorname{tr}_{\Gamma})_*(\operatorname{Ind}_{\Gamma}(D)) = \operatorname{index}(D) \in \mathbb{Z}.$$

As described in subsection 2.1, Atiyah's proof of the above equality does not essentially use ellipticity. Note that ellipticity of D and \tilde{D} is only used in the definition of these ingredients.

2. Atiya's Γ -index theorem in Heisenberg calculus

Let (M, H) be a closed Heisenberg manifold, that is, M is a closed manifold and $H \subset TM$ is a hyperplane bundle. Let $P : C^{\infty}(E) \to C^{\infty}(F)$ be a Heisenberg elliptic differential operator on Hermitian vector bundles $E, F \to (M, H)$, that is, the Heisenberg principal symbol $\sigma_H(P)$ (see [5, Definition 3.2.3]) of P is an invertible element. Since our P is a differential operator, the Heisenberg principal symbol of P is a homogeneous polynomial in the weighted sense; see [5, Example 3.2.5]. In this section, we prove the Γ -index theorem for P, which is analogous to Atiyah's Γ -index theorem. Note that P is not elliptic in the sense of ordinary pseudo-differential calculus.

2.1. Statement and proof. By [5, Proposition 3.3.1], there exist a parametrix Q and smoothing operators S_0 , S_1 such that one has $QP = 1 - S_0$ and $PQ = 1 - S_1$. Thus P is a Fredholm operator and one has the Fredholm index index $(P) \in \mathbb{Z}$ of P by compactness of M. Moreover, since an integral kernel of

TATSUKI SETO

Q is smooth off the diagonal, we can choose Q as an almost local operator and then S_0 and S_1 are also almost local operators.

Let $\tilde{M} \to M$ be a Galois covering with a deck transformation group Γ over a closed manifold M with a smooth measure μ . We lift all structures on M to \tilde{M} . Then (\tilde{M}, \tilde{H}) is a Heisenberg manifold, $\tilde{P} : C^{\infty}(\tilde{E}) \to C^{\infty}(\tilde{F})$ is a Heisenberg elliptic differential operator and one has $\tilde{Q}\tilde{P} = 1 - \tilde{S}_0$ and $\tilde{P}\tilde{Q} = 1 - \tilde{S}_1$.

Since \tilde{P} is a differential operator (in particular, \tilde{P} is local), there exists a constant $C = C(\tilde{P}, \phi) > 0$ such that we have an inequality

$$\|P(\phi f)\|_{L^2} \le C(\|\chi P f\|_{L^2} + \|\chi f\|_{L^2})$$

for any $f \in C^{\infty}(\tilde{E})$; see [5, Proposition 3.3.2]. Here, $\phi, \chi \in C_c^{\infty}(\tilde{M})$ are compactly supported smooth functions and one assumes $\chi = 1$ on the support of ϕ . Thus by using Atiyah's technique of the proof of [1, Proposition 3.1], we have the following:

LEMMA 2.1. The minimal domain of \tilde{P} equals the maximal domain of \tilde{P} .

By Lemma 2.1, \tilde{P} has the unique closed extension denoted by the same letter \tilde{P} . Thus the closure of the formal adjoint of \tilde{P} (the formal adjoint is also Heisenberg elliptic) equals the Hilbert space adjoint \tilde{P}^* .

On the other hand, any L^2 -solutions of $\tilde{P}u = 0$ and $\tilde{P}^*u = 0$ are smooth by the existence of a parametrix. Thus the orthogonal projection Π_0 (resp. Π_1) onto a closed subspace $\operatorname{Ker}_{L^2}(\tilde{P})$ (resp. $\operatorname{Ker}_{L^2}(\tilde{P}^*)$) of the L^2 -sections is of Γ -trace class since an operator $\phi \Pi_0 \psi$ (resp. $\phi \Pi_1 \psi$) is a smoothing operator on compact sets. Thus one obtains the well-defined Γ -index of \tilde{P} .

DEFINITION 2.2. The Γ -index of \tilde{P} is defined to be

index_{$$\Gamma$$}($\tilde{\boldsymbol{P}}$) = tr _{Γ} (Π_0) – tr _{Γ} (Π_1) $\in \mathbf{R}$.

By using operators \tilde{P} , \tilde{Q} , \tilde{S}_0 and \tilde{S}_1 , we define

$$e_{\tilde{P}} = \begin{bmatrix} \widetilde{S_0}^2 & \widetilde{S_0}(1+\widetilde{S_0})\widetilde{Q} \\ \widetilde{S_1}\widetilde{P} & 1-\widetilde{S_1}^2 \end{bmatrix} \text{ and } e_1 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Since a difference $e_{\tilde{P}} - e_1$ is of Γ -trace class, one can define a Γ -index class of \tilde{P} .

DEFINITION 2.3. We define Γ -index class $\operatorname{Ind}_{\Gamma}(\tilde{P})$ of \tilde{P} by

$$\operatorname{Ind}_{\Gamma}(\boldsymbol{P}) = [e_{\tilde{\boldsymbol{P}}}] - [e_1] \in K_0(\mathscr{K}_{\Gamma}).$$

By using a Γ -trace, one has the Γ -index theorem in Heisenberg calculus.

THEOREM 2.4. Let P be a Heisenberg elliptic differential operator on a closed Heisenberg manifold (M, H) and \tilde{P} its lift as above. Then one has

$$\operatorname{index}_{\Gamma}(\boldsymbol{P}) = (\operatorname{tr}_{\Gamma})_*(\operatorname{Ind}_{\Gamma}(\boldsymbol{P})) = \operatorname{index}(\boldsymbol{P}) \in \mathbf{Z}.$$

580

Proof. First, note that equalities

$$1 - S_0^2 = 1 - (1 - QP)^2 = (2Q - QPQ)P \text{ and}$$

$$1 - S_1^2 = 1 - (1 - PQ)^2 = P(2Q - QPQ),$$

and note that operators 2Q - QPQ, S_0^2 and S_1^2 are almost local operators. Thus by Atiyah's technique in [1, Section 5], one has

$$\operatorname{index}_{\Gamma}(\tilde{\boldsymbol{P}}) = \operatorname{tr}_{\Gamma}(\Pi_0) - \operatorname{tr}_{\Gamma}(\Pi_1) = \operatorname{tr}_{\Gamma}(\widetilde{S_0}^2) - \operatorname{tr}_{\Gamma}(\widetilde{S_1}^2).$$

Next, by the definition of the map $(tr_{\Gamma})_*$, one has

$$(\mathrm{tr}_{\Gamma})_{*}(\mathrm{Ind}_{\Gamma}(\tilde{P})) = \mathrm{tr}_{\Gamma} \begin{bmatrix} \widetilde{S_{0}}^{2} & \widetilde{S_{0}}(1+\widetilde{S_{0}})\tilde{Q} \\ \widetilde{S_{1}}\tilde{P} & -\widetilde{S_{1}}^{2} \end{bmatrix} = \mathrm{tr}_{\Gamma}(\widetilde{S_{0}}^{2}) - \mathrm{tr}_{\Gamma}(\widetilde{S_{1}}^{2}).$$

Since operators $ilde{S}_0^2$ and $ilde{S}_1^2$ are lifts of almost local smoothing operators, one has

index
$$(P) = \operatorname{Tr}(S_0^2) - \operatorname{Tr}(S_1^2) = \operatorname{tr}_{\Gamma}(\widetilde{S_0}^2) - \operatorname{tr}_{\Gamma}(\widetilde{S_1}^2)$$

by using (*) in Section 1. This proves the equality in the theorem.

Remark 2.5. As pointed out in [8, Section 4], the results in [5, Section 3] hold verbatim for arbitrary codimension. That is, we do not need to assume that a distribution H is of codimension 1.

2.2. Example. Index problems for Heisenberg elliptic operators on arbitrary closed Heisenberg manifolds are not solved yet. However, van Erp [6, 7] and Baum and van Erp [2] solved the index problem on contact manifolds, which are good examples of Heisenberg manifolds. In this subsection, we investigate an example of Heisenberg elliptic differential operators with non-trivial Γ -index on a Galois covering over a closed contact manifold. In order to check its non-triviality, we use the index formula in [2] for a subLaplacian twisted by a complex vector bundle.

Let $T^2 = S^1 \times S^1 = \{(e^{ix}, e^{iy})\}$ be the 2-torus and $E \to T^2$ a smooth complex line bundle with

$$\int_{T^2} c_1(E) = -1.$$

Here, $c_1(E)$ denotes the first Chern class of E. Such a line bundle E exists because the first Chern class induces a surjective homomorphism $H^1(T^2, \mathcal{O}^*) \rightarrow H^2(T^2) \cong \mathbb{Z}$. See also [4, Section I. 2] for another explicit construction of E in the context of Noncommutative geometry. We fix a smooth connection of E.

the context of Noncommutative geometry. We fix a smooth connection of *E* in the context of Noncommutative geometry. We fix a smooth connection of *E*. Let $T^3 = T^2 \times S^1 = \{(e^{ix}, e^{iy}, e^{iz})\}$ be the 3-torus and $q: T^3 \to T^2$ the projection onto T^2 of the first component. Set $\theta_k = \cos(kz) dx - \sin(kz) dy$ for a positive integer k, $H_k = \ker(\theta_k)$, $f_l(x, y, z) = e^{ilz} + 1$ for an integer land $F = q^*E$. Then (T^3, H_k) is a contact manifold. This vector bundle H_k

TATSUKI SETO

is given by a projection $e_k : C^{\infty}(TT^3) \cong C^{\infty}(T^3; \mathbf{R}^3) \to C^{\infty}(H_k)$ defined by $e_k(\partial/\partial x) = \sin(kz) \{\sin(kz)\partial/\partial x + \cos(kz)\partial/\partial y\}, e_k(\partial/\partial y) = \cos(kz) \{\sin(kz)\partial/\partial x + \cos(kz)\partial/\partial y\}$ and $e_k(\partial/\partial z) = \partial/\partial z$. Thus this bundle H_k admits a flat connection $e_k de_k$ by simple computation.

Denote by T_k the Reeb vector field for θ_k , ∇^F the pull-back connection on F and $\Delta^F_{H_k}$ the sum of squares of F. The operator $\Delta^F_{H_k}$ is locally expressed by $\Delta^F_{H_k} = -\nabla^F_{X_k} \nabla^F_{X_k} - \nabla^F_{Y_k} \nabla^F_{Y_k}$, where $\{X_k, Y_k\}$ is a local orthonormal frame of H_k . We can constract it globally via a partition of unity. Set

$$P_{k,l} = \Delta_{H_k}^F + i f_l \nabla_{T_k}^F.$$

Since the values of $f_l - n$ contained in \mathbb{C}^{\times} for any odd integer n, an operator $P_{k,l}: \mathbb{C}^{\infty}(F) \to \mathbb{C}^{\infty}(F)$ is a Heisenberg elliptic differential operator of Heisenberg order 2. By the index formula for $P_{k,l}$ in [2, Example 6.5.3], one has

index
$$(P_{k,l}) = \int_{T^3} \frac{-1}{2\pi i} e^{-ilz} de^{ilz} \wedge c_1(F) = \frac{-1}{2\pi i} \int_{S^1} e^{-ilz} de^{ilz} \int_{T^2} c_1(E) = l$$

Note that a contact structure H_k is a lift of H_1 by a k-fold cover $p_k: T^3 \to T^3$; $(e^{ix}, e^{iy}, e^{iz}) \mapsto (e^{ix}, e^{iy}, e^{ikz})$. Since the lift $\widetilde{P_{1,l}}$ of a subLaplacian $P_{1,l}$ by p_k equals $P_{k,kl}$, we have the $\Gamma(=\mathbb{Z}/k\mathbb{Z})$ -index of $\widetilde{P_{1,l}}$:

$$\operatorname{index}_{\Gamma}(\widetilde{P_{1,l}}) = \frac{1}{k} \operatorname{index}(\widetilde{P_{1,l}}) = \frac{1}{k} \operatorname{index}(P_{k,kl}) = l = \operatorname{index}(P_{1,l}).$$

Next, we consider a general Galois covering of T^3 . Let $X \to T^3$ be a Galois covering with a deck transformation group Γ , which is a quotient of $\pi_1(T^3) = \mathbb{Z}^3$, for example, $X = \mathbb{R}^3$ and $\Gamma = \mathbb{Z}^3$ the universal covering. By Theorem 2.4, we have non-trivial Γ -index as follows:

$$\operatorname{index}_{\Gamma}(\overline{P_{k,l}}) = \operatorname{index}(P_{k,l}) = l.$$

References

- M. F. ATIYAH, Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32–33 (1976), 43–72.
- [2] P. F. BAUM AND E. VAN ERP, K-homology and index theory on contact manifolds, Acta Math. 213 (2014), 1–48.
- [3] A. CONNES, Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994.
- [4] T. A. LORING, The torus and noncommutative topology, PhD thesis, University of California, 1986.
- [5] R. S. PONGE, Heisenberg calculus and spectral theory of hypoelliptic operators on Heisenberg manifolds, Mem. Amer. Math. Soc. 194 (906), Providence, RI, 2008.
- [6] E. VAN ERP, The Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part I, Ann. of Math. 171 (2010), 1647–1681.
- [7] E. VAN ERP, The Atiyah-Singer index formula for subelliptic operators on contact manifolds. Part II, Ann. of Math. 171 (2010), 1683–1706.
- [8] E. VAN ERP, Contact structures of arbitrary codimension and idempotents in the heisenberg algebra, arXiv:1001.5426.

A NOTE ON ATIYAH'S Γ -index theorem in heisenberg calculus 583

[9] E. VAN ERP, The index of hypoelliptic operators on foliated manifolds, J. Noncommut. Geom. 5 (2011), 107–124.

> Tatsuki Seto Graduate School of Mathematics Nagoya University Furocho, Chikusa-ku Nagoya 464-8602 Japan E-mail: m11034y@math.nagoya-u.ac.jp