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Abstract

In this paper, we obtain some vanishing and finiteness theorems for L” p-harmonic
1-forms on a locally conformally flat Riemmannian manifolds which satisfies an integral
pinching condition on the traceless Ricci tensor, and for which the scalar curvature
satisfies pinching curvature conditions or the first eigenvalue of the Laplace-Beltrami
operator of M is bounded by a suitable constant.

1. Introduction

Let us recall that an m-dimensional Riemannian manifold (M™, g) is said to
be locally conformally flat if it admits a coordinate covering {U,,¢,} such that
the map ¢,; (U,,0,) — (S, 90) is a conformal map, where g, is the standard
metric on S™. It is well known that a conformally flat manifold is a higher
dimensional generalization of a Riemannian surface. But not every higher di-
mensional manifold admits a locally conformally flat structure, and it is difficult
to give a good classification of locally conformally flat Riemannaian manifolds.
However, by adding various geometric conditions, many authors have given some
partial classification for locally conformally flat Riemannian manifolds (for exam-
ples, [2, 4, 5, 7, 11, 12, 13], etc.).

For a compact Riemannian manifold M "™, according to Hodge theory, the
space of harmonic 1-forms on M is isomorphic to its first de Rham cohomology
group. And it is well known that there are no harmonic p-forms, 0 < p < m, on
a compact conformally flat manifold M™ with positive Ricci curvature. When
M is non-compact, the Hodge theory does not work anymore, hence it is natural
to consider L?-harmonic forms, as is showed that L?-Hodge theory remains valid
in complete non-compact manifolds as classical Hodge theory works well in the
compact case. In [10], Li-Tam showed that the theory of L?-harmonic 1-forms
can be used to study the topology at infinity of a complete Riemannian manifold.
Recently, H. Z. Lin [11], investigated the L? harmonic 1-form on locally con-
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formally flat Riemannian manifolds and obtain some vanishing and finiteness
theorems for L? harmonic 1-forms. For p-harmonic 1-forms, Zhang [14] ob-
tained vanishing results for p-harmonic 1-form. Chang [3] obtained the com-
pactness for any bounded set of p-harmonic 1-forms. The first author in [8§]
investigated L” p-harmonic 1-forms on complete noncompact submanifolds in
a Hadamard manifold, and obtained some vanishing and finiteness theorems for
these forms.

Let (M™ g) be a Riemannian manifold, and let u be a real C* function
on M™. Fix pe R, p>2 and consider a compact domain Q C M"™. The
p-energy of u on Q, is defined to be

1
E,(Q,u) = —J [Vu|”.
Pla

The function u is said to be p-harmonic on M" if u is a critical point of E,(Q, x)
for every compact domain Q C M™. Equivalently, u satisfies the Euler-Lagrange
equation.

div(|Vu|”"*Vu) = 0.

Thus, the concept of p-harmonic function is a natural generalization of that of
harmonic function, that is, of a critical point of the 2-energy functional.

DeriNniTION 1.1. A p-harmonic 1-form is a differentiable 1-form on M"™
satisfying the following properties:

dow =0,

(|| w) =0,
where ¢ is the codifferential operator. It is easy to see that the differential of a
p-harmonic function is a p-harmonic 1-from.

In this paper, we investigate the properties for p-harmonic 1-form on locally
conformally flat Riemannian manifolds. We assume that M™ is a complete
noncompact manifold and define the space of the L” p-harmonic 1-froms on M
by

HY“ (M) = {wU lo|? < c0,dw =0 and §(|w|’ *w) = o}
M
where p > 2. We obtain the following results:
THEOREM 1.2 (cf. Theorem 3.1). Let (M™,g), m >3, be an m-dimensional

complete, simply connected, locally conformally flat Riemannian manifold. ~ Assume
that

J IRI™? < o0 and J |T|"? < 0.
M M
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. R
Then we have dim H'?(M) < oo for p > 2, where Ric, R and T = Ric ——g are
m
the Ricci curvature temnsor, the scalar curvature and the traceless Ricci tensor
respectively of (M™,g).
THEOREM 1.3 (cf. Theorem 3.2). Let (M™, g), m >3, be an m-dimensional

complete, simply connected, locally conformally flat Riemannian manifold. Then

4m-1D(p-1)+1
there exists a positive constant A < [ sz)(if_ 1)) + 1] such that if

2 2/m 1 /2 2/m
T|™ 4+ (J RI™ ) <A,

then we have H“P (M) = {0} for p =2, where S is a positive constant in the
inequality (6).

THEOREM 1.4 (cf. Theorem 3.3). Let (M™,g), m >3, be an m-dimensional
complete, szmply connected locally conformally flat Riemannian manifold.  As-
sume that |, |T|"™? dv < oo and R is bounded on M and sup,|R| > 0. If the first
eigenvalue of the Laplace-Beltrami operator of M satisfies

(m —1)p? supy|R|
4yml(m—1)(p—1) +1]"

then we have dim H'“?(M) < oo for p > 2.

A(M) >

THEOREM 1.5 (cf. Theorem 3.4). Let (M™,g), m >3, be an m-dimensional
complete, simply connected, locally conformally flat Riemannian manifold. As-
sume that R is bounded on M and sup,,|R| > 0. Assume the first eigenvalue of
the Laplace-Beltrami operator of M satisfies

(m —l)p supy|R|
4yml(m—=1)(p—=1)+1]’

then there exists a positive constant A such that if ([, |T |"2)m < A, then we
have H'“?(M) = {0} for p > 2.

A(M) >

TueorReM 1.6 (cf. Theorem 3.5). Let (M™,g), m > p*, be an m-dimensional
complete, simply connected, locally conformally flat Riemannian manifold with
R <0. Assume that jM\T\ < . Then we have dim H'“"”(M) < oo for
p=>2

From the proof of Theorem 1.6, we can obtain the following result.

Tueorem 1.7. Let (M™,g), m > p*, be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold with R < 0. Then there
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4 -Dp-1)+1 4m-1
exists a positive constant A < {—2 m=Dlp=h+1_ 4m=1) O(S™) such
that if p m—1 vm(m —2)

2/m
() =n
M

then we have H'“P(M) = {0} for p>?2, where Q(S™) =

Yamabe constant of S™ and w,, is the volume of the unit sphere in R™.

2. Preliminaries

In order to prove our main result, we need the following results:

LemMA 2.1 ([9]). Let E be a finite dimensional subspace of the space L*
g-forms on a compact Riemannian manifold M™. Then there exists w € E such
that

dim E

2 : m : 2
_— dv < min ,dim E} su .
Soltig) | tef? do = min{().dim £} sup o

From Lemma 2.1, the first author in [8] obtained the following result.
Lemma 2.2 ([8]). Let E be a finite dimensional subspace of the space L”

g-forms on a compact Riemannian manifold M™. Then there exists w € E such
that

dim E J

Vol (M)

o|” dv < min{C,(;),dim E} sup|w|”,
b7 M

where C, is a positive constant depending only p and p > 2.
We also need a Kato type inequality for p-harmonic 1-form.

Lemma 2.3 ([8]). Let w be a p-harmonic 1-form on Riemannian manifold
M™.  Then we have the following inequality

- 1 ~1)2
(1) V(o) o) = <1+—>IVIw|’” %,
(m—1)(p—1)°
where p > 2.
Using Bochner’s formula [1], we have the following results.

LemMMmA 2.4. Let w be a p-harmonic 1-form on Riemannian manifold M™.
Then we have



522 YINGBO HAN, QIANYU ZHANG AND MINGHENG LIANG

1 _ _ - -
@) 5 Al = V(| )of* - Gd(o" o), o o)

+ )P RieM (v, w).

From (1) and (2), we have

1 -
3 IViol™'|?

(m—1)(p—1)

— Od(|o]" ), || 2w, +|o)* 7 Ric (0, »),

(3) ol A =

where w is a p-harmonic 1-form on Riemannian manifold M™.
In [11], H. Z. Lin obtained following result.

Lemma 2.5 ([11]). Let (M™,g) be an m-dimensional complete Riemannian
manifold. Then

R
4) Ric > —|1)g— &L

N
. . . . R .
in the sense of quadratic forms, where Ric, R and T = Ric — .4 are the Ricci

curvature tensor, the scalar curvature and the traceless Ricci tensor respectively of
(M™, g).

It is known that a simply connected, locally conformally flat manifold M™,
m >3, has a conformal immersion into S” and according to [6], the Yamabe

m(m — 2)(0,%,/ "
4
volume of the unit sphere in R™. Therefore the following inequality

constant of M™ satisfies Q(M™) = Q(S™) = , which @, is the

m—2

® o] f2m/<m-2>)<mz)/m< = s
M - M 4()’)’!71) M

holds for all f'e C;°(M). From (5), H. Z. Lin in [11] proved the following
result.

LemMa 2.6 ([11]). Let (M™,g), m >3, be an m-dimensional complete,
simply connected, locally conformally flat Riemannian manifold with R <0 or
fM|R|m/2 dv < 0. Then the following Sobolev inequality

(m=2)/m s
© ([ s} | ks wecpon



P-HARMONIC 1-FORMS ON CONFORMALLY FLAT RIEMANNIAN MANIFOLDS 523

holds for some constant S > 0, which is equal to Q(S’”)f1 in the case where
R <0. In particular, M has infinite volume.

In [8], the first author proved the following result.

Lemma 2.7 ([8]). Let f:M™ — R be a smooth function on Riemannian
manifold M, and o be a closed 1-form on M. Then we have |d(fw)| < |df]||w|.

3. Proof of the main results

THEOREM 3.1. Let (M™,g), m >3, be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold. Assume that

J IR|"? < o0 and J |T|"? < 0.
M M

Then we have dim H'“?(M) < o for p = 2.

Proof. Assume that o is a p-harmonic I-form on M™, ie. we H'"?(M).
From (3) and (4), we have

1

o] Al = —d(jo]" o), o] o) + —————— V]| |?
(m—1)(p—1)?
IR .
e R a0
T [eo] ﬁlwl
5 5 1 4 - /212
> —od(|o]” "), o] w>+ﬁplwl” V]eo|"”|

7o) R e,
m

So we have

1 4

-1 -2
(1) eo|Alw]”™ = =<od(|o|” w)vw>+ﬁ?

22 R
Vel = Tl - ol

Fix a point xo € M. Let ue Cy°(M) be a smooth function with compact support
on M. Multiplying (7) by x* and integrating over on M, we have

(8) —j u2<V|w|,V|w|"—‘>—zj u|w|<w,V|w|"-1>+j 125d (0] 20), )
M M M

1 4

1
2 p/2)2 2 P 2 4
> ———| wlVew —J T | ——J R|u"|w

From Lemma 2.7, we have
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O || wdioro.o| || wioro.dwo
M M
< | (ol o) ldo)
M
<2 pldu ol ldio}
M

4(p—2) 2 2
=2 vl ol Vo)
P M
By direct computation, we get

(10) —J ﬂzwwww”—zj Mo l<Va, V]l
M M

4(p —1 4(p —1
e [ e A e
P Ju P Ju

4(p—1 4lp -1
<D owiopp + 22w ool
P M P M
From (8), (9) and (10), we have

4(p — 1 i A(2p—3
1y o< %jﬂluzwwzf +%JMMW| 0P|Vl

4 J 2 2,2 1
S S W +J T 2w"+—J R|i2|wl?.
p2(m—l)M'u||| | Ml |l \/ﬁMll/xll

For ¢ > 0, we apply the Cauchy-Schwarz inequality, we have

() | = DL SN, [ ewopr

_r-31
p 31

From the assumption and Lemma 2.6, we know the Sobolev inequality (6) holds
on M. Now since m > 3, we use Holder, Sobolev inequality (6), and Cauchy-
Schwartz inequalities to obtain

2/m (m=2)/m
1) |T|u2|w|Ps<j |Tm/2> ([ topzyre=)
M supp() M

2/m
<s j Tk J IV (ulo]""?))?
supp () M

<g|(14an) [ il (142 | forva]

1
pru2+J T,uzco"+—J R |w|?.
[ ol wul+ | rilor +—= | RIo)
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and

, 2/m - 2 (m—2)/m
(14) J |R|ﬂ2|w|p < J |R|n1/ <J (,u|a)|”/ ) m/(m— )>
M supp( 1) M

2/m
sS(j RW) j IV (o]
supp(u) M

<o+ 0 | wWlol ™R (140) [ op1va]

for & >0, &3 > 0 where

2/m 2/m
#1) =s<j |T|"’/2> and p(g) =S<j |R’”/2> .
supp( 1) supp( 1)

From (12), (13) and (14), we have

(15) 4 jMu2|V|w|P/2|2 < BJlelprulz,
where
a2 o DL 3O 014 an) — (a1 2
-yt AR
B= » 81—|—¢(,u)<1+82>+\/%g0(,u)<1+83>.

Since [,,|T|™* < oo and [,, |R|"* < o0, we can choose ry large enough such
that

m/2 (m_l)(P_l)""l 2/m
(16) JM\BXO(rO) T < (pz(m —1)S(1 +az)>
and
)2 (m o 1)([7 . 1) +1 2/m
(17) JM\BXO(rO) IR < (Pz(m —1)S(1 +¢3) \/’71) ,

where B,(ro) is the geodesic ball centered at p of radius ro. Let u=u, €
Cy° (M) be any smooth function with compact support which satisfies Supp(u) C
M\By,(ro). From (16) and (17), we have

m-1(p-1+1
p2m—1)(1+&)

m-—1(p-1+1
p2m—1)(1 4 &)

(18)  ¢(n) < and  ¢(u) < V.
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From (18), we have

4om—1)(p-1) +1]

TS —ﬁﬂu)(l te3)

P2 =1)
2(m—-1D)(p—1)+1
S URILRIEL I

Hence we can choose ¢ > 0 small enough such that

A:i(m—l)(p—l)+1_4(2p—3)

e — $) (1 +e2) ———p(u)(1 + £5) > 0.

2 m—1 vm
Therefore, (15) reduces to
(19) | emertPsc| v
M\Blo <"0> M\BXO (ro)

where C = C(m, p) > 0 depends only on m, p. On the other hand, applying the
Sobolev inequality (6) to ,u|ca|p/ 2 we have

(m=2)/m
(20) (J <ﬂ|w|”/2>2m/<'"‘2>>
M\By (ro)

<s j V(o))
M\on("())

<os|[ (VI ol V)
M\By, (ro)
From (19) and (20), we have

(m=2)/m
21) j (leofP/2) 2112 <¢
M\on(r0>

where C; = Ci(m, p) >0 depends only on m, p. Let p(x) be the geodesic
distance on M from xo to x. Let us choose ue Cy°(M) satisfying

J le”IVﬂlz)]
M\BXO(F(Q

0 on By, (ro) U (M\By,(2r)),

p(x) —ro on By, (ro+ 1)\By,(ro),
'u(x) =91 on B«’Co(r)\BXo(rO + 1)7

Lp(x) on By, (2r)\By, (1),

r

where r > rp+ 1. From (21) and the definition of x, we have

(m=2)/m c
J o] 2 < (i J j]” + —;J ||
B-"(J (")\B.\‘O (r0) B.\'O (r0+1)\BV0 (r0) r B.\'O (2")\3!(0(")
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since |w| € LP(M), taking r — oo, we have

(m—2)/m
M\By(ro) By (ro+1)\B, (ro)

It follows from the Holder inequality that
(23)

| of?
B.\’O ("0 +2)\Bx0 (70+1)

(m=2)/m
< [VOI(BXO (}"0 —+ 2))]2/’” <J |a)|pm/(m2)> '
B

o (ro +2)\Bx0 (ro+1)

From (22) and (23), we have
(24) o <c|

JBAO (ro+2) By, (ro+1)

where C, depends on Vol(By,(ro +2)), m and p.
From (7), we have

_ _ 1 4 )
(25) | Al = —d(jo|"w), w) +m ?|V|w|p/2\2 — Flo|”.
. . . R
where F: M — [0,+c0) is the function given by F = |T| +u.
Vm

Fix xe M and take #e C;°(Bx(1)). Multiply both sides of (25) by
n?|w|">7? with ¢ > 2, and integrating by parts we obtain

4p—1
(26) _%J \ n|o|?2P2 Vg, Vol
B,

2(p—1)(pg—2p+2 4 /2
Z[ ( )( ! )+ T J |w‘171/2 p|v|w‘17/2|2n2
p p*(m ) By(1)

SF| el | (ol o). ool ),
By(1) B.(1)
From Lemma 2.7 and Cauchy-Schwatz inequality, we have

(27) J Kd(|ol" ), d( ol Pw)))

B

< | ol ) oo o)
By(1)

< J VIl 2 ol?|[d () || "7 + n*d|o|">7))
BA(1)
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4(p -2 _
i) ’j n|oo| "> V| Vo]
p B.(1)

2(p—2)(g—2 _
=+ (p [))(q )J 1)7]2|w|pq/2 p|V|w|p/2|2

< 55— || P77 V|| P2
p*(m— I)JB.\.m

L 2(p—2)2m— 1>j o

x

2(p —2)(g — 2
+ (p ;(q )J ’72|w|p(]/2*p|v|w|p/2|2
B.(1
and
4(p—1
(28) _%J , nlcul"‘f/z’p/2<Vn,V|w|"/2>
BX
2 P4q/2—p /22 2
< m B0 |co] [V]w|” "
+2p= 11| NG

From (26), (27) and (28), we have

(29) [2(P - 1)(1;‘]2— 2p+2) _ 2(p—2)(q - 2)] J |w|pq/27p|v|w|lﬂ/2|2,72

X

< Fj Il P =1 2(p =2~ 1)] ol

X

By using the Cauchy-Schwarz inequality, we have

(30) J IV (gl
B(1)

<(l+g9)

q -
J |w|ﬁ"/2|vf7|2+zj w ol V||| ]
By(1) By (1)

X

From (29) and (30), we have

6y | NaertPsa] etk R
B.(1) 0 2.01)

x
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where
C=14q+3(g+ D2(p~ 1) +2(p ~27(m — 1)
{2(19 - 1)(1:12— p+2) 2p-— 21))(‘1 — 2)] R < C(p)my,
Coo %(q o [2(17 - 1)(1);1 - +2) 2p-— 22(‘1 _ 2)} B < C(p)q,

where C(p) is a positive constant depending only on p. Applying (5) to n\w\”"/ 4

and using (31), we have

Q(S’”)(j (oo
B(1)

< | velel e+
B\(1)

(m-2)/m
|pq/4) 2111/(1112))

m—2 J 2 /2
- = Ry*|w|P?
4(m—1) B.(1) !

R e s |

2
< J [C4F+7 o] 4|V
B.(1) 4(m )

X

so we have

(m=2)/m
(32) <j <n|w|"q/“>2m/<“>> < CICSJ * + V|l ]2,
By(1) B.(1)

for a constant Cs > 0 depending m, p, Vol(Bx(1)), supg () F and supg )|R].
) ,

§+W' Take a

. . 2m
Given an integer k > 0, we set gx = ﬁ and p;, =

function & € Ci°(By(py)) satisfying 7, > 0, , = 1 on By(py,,) and |Vi | < 2543,
Replacing ¢ and # in (32) by ¢x and 7, respectively, we have

1/ 1/qk
(33) (J \a)|(""1"+1)/2 < (qu54k+4)1/f1k J |w|qu/2 ‘
By (prsr) Bi(py)

Applying the Moser iteration to (33), we conclude that
o o 0) < ol g < o

for a constant Cg >0 depending only on m, p, Vol(By(1)), supg ) F and
supp 1y|R|. Take x € By, (ro + 1) such that

(35) (x) = sup o|’.
BXO(I’[)Jrl)
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From (34) and (35), we have

(36) sup ool < C(,J o]
By, (ro+1) By, (ro+2)

From (24) and (36), we have

(37) sup ol < Ci[ ol
By (ro+1) By (ro+1)

where C;7 > 0 is a constant depending on m, p, Vol(By(ro + 2)), supp,(,,+2) F and
supBl\.(l‘q +2) |R| .

Finally, let ¥ be any finite-dimensional subspace of H'”(M). From
Lemma 2.2, there exists w € V' such that

dim V

(38) Vol(By,(ro + 1))

J 0" <min{C,(;)),dim V} sup |o|".
By, (ro+1) By, (ro+1)

From (37) and (38), we have dim V' < Cg, where Cs > 0 depends only on m, p,
Vol(By(ro +2)), supg,(,,+2) F and supg (, 12)|R|. This implies that H Lr(M) has
finite dimension. U

From the proof of Theorem 3.1, we can obtain the following result:

THEOREM 3.2. Let (M™,g), m >3, be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold. Then there exists a

4m—1)(p—1) +1] ,
Sp2m—1) such that if

1 2/m 1 /2 2/m
TI™ + (J RI™ ) <A,
(Jum) g, e

then we have H“?(M) = {0} for p > 2.

positive constant A <

Proof. For a point p and take a cut-off function y satisfying 0 < u <1,

u=1 on By(r), u=0 on M\B,,(2r) and |du| < E, where ¢ is a positive
constant. From (12), (13) and (14), we have r

(39) Al Vi P < B ol vl
M M
where
=2 s Do DL 3023 14 - gl 4 )

m
10 anfin ) Goon(+2)
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Now we choose ¢ small enough such that

m-—1(p-1+1 —%SApz(m -1
2p=3)pm—-1)+(p-Dm—-1)+1’

and ¢ <¢ i=1,2,3, so we have

_ 4 m=Np-1+1 4(2p—3)

0<e<

e — (1 + £2) — ——p(u)(1 + £3)

J2 m—1 vm
> {iz (’"*1)(” —SA} { +SA]3
p m—
4 _
>BW1W s
p m
_{4(2,;3 +iz( m—1)(p—1) +1]6>0'
p p m—1
From (39) and (40), we have
2Vlwl?22 < B e
(41) @V 717 < — | o | Vi~
M Al

From (41) and the definition of x, we have

2
| o< 225 Jor.
on ( ,,) A 14 M

Taking r — oo, we have |V|a)|”/2\ =0. Then |w| is constant. Since M has
infinite volume and [, |w|” < 0. So we obtain that @ = 0. Hence H'"*(M) =

{0}. O

THEOREM 3.3. Let (M™,g), m >3, be an m-dimensional complete, sim-
ply connected, locally conformally flat Riemannian manifold. Assume that
jM|T|mzdv<oo and R is bounded on M and sup,|R|>0. If the first
eigenvalue of the Laplace-Beltrami operator of M satisfies

(o~ 1)p” sup IR
A0 > = G~ T

then we have dim H'"? (M) < oo for p > 2.

Proof. By using the similar method in the proof in Theorem 3.1, we will
prove this theorem. From the formulas (12) and (13), we have

1
42 DJ ,ﬂle’/“gEJ wpvﬂ2+—J R|i2|wl?,
(42) MII\I MIIII\/,q—qMIII\
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where
Dp42(m—1’)n(p_—1 1)—1—174(219—3)817¢(ﬂ)(1+62)
_&-3 1 1
E= , 81+¢(,u)<1+82>.

Since [, |T|"™?* < 0, we can choose ro large enough such that

(43) |T|"™? < &3,

J M\By, (o)

where B, (rp) is the geodesic ball centered at p of radius ry and &3 is small enough
positive constant. So we have

@ o= DL SN g4
4 m-Dp-1)+1 4@2p-3)

P T er—&a(l+e)>0

where ¢, &, & are small enough. From (42) and (44), we have

E
(45) Vo < —j ol |Val? + Rl
D J s, ()

D\/_‘J\M B\,(] Vo

Now we recall that the first eigenvalue A,(M) of the Laplacian of M satisfies

J M\By, (r0)

(46) w0 [ o< | ol
M M
for any ¢ e Ci°(M). Applying (46) with ¢ :u|w\p/2, we have
A0 [ ol < | Wlol”)?
M M
= JM[ﬂzlvlwlp/zl +2uloo] "V, Vi + o] |Vl
By using the Cauchy-Schwarz inequality, we have for & > 0
a0 | el < | 0 eviol (1L lol e
M M

From (45) and (47), we have
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1
48 M(M) —(1+e¢ —supR)J Wlwl?
(48) (10— e swplR) [l

E 1
< [(1 +£4)B+ (1 —l——)} J |oo|?|Vu|*
é4 M\By, (1)

(m—1)p? sup|R|

4ym[(m—1)(p—1)+1]
small enough and depending on m, p, 4;(M) and sup,|R|, so that (4,(M) —

Thus, if A1(M) > , then we can choose ¢, i=1,...,4

1
(1 +84)W sup|R|) > 0. Then we have

(49) ol < Dj Vi o]?

B"[) (7'0)

JM\BxO (r0)

where D = D(m, p, (M), sup,,|R|) is a positive constant. From (49) and the
proof of Theorem 3.1, we can complete this proof. O

From the proof of Theorem 3.3, we can obtain the following result.

THEOREM 3.4. Let (M™,g), m >3, be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold. Assume that R is
bounded on M and sup,|R| > 0. Assume the first eigenvalue of the Laplace-
Beltrami operator of M satisfies

___m=Dp* supylR
avmlim—1)(p— 1)+ 1]

then there exists a positive constant A such that if ([,, |T|m/ 2)2/ " <A, then we
have H'“?(M) = {0} for p > 2.

21 (M)

Proof. We choose ¢

1 4(2p —3) 402p - 3% 16[(m—1)(p—1) +1]
(0<8<5{_[1+ p }+\/[1+ p }+ p2(m—1) })

0 < é1,6 <e and a positive constant A = A(g) > 0 satisfying:

4 m-Dp-1)+1 42p-3)

D=

e — ¢ (1 + &)

p? m—1
4 m=1D)(p-1)+1 42p—

>_2(m p—D+1_ 40 3)8—8(1+8)>0
P m—1 P

and
SA <e.
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Assume ||T||;n2 < A. From (42), we have

E
I R e ML TR

\/_
From (47) and (50), we have

(51) </11(M) —(1 +64)D\1/E sup|R|> JMﬂ2|a)|p

< {(1 +e4)%+ (1 +i)] JM ool V|

o _m—1)p* supy R
amlim—1)(p— 1)+ 1]

small enough and depending on m, p, A4(M) and sup,|R|, so that
(/II(M) — (1 +&4) sup|R|) > 0. Then we have

Thus, if Aj(M then we can choose ¢, i=1,...,4

1
D/
(52) | ol <] 1vulor

M M

where D = D(m, p,1(M),sup,,|R|) is a positive constant. For a point p and
take a cut-off functlon u satisfying 0 <u<1, u=1 on By(r), £=0 on

M\B,,(2r) and |dy| < —, where ¢ is a positive constant.

From (52) and the definition of u, we have

~52
(53) | el =p%] jor
By (r) = Jm
Let r— co and since |||, < o0, we have |o" =0 ie. w=0. Hence
H'"» (M) = {0}. O

THEOREM 3.5. Let (M™,g), m > p*, be an m-dimensional complete, simply
connected, locally conformally flat Riemannian manifold with R < 0. Assume that
fM|T|mz<oo Then we have dim H'“?(M) < o for p > 2.

Proof. Since M™ is a locally conformally flat Riemannian manifold with
R <0, and the inequality (5), we can obtain

m—2
54 7J R|f? < J vf|?
(54) Pl LN
for any f e Cy°(M). Applying the inequality (54) to u|wl|” / 2 we have

m—2

(59) LG T
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From (55) and Cauchy-Schwarz inequality, we have

66 [ Ror < 30Dl avan) [ w@mior+ (14 0) [ opmar]

where ¢5 > 0 is a positive constant. From (12), (13) and (56), we have

7 ffj 1|Vl sB’J ool |Vl
M M
where
A~:l% (m — 1,),4<p__1 D+1 402p - 3)61 —¢(u)(1 + &) —%(1 +é&s)

Since m > p*, we have

4 m-Dp-1)+1 4m-1)
P m—1 Vmm—2) "

Since [, |T |"? < o0, we can choose ry large enough such that

2/m
J ‘T|m/2 <l|:i (Wl*l)([)*l)ﬁ*l_ 4(1/1’171)
M\By, (r0) SLp? m—1 Vm(m —2)

Hence we can choose ¢, &, & small enough such that

- 4 m=1)(p-1)+1 4(2p-3) 4m—1)
A== - - 1 - 2P 0
2 m—1 e — w1+ &) Tt —2) (1+e&s) >
Therefore, (57) can be written as
(58) | emertPse| vl
M\By, (r0) M\B.y (o)

where C > 0 depends only on m, p. From (58) and the proof of Theorem 3.1,
we can complete this proof. O
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