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ALMOST AUTOMORPHIC SOLUTIONS OF SEMILINEAR
STOCHASTIC HYPERBOLIC DIFFERENTIAL EQUATIONS
IN INTERMEDIATE SPACE

ZHINAN X1at

Abstract

In this paper, we investigate the existence, uniqueness of almost automorphic in
one-dimensional distribution mild solution for semilinear stochastic differential equations
driven by Lévy noise. The semigroup theory, fixed point theorem and stochastic
analysis technique are the main tools in carrying out proof. Finally, we give one
example to illustrate the main findings.

1. Introduction

Almost automorphy of deterministic differential equations in abstract space
has been extensively investigated and many authors have made important
contributions to this theory [7, 9, 14, 16, 26, 28]. For stochastic differential
equations (SDEs), the concept of almost automorphy can be defined in square-
mean and in distribution, respectively. Square-mean almost automorphy for
stochastic processes is first introduced in [22] with the applications to the SDEs.
For almost automorphy in distribution sense, Fu [20] systematically explore the
properties, and existence, uniqueness of almost automorphic in distribution solu-
tions to nonautonomous SDEs are studied.

Stochastic differential equations are used widely in many fields, such as
nonlinear vibration, engineering, population dynamics, neural networks, control
theory and so on. The asymptotic properties of solutions for SDEs have been
studied from different points, such as square-mean almost periodicity [4, 6],
almost periodicity in distribution [2, 15, 30, 24|, square-mean almost automorphy
[5, 10], almost autommorphy in distribution [3, 21], ergodicity [11, 17, 12], stability
[8, 13, 23] and so on. Note that most studies are concerned with differential
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equations perturbed by Gaussian noise. It is worthwhile to mention that many
models involve jump perturbations, or more general Lévy noise. Almost auto-
morphy of SDEs with Lévy noise is first investigated by Liu and Sun [27], where
Poisson square-mean almost automorphy is introduced and studied. For SDEs
driven by Lévy noise, one can see [25, 32, 33] for more details.

In this paper, we investigate the existence, unqueness of almost automorphic
in distribution mild solution for SDEs driven by Lévy noise. Intuitively, a large
jump may destroy almost automorphy, but we will see that the almost auto-
morphy property may persist under some suitable conditions. Different form
[25, 27, 33], here the state space we consider is intermediate space, and the
operator is the infinitesimal generator of an analytic semigroup.

The paper is organized as follows. In Section 2, some notations and
preliminary results are presented. Sections 3 is devoted to the existence, unique-
ness of almost automorphic in one-dimensional distribution mild solution for
semilinear SDEs with Lévy noise. In Section 4, to illustrate the main findings,
we consider one example with Lévy noise.

2. Preliminaries and basic results

Throughout the paper, N, Z, R and C stand for the set of natural numbers,
integers, real numbers and complex numbers, respectively. For A being a linear
operator, D(A), p(A), R(4,A4), a(A) stand for the domain, the resolvent set,
the resolvent and spectrum of 4. We assume that (H,| - ||),(V,]|-]|,) are real
separable Hilbert spaces. L(V,H) denotes the space of all bounded linear
operators from V' to H. We assume that (Q, %, P) is a probability space, and
#*(P,H) stands for the space of all H-valued random variables Y such that

2 2
BIY = | Y1 ap < .

) 12
¥l = (] 1viar)
Q

then #*(P,H) is a Hilbert space equipped with the norm | - |,.

For Y e (P, H), let

2.1. Sectorial operators and intermediate space

DeriNiTION 2.1 ([19]). A linear operator 4 : D(A) C H — H is said to be
w-sectorial of angle 0 if the following hold: there exist constants w € R, 0 € (n/2, )
and M > 0 such that

(2.1 p(A) D Sy ={AeC: 1 +#w,|arg(A—w)| < 0},
M
R, A| < ——, A€ Spow
RG] < 2 des

where R(4, A) = (A — A)~" for each Je So, 0r-
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It is well know that [29] if A is w-sectorial of angle 6, then it generates
an analytic semigroup (7°(7)),-, in the sector Sy_,/» o, which maps (0,+o0) to
L(H,H) such that there exist My, M| > 0 with

IT@)] < Moe™,  1>0,
164 — o) T(1)|| < Mye®, > 0.
DeriNITION 2.2 ([19]). A semigroup (7'(t)),., is said to be hyperbolic, if
there exist projection P and constants M,0 > 0 such that each 7(f) commutes

with P, Ker P is invariant with respect to T(z), T(t) : ImJ — Im J is invertible
and

| T(t)Px|| < Me™||x|| for ¢ >0,
7 (1)Jx|| < Me”||x|| for ¢ <0,

where J:=1 — P and T(¢) := (T(—1t))"" for 1 <0.

Recall that if a semigroup (7'()),., is analytic, then (7(¢)),., is hyperbolic
if and only if

a(4)NiR =0,

see for instance [19].
Next, we recall the definition of intermediate space.

DEFINITION 2.3 ([29]). Let « € (0,1). A Banach space (H,,|| - ||,) is said to
be an intermediate space between D(A4) and H, if D(A) C H, C H and there
exists a constant ¢ > 0 such that

~ 1- o
Ixll, < €llxll ™ llxll%,  x e D(A),

where ||-|, is the graph norm of A. Here |x|| = |x| + | 4x| for each
xe D(A).

Concrete examples of H, include D((—A4)") for « € (0,1), the domains of the
fraction power of —A, the real interpolation spaces D,(a, o0), « € (0,1), defined
as follows:

Dy(o, 0) := {x eX :[x],:= sup [|[{'"*(A4 — w)e ' T(0)x]| < +oo}

0<r<1
€[l = €l + [x],.

and the abstract Holder space D 4(«) := D(A)I'l: as well as the complex inter-
polation space [X,D(A4)],, see [29] for more details.

o
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Similar as #*(P,H), for 0 <o < 1, we can define ¥?(P, H,), where the

norm is defined by
) 1/2
17, = ( [ 17 dP) |
Q

Lemma 2.1 ([29]). For the hyperbolic analytic semigroup (T(t)),s, there
exist constants ¢ >0, M >0, 6 >0 and y > 0 such that

(22) 1T, < el for £<0,
| T()Px||, < Mt e "||x|| for t>0.

2.2. Lévy process

DEerNiTION 2.4 ([1, 31]). A V-valued stochastic process L = (L(?),¢ > 0) is
called Lévy process if
(i) L(0) =0 almost surely;
(i) L has independent and stationary increments;
(iif) L is stochastically continuous, i.e., lim, ., P(|L(t) — L(s)|,, > ¢) =0 for
all e>0 and s> 0.

Given a Lévy process L, we define the process of jumps of L by AL(r) =
L(¢) — L(t—), t = 0. For any Borel set B in V' — {0}, define the random count-
ing measure

N(t,B)(w) :=#{0 <s<1:AL(s)(w) e B} = > yp(AL(s)()),

0<s<t

where # means the counting and yj is the indicator function. We write v(-) =
E(N(1,-)) and call it the intensity measure associated with L. If a Borel set B
in ¥ — {0} is bounded below (that is 0 ¢ B, where B is the closure of B), then
N(t,B) < oo almost surely for all >0 and {N(¢,B),t > 0} is a Poisson process
with the intensity v(B). So N is called Poisson random measure. For each
t > 0 and B bounded below, the compensated Poisson random measure is defined
by

N(t,B) = N(1, B) — tv(B).

ProposiTION 2.1 (Lévy-1td decomposition [31]). If L is a V-valued Lévy
process, then there exist a€V, a V-valued Wiener process W with covariance
operator Q, and an independent Poisson random measure N on R* x (V —{0})
such that for each t >0,

(2.4) L(t) = at + W(f) + J xN(1,dx) + J xN(t, dx).

x|, <1 [x[,>1
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Here the Poisson random measure N has the intensity measure v which satisfies
2:5) || st Aot < o0
14

and N is the compensated Poisson random measure of N.

Given two independent, identically distributed Lévy processes L; and L,
with decompositions as in Proposition 2.1 with a, O, W, N. Let

Li(1), for 1 > 0,
L =
(1) { —Ly(—1), for1<0.

Then L is a two-sided Lévy process. In this paper, we need consider two-sided
Lévy process. The two-sided Lévy process L is defined on the filtered probability
space (Q,7,P,(7:),.g)- We assume that the covariance operator Q of W is
of trace class, i.e., Tr Q < oo.

Remark 2.1. It follows from that (2.5) that j‘x‘ . V(dx) < co. For con-
venience, we denote e

throughout the paper.

_ Remark 2.2. Note that the stochastic process L = (L(f),te R) given by
L(t) = L(t+s) — L(s) for some seR is also a two-sided Lévy process which
share the same law as L. In particular, when s e R™, the similar conclusions
hold for one-sided Lévy process.

2.3. Square-mean almost automorphic process

DEFINITION 2.5. A stochastic process Y : R — #%(P, H) is said to be -
bounded if there exists a constant M > 0 such that

BIYO = | 1O ap < .

DEFINITION 2.6. A stochastic process Y : R — £?*(P, H) is said to be -
continuous if for any se€ R,

lim E||Y (1) — Y(s)]|* = 0.

t—s

Note that if an H-valued process is #>-continuous, then it is necessarily stochas-
tically continuous.
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Denoted by SBC(R, #?(P, H)) the collection of all the #*-bounded and
#?%-continuous processes. It is a Banach space equipped with the norm || Y

sup,crl| Y (1)l = sup,er (E[ Y (1)]|*) .

DEFINITION 2.7 ([22]). An #?-continuous process Y : R — #%(P, H) is said
to be square-mean almost automorphic if for every sequence of real numbers
{s/}, there exists a subsequence {s,} and a stochastic process ¥ : R — #*(P, H)
such that

lim E||Y(t+s,) — Y|’ =0 and lim E|Y(t—s,) — Y(2)||> =0,
n—oo

n— o0

’X}':

hold for each 7€ R. The collection of all square-mean almost automorphic
processes Y : R — #?(P,H) is denoted by SAA(R, (P, H)).

Remark 2.3. (i) [22] Any square-mean almost automorphic process is .-
bounded.
(i) [22] SAA(R,%*(P,H)) is Banach space with the supremum norm

1Y, = sup,crl Y (D).

DeFNITION 2.8 ([22]). A function f:Rx #*(P,H)— L(V,%*(P,H)),
(t,Y) — f(t,Y) is said to be square-mean almost automorphic in 7€ R for each
Y e #?(P,H) if f is continuous in the following sense

E”f(tv Y) 7f(t/7 Y/)Hi(V,yz(P,H)) —0 as (ta Y) - ([/a Y/)
and that for every sequence of real numbers {s,}, there exists a subsequence {s,}
and an function f:R x #*(P,H) — L(V, %?(P,H)) such that
Lim E|lf(t+ 5, Y) = £t V), 020,107 = O
. = 2
lim |7t — 50 ¥) — (0 V)20 g ) = 0

hold for each reR and each Y e #*(P,H). Denote by SAA(R x #*(P,H),
L(V,%?(P,H))) the set of such functions.

Turorem 2.1 ([22]). Assume that f:R x L*(P,H) — %*(P,H), (t,Y) —
f(t,Y) is square-mean almost automorphic in t e R for each Y € £*(P,H), and
there exists a constant Ly > 0 such that

E|f(,Y) - f(,Z)|* < L -E|Y = Z||>, for all Y,Ze %*(P,H),1eR.
Then f(-,Y(-)) € SAAR, Z*(P,H)) if Y(:)e SAA(R, #*(P,H)).
Now, we introduce the concept of almost automorphy in distribution. Let

2P(H) be the space of all Borel probability measures on H endowed with the f
metric:

Blu) = supd Uf du—| s av

N f e < 1}, 1 e P(H),
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where f are Lipschitz continuous real-valued functions on H with the norm

e = 11+ 170 A1l = sup L= W

X#y llx =l

o SNl = sup [£(x)]-
xeH

A sequence {u,} C #(H) is said to weakly converge to u if [ fdw, — [ fdu
for all f e BC(R, H), the space of all bounded continuous real-valued functions
on H. Tt is well know that the f metric is a complete metric on 2(H) and a
sequence {y,} weakly converges to u if and only if f(u,,u) — 0 as n — oo, one
can see [18, §11.3] for more details.

DEFINITION 2.9 ([27]). An H-valued stochastic process f is said to be almost
automorphic in one-dimensional distribution if its law u(z) is a 2(H)-valued
almost automorphic mapping, that is, for every sequence of real numbers {s,},
there exist a subsequence {s,} and a Z(H)-valued mapping f(¢) such that

Tim Bt +5.), /(1) =0 and T Bt — 5,), (1)) =0
hold for each reR.

Remark 2.4. Note that square-mean almost automorphic stochastic process
is necessarily an almost automorphic in one-dimensional distribution, but the
converse is not true, one can see [27] for more details.

2.4. Poisson square-mean almost automorphic process

DEFINITION 2.10. A stochastic process F(z,x) : R x V — £?(P,H) is said
to be Poisson stochastically bounded if there exists a constant M > 0 such that

J E||F(t,x)|*v(dx) <M for all teR, xe V.
v

DEFINITION 2.11. A stochastic process F(z,x):R x V — £?(P,H) is said
to be Poisson stochastically continuous if

lim JV E||F(t,x) — F(s,x)||*v(dx) = 0.

1—s

Denoted by PSBC(R x V, #?(P,H)) the collection of all the Poisson sto-
chastically bounded and continuous processes.

DEFINITION 2.12 ([27]). A stochastic process F:R x V — Z(P,H), (t,x)
— F(t,x) is said to Poisson square-mean almost automorphic in teR if F
is Poisson stochastically continuous and for every sequence of real numbers
{5/}, there exist a subsequence {s,} and a function F:R x V — %*(P, H) with
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[, E|lF(,x)||*v(dx) < oo, such that

n—oo

lim J E|[F(t + 5, %) — F(t, %) *v(dx) = 0
V
and

lim J E|[F(t — 51, x) — F(t, %) *v(dx) = 0

n—oo

for each € R. The collection of all Poisson square-mean almost automorphic sto-
chastic processes F : R x V — £?(P, H) is denoted by PSAA(R x V, %*(P,H)).

Next, we give the concept of Poisson square-mean almost automorphic
process with the parameter.

DEFINITION 2.13. A stochastic process F : R x Z*(P,H) x V — £*(P,H),
(t,Y,x) — F(¢t,Y,x) is said to be Poisson stochastically bounded if there exists
a constant M > 0 such that

J E||F(t,Y,x)||*v(dx) < M for all reR, xe V.
4

DEFINITION 2.14. A stochastic process F: R x £*(P,H) x V — £*(P,H),
(t,Y,x) — F(t,Y,x) is said to be Poisson stochastically continuous if

J E||F(1,Y,x)— F(¢, Y x)||*v(dx) = 0 as (1Y) — (', Y").
y

Denoted by PSBC(R x #*(P,H) x V,%*(P,H)) the collection of all the
Poisson stochastically bounded and continuous processes.

DerINITION 2,15 ([27]). A stochastic process F:R x Z*(P,H)x V —
2*(P,H), (,Y,x)— F(t,Y,x) is said to uniformly Poisson square-mean
almost automorphic if F is Poisson stochastically continuous and for every
sequence of real numbers {s;}, there exist a subsequence {s,} and a function
F:Rx LX(P,H)xV — Z*P,H) with [, E|F(,Y,x)||*v(dx) < co, such that

lim J E|[F(t+sp, Y,x) — F(1, Y, x)||*v(dx) = 0
|4

n—oo

and

n—oo

lim J E||F(t — 54, Y,x) — F(1, Y, x)||*v(dx) = 0
14

for each e R and each Y € #?(P,H). The collection of all uniformly Poisson
square-mean almost automorphic stochastic processes F: R x £*(P,H) x V —
2*(P,H) is denoted by PSAAR x Z*(P,H) x V,%*(P,H)).
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THEOREM 2.2 ([27)). Assume that F € PSAAR x ¥*(P,H) x V, %*(P, H)),
and there exists a constant L > 0 such that

J E|F (1, Y, x) — F(t, Z, %) *(dx)
V

<L-E|Y—-2Z|> forall Y, Zec%*P H) tcR.
Then F(-,Y(-),x) € PSAAR x V, #*(P,H)) if Y(-) e SAAR, ¥*(P, H)).

3. SDEs driven by Lévy noise

We consider semilinear SDEs with Lévy noise:
(3.1) dY(t) =AY () dt+ f(1, Y (1)) dt + g(¢, Y (1)) dW (1)

+j F(t, Y (=), )N (dt, d)

x|, <1

+J G(t, Y(t—),x)N(dt,dx), teR,
x|, >1

where f:R x #*(P,H,) — £*(P,H), ¢:Rx %*(P,H,)— L(V,%*P,H)),
F,G:Rx %*(P,H,)x V — %*P,H), W and N are the Lévy-Ito decompo-
sition components of the two-sided Lévy process L with assumptions stated in
Subsection 2.2.
First, we make the following assumptions:
(H,) The operator A is a sectorial and a(A4) N iR = .
(Hy) feSAAR x L*(P,H,), #*(P,H)), geSAAR x ¥*(P,H,),L(V,
Z*(P,H))), F,Ge PSAAR x £*(P,H,) x V,#*(P,H)) and there
exists a constant L > 0 such that

Ellf(t,Y)~ f(,2)|> < L-E|Y - Z||},
E|(g(t,Y) = 9(t, 2) 0|} (v o2payy < L-E|Y = Z]1,

| IRy - ez < B Y - 2
¥l <1
J E|G(1, Y.x) — G(1.Z.x)|v(dx) < L-E| Y — Z|2,
x|, =1

for all teR, Y,Ze L*(P, H,).
Before starting our main results, we recall the definition of the mild solution
to (3.1).

DermniTioN 3.1 ([33]). Let e (0,1). An Z-progressively measurable sto-
chastic process {Y(#)},.g is called a mild solution of (3.1) if it satisfies the
corresponding stochastic integral equation:
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(3.2) Y(t) = T(t—a)Y(a)—i—J T(t—s5)f(s,Y(s)) ds
+ t T(t—s)g(s, Y(s)) dW(s)

' J <1 T(t = s)F(s, Y (s—), x)N(ds, dx)

+ J T(t—s5)G(s, Y(s—), x)N(ds,dx),
x|y >1

a

for all t > a and each a € R.

TueoreM 3.1. Let (H\)—(H,) be satisfied, then (3.1) has a unique £>-
bounded mild solution if

© := 8L(1 4 2b)(My*'T(1 — 0))* + 32LM?*(2y)** 'T(1 — 24)
+8L(1 +2b)c*0 2 +16L*5 " < 1.

Furthermore, this unique £>-bounded mild solution is almost automorphic in one-
dimensional distribution if

8 :=16L(1 4 2b)(My*~'T(1 — 0))* + 64LM*(2y)** 'T(1 — 24)
+ 16L(1 +2b)c?0 % + 32Lc% ' < 1.

Proof. Note that if Y(¢) is #>-bounded, then Y () is a mild solution of
(3.1) if and only if it satisfies the following integral equation

33)  Y() = Ji T(t — 5)Pf(s, Y(s)) ds — th T(t = 5)Jf (s, Y(s)) ds
+ i T(t—s5)Py(s, Y(s)) dW(s) — ij T(t—s)Jg(s, Y(s)) dW(s)
+ I T(t— s)PF(s, Y (s—), x)N(ds, dx)

J—o0 Jx], <1

- T(t — 8)JF (s, Y (s—), x)N(ds, dx)

t x|, <1

+ T(t— $s)PG(s, Y(s—),x)N(ds,dx)

— Jx|,>1

- J . T(t—s5)JG(s, Y(s—),x)N(ds,dx),
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where P+J =1. In fact, for t > a, a € R, by the properties of T(t —a)T (a — )
= T(¢t—s), one has

+0o0

T(t— a)Y(a) = J T(t— 5)Pf(s, Y(s)) ds — J T(t — 5)Jf (s, Y(s)) ds
+ ’ T(t—s)Pg(s, Y(s)) dW(s)

- T(t—$)Jg(s, Y(s)) dW(s)

+ T(t — s)PF(s, Y(s—), x)N(ds, dx)

—o0 Jx|p<1

- J T(t— s)JF(s, Y (s—),x)N(ds, dx)

a Jx]p<l

+ T(t—s)PG(s, Y(s—), x)N(ds,dx)

—o0 J|x|, =1

- J : Jl - T(t— $)JG(s, Y (s—), x)N(ds, dx)
—Y() - JZ T(t = 5)f(s, Y(s)) ds — Jr T(t — 5)g(s, Y(s)) dW(s)
- JIJ T(t — s)F(s, Y (s—),x)N(ds, dx)
a J|x|,<1

_ ” T(1 — $)G(s, ¥ (s—), x)N(ds, d),
adlx|,>1

so Y (¢) is a mild solution of (3.1). On the other hand, if Y () is a mild solution
of (3.1), then

(3.4) PY(t)=T(t—a)PY(a) + JI T(t—s)Pf(s, Y(s)) ds

+ | T(t—s)Pg(s, Y(s)) dW(s)

Ja

+ IJ | T(t — s)PF(s, Y(s—),x)N(ds, dx)
1 J x|, <1

+ IJ T(t — s)PG(s, Y (s—), x)N(ds, dx),
X[y =1

for all t>a, aeR,
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(3.5) JY()=T(t—a)JY(a) + Jt T(t—s5)Jf(s, Y(s)) ds

+ | T(t—s)Jg(s, Y(s)) dW(s)

+ [ J | T(t — 5)JF(s, Y (s—), x)N(ds, dx)
x|p<1

+ J T(t — $)JG(s, Y (s—), x)N(ds, d),
x|y >1

a

for all z>a,aceR.

Since Y is #*-bounded, then letting ¢ — —o0 in (3.4) and @ — 400 in (3.5), by
using (2.2), (2.3) and P+ J =1, we have (3.3) holds.

In the following, we will prove (3.3) is the unique almost automorphic in
one-dimensional distribution mild solution of (3.1). We divide the proof into
several steps.

Step 1. #?-bounded mild solution is .#2-continuous.
Similar as the proof of [33], it is not difficult to see the .#>-continuity of Y (z).
STep 2. Existence and uniqueness of #2-bounded mild solution.

Let & : SBC(R, %*(P,H,)) — SBC(R, (P, H,)) be the operator defined
by (3.3) and let

(ZY)(1) = (AY)(t)+ (AY)()+(AY)(t)+ (SY)(1),

where
SN0 = | Tl - 5)Pf(s, () ds—JHC T(t = 5)Jf (s, Y(s)) ds
(A1) = i T(t — 5)Pg(s, Y(s)) dW(s) —fw T(t — 5)Jg(s, Y(s)) AW (s)
@0 =| J T(t — 5)PF(s, Y (s—), x)N (ds, d)
—oo J|x]p<1

- JHO Jl o T(t — 8)JF(s, Y (s—), x)N(ds, dx)

t

(YY) (1) = J, J - T(t—s)PG(s, Y(s—),x)N(ds,dx)

_ J% J - T(t—s5)JG(s, Y(s—),x)N(ds,dx).

t
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If Y(r) is #*bounded, it is not difficult to see that (£ Y)(¢) is £>-bounded.
By the proof of Step 1, (¥ Y)(f) is #*-continuous if Y(z) is £>-bounded.
Hence % is well-defined. Next, we will show that % is a contraction mapping
on SBC(R, #*(P,H,)). For Yi,Y,eSBC(R, ¥#?*(P,H,)), one has

E|[( Y1) (1) — ()0,
<4E[|(£1 1) (1) — (L) D)l +4E[ (£ V1)) — (£ V) O]
+HAE|(£Y1)(0) — (A ) (0)]; + 4| (S 1)(1) — (S5 Y) (1)

Similar as the proof of [4], the first term of the right-hand side of the above
inequality can be estimated as follows:

E[[(A Y1) () — (AY)(0)];
< 2E‘ :

[ 7= 9P 1) = s 726

o

2

| 7= 0176 16 = 165, Va0 0

o
2

<206 ( | (9" 6 i) - 65 Vo)) o)
+oo 2
#226( [ G50 — S T )

Note that

t
J (t—5) 7 ds = »*71T0(1 — ),
— 00

where I' is the Gamma function. Hence by Cauchy-Schwarz inequality, one
has

E||(#1Y1)(1) — (£ ) (1)l

<2 =) [ =) TR s i(6) - S VI

202 jm PIE||f(5, V1(5)) — f(s. Ya(s)]| ds

1

< 2L[(My*'T(1 — a))* + 2072 - sup E||Y1(s) — Ya(s)| 2.
seR
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By It6 isometry, the second term as follows:

E|[(S11)(t) — (£ Y)(0)];
2

<28 76— 9Pl 1(9) — ol Vo)) W)

o
2

+2E j " T = )lg(s, Ta(s)) — gl Yals))] AW (5)

t

o

t
< 2M2j (1 = 5) e 20IE | (g(s, Y1(5) — gs. Y212y poipan) ds
— 0

+ o0

+ zﬁj g\ (g(s, Yi(5)) — g5, Y2(0) Q22 1 s2m 1y s

t

Note that

‘ +oo
J (1—5) e 209 gy = J 5727 ds = (29)27'T(1 — 200),
% 0

Hence

E|[(S71)(t) — (£ Y) ()5
<2L {M2(2V)2°‘_11"(1 — 20) +%CZ5_1} -sup E| Y1(s) — Ya(s)]];.
seR

By the properties of the integral for the Poisson random measure, we have

E|[(#371) (1) — (A Y)(1)]);

< 2F Jt J T(1 — $)PF(s, ¥1(s—), %) — F(s, Ya(s—), )| N (ds, dx)
Ix[p <1

-0

+2E

J xJ <1 T(t — 5)J[F (s, Yi(s—),x) — F(s, Ya(s—), x)|N(ds, dx)

t

t
<2M? J J (1 — ) e~ 20=9)
-0 Jx|,<1
x E||F(s, Y1(s—),x) — F(s, Yz(s—),x)||2v(dx) ds

+o0 ‘
Py J J B DI F(s, ¥i(s—), x) — F(s, Ya(s—), x)||*(dx) ds
x| <

t

1
<2L [M2(2y)2°‘11"(1 — 20) +§c26_1 -sup E||Y)(s) — Ya(s)|2,
NS

Note that
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2
E

J’ Jﬂ | TU= PG Yi(5-).3) = Gs. Yals).)]lel) ds

— 0
o

2
+E

J OC J =1 T(1 = $)J[G(s, Yi(s=), %) = G(s, Ya(s—=), x)|v(dx) ds

t

o

t
< M? J J (1—5) "7 )y(dx) ds
—o0 Jx], =1
t
] -9 e G i) - Gl Yalso). P ds
—oo Jx[, >1

+0o0
+ czj J ez’x’*‘Y)EHG(s, Yi(s—),x) — G(s, Yz(s—),x)||2v(dx) ds
x|y >1

t

+o0 ‘
] EIGEs Yis)0) = G, Yals-) 0l ) ds
Xy =1

t

< LIb(My*'T(1 — a))* + bc*072] - sup E||Y1(s) — Ya(s)]|Z,
seR

then similarly as the proof of %3, one has

E[|(%Y1)(1) = (%) ()],
<4L [M2(2y)22_11"(1 —20) + b(My* 'T(1 — a))* + %85*1 + bc?o7?

-sup E[|Y1(s) — Ya(s)]l7-
seR
Hence, it follow that, for each re R

E[[( 11)(1) = (' V2) (0] < ©-sup E|[¥i(s) ~ V()]

Note that
2
sup | (6) = V202 < (sup I16) = Vo) )
seR seR
then
(Y1) (1) = (L Y2) (D), < VO Yy = Yo, ..
Hence

Y1 = S Yall, o, o= SUEH(VYO(I) — (1))l VO Y1 = Yo, .
te

Since ® < 1, it follow that . is a contraction mapping on SBC(R, #*(P, H,)).
Therefore, by the Banach contraction mapping principle, ¥ has a unique fixed
point in SBC(R, #*(P, H,)), which is the unique #2-bounded mild solution to
(3.1).
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STEP 3. Almost automorphy in one-dimensional distribution of #%-bounded
mild solution.

Since feSAAR x (P, H,), £*(P,H)), ge SAAR x £*(P, H,),
L(V,%*(P,H))), F,Ge PSAAR x ¥*(P,H,) x V, %*(P,H)), thus for every
sequence of real numbers {s;}, there exists a subsequence {s,} and some func-
tions f, g, F, G, such that

lim E||f(t+s,Y)— f(6,Y)]|?=0 and lim E|f(t—s,, Y)— f(z,Y)||* = 0;

n—oo
lim E|[(g(t + 50, ¥) — 30 V)O3 oy = 0.

. - 2
lim E[(g(t — s, Y) = g(t, )OIy, 02(p. 1)) = 05

n—oo

lim J E||F(t+ 50, Y,x) — F(t, Y, x)||*v(dx) = 0,
|x|<1

n—oo

lim J E||F(t —sp, Y,x) — F(1, Y, x)||*v(dx) = 0;
lx[<1

n—oo

and

n— o0

Jim J E|[G(t + 5, ¥, %) — G(t, Y, )| *v(dx) = 0,
[x| =1

lim J E||G(t — sp, Y, X) — G(1, Y, x)||*v(dx) = 0;
[x|>1

n— o0

for each 1eR, Y e 2P, H,).
Let Y(¢) satisfy the integral equation

Y(t) = J, T(t— 5)Pf (s, Y(s)) ds — L ) T(t—$)Jf (s, Y(s)) ds
+ l T(t — 5)Pg(s, Y(s)) dW (s) — Jﬂc T(t —s5)Jg(s, Y(s)) dW(s)

—o0 t

+ T(t — s)PF (s, Y(s—), x)N(ds, dx)

-0 Jx], <1

- T(t — s)JF(s, Y(s—), x)N(ds, dx)
Jit Jx|y<1
+ J T(t — s)PG(s, Y (s—), x)N(ds, dx)

 Jxly =1

t

- OCJ T(t — $)JG(s, T(s—), x)N(ds, dx),
X[ >1
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by the proof of Step 1 and Step 2, it follows that ¥ is unique and %>-
bounded.

Let W,(t):= W(t+s,) — W(sy), Nu(t,x):=N(t+sy,x)— N(sp,,x) and
N, (t,x) := N(t + $p, x) — N(s,, x) for each 7 e R. It is easy to show that W, is a
O-Wiener process with the same law as W, N, is also a Poisson random measure
and has the same law as N, so are N, and N, moreover, N, is the compensated

Poisson measure of N,. Let t=s—s,, one has

(3.6) Y(t+s,) = Jl T(t—7)Pf(t+ sy, Y(t+s,))dr

- +% T(t—1)Jf(t+ sy, Y(r+s,)) dr
T Y R (LR P
- v T(t—1)Jg(t+ sn, Y(t 4 54)) dW,(7)

+ T(t—7)PF(t + 8y, Y(t + 5,—), X)N,(dz, dx)
J—o0 Jx|, <1

+o0 N

- T(t—17)JF(t+ sy, Y(t 4 s,—), x)N,(dz, dx)
t x|, <1
t

+ T(t—1)PG(t + sy, Y(T+ 5,—), X)Ny(dz, dx)
—oo Jx|, =1
w

- J T(t—1)JG(t + sy, Y (T + 5,—), x)N,(d7, dx).
[x]y,>1

Jit

Consider the process

n= [ T @) de - [T e i) d
4—IwTU—ﬂPﬁr+&,nhDdWﬁ)
[ 1= st s ) aw
%imJﬂWGYKtﬂPFﬁ+sm);@%xﬂvwndﬂ

- J T(t = D)JF(x + $p, Yo(t—), x)N (dr, dx)
x|, <1

t
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t
+ J J T(t — ©)PG(z + 51, Ya(r—), )N (dr, d)
—oo J|x[,>1

t

- Jﬂ J T(t—1)JG(t + 8y, Yu(r—),x)N(dz, dx),
Iy > 1

It is easy to see that Y (¢4 s,) has the same distribution as Y,(¢) for each e R
and Y,(7) is unique and #’-bounded.
Note that

E|[Y,(1) - Y(0)l;

<38

| 1= optre s, va@) - f @) ae

+00

+ 8E T(t—0)J[f(t+ sp, Yu(7)) — f(1, Y (2))] dx

t

o

i 2

+8E T(t = 2)Plg(t + 50, Yu(7)) — §(v, Y (1)) dW (z)

o
2

+8E T(t = 0)J[g(t + su, Yu(2)) = §(z, Y (2))] dW (1)

o
2

+ 8E T(t — 7)P[F(t + 8y, Yo(t—),x) — F(z, Y (=), x)|N(dz, dx)

—o0 J x|, <1

+8E T(t — 1) J[F(t + 84, Yo(t—),x) — F(z, Y(t—), x)|N(dx, dx)

t o ‘X|V<1

+8E T(t — 7)P[G(t + sy, Yu(t—), x) — G(z, Y (=), x)]N(dz, dx)

—oo Jx|, =1

+ 8E T(t — ) J[G(t + sp, Yu(t—),x) — G(z, Y (1—), x)|N(dx, dx)

Jt Jxly =1

o

=L+ L+ 5L+ 14

It follows from the Cauchy-Schwarz inequality that

2
I, < 16E

JJ T(t— 1) PLf(t+ 8n, V(7)) — f (2 + 50, Y(1))] dt

o
2
+ 16E‘

J_ | T(t—1)P[f(t+ su, f’(r)) — f(zr,Y(7))] dz

o
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2

+16E J T (= DI (2 s, V(D)) — f (2 + sy T (2))] dt

t

o
2

| 7= 01 5 7@ - e ¥ o

t

+ 16E

<16M?y*'T(1 — a) Jr (t—7) %770
X E|f (T4 $u, Yu(1)) — f(x+ 50, Y (1)) dr

+16M%*T(1 - a) [ (t— 1) e IR f (2 + 5, F(2)) — Fz, V()] de
L 1662 j+°oeé<f—f>E||f<f+sn, Y, (1)) = £(x + 50 ¥(2))|2 da

16257 j PUIE| f (x4 5, ¥(2) — f(z, V(2)| dr

< 16L[(My*'T(1 = @))* + ¢?07%] - sup E[|Y,(x) - Y(2)|I; + &7'(2),
7eR

with

510 =16M% T =) [ (1=0) "¢ IR (et V@) - Fm TP

+16c25*1jt AOE| £ (2 + 50, T(2)) — F(z, F(2)])” dr.

By Lebesgue dominated convergence theorem, one has &'(#) — 0 as n — +oo0.
By It6 isometry, we have

2
I, < 16E

| 7= 0Plote+ s, (e — gl +50 F(@)] W (2)

¢ 2
+ 16E T(t —7)Plg(t 4 sp, Y(7)) — d(z, Y (7))] dW (7)

-0

o

+o0 2

+ 16E T(t —1)J[g(x + $ny Yu(2)) — g(x + su, Y (2))] dW (1)

t

o

+o0 2

+ 16E T(t —7)J[g(t + s, Y(2)) = §(z, Y (2))] dW (1)

t

o
t

< 16M? (1— 1) e 200

-0

< El|(9(z + 51, ¥a(2) — g(x + 50 TN . g2 7
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! 2
- 16M2J (1 —1) 2270
—0

X EH(Q(T + Sny y(T)) - g(T7 Y(T))>Q1/2||2(V.$2(P,H)) dr

+0o0

+ 16c2j HIE] (g(c + 51, Y,(2)) — 92+ 50, TONO Iy o

t

+o0

+ 16C2J e IE|(g(x + 50, Y (7)) — (1, ?(7)))Q1/2H2(Vﬁ$2(P,H)) dr

t

1 _
< 16L [M2(2y)2“11"(1 — 20) +§c25*1 -sup E||Y,(z) — Y(2)||2 + &2(2),
teR
with
t
& (1) = 16M2J (t—1) P20
—0

x E|l(g(x + 50, Y(2)) = 4, Y@©) QI35 025,11y A7
+0o0

+16¢? J UIE|(g(z+ 80, Y(0) = 32, Y)W 5 o2,y AT

t

By Lebesgue dominated convergence theorem, one has &5 (f) — 0 as n — +oo.
By the properties of the integral for the Poisson random measure, one has

I; < 16E

th J|x,,<1 T(t = ) PIF(t+ s, Ya(1-), %)

2

— F(t + sy, Y(1—), x)] N(dz,dx)

o

2

+ 16E J J ‘ T(t— t)P[F(t + s, Y(1—),x) — F(t, Y(7—), x)|N(dz, dx)

—oo J|x|p<1 5
+ 16E JMJ T(t—1)J[F(t+ sy, Yu(t—),X)

t x|, <1

2

— F(t+ sy, Y(1—), X)]N(dz, dx)

+o0 a 2
+ 16E Jl Jl o T(t — 1)J[F(t 4 s, Y(1—),x) — F(z, Y (=), x)|N(dz, dx)
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t
< 16M? J J (1—1) P 2077
—oo J|x],<1
X E|F(t+ 8y, Ya(t=),x) — F(t + 50, Y (1=), x)||*v(dx) dz

t
+ 16sz J (1— 1) e 200
[x]<1

X E|F(t+ sy, Y(1—),x) — F(z, Y (=), x)||*v(dx) dt
+0o0
+ 16C2J eZ(f(Z‘—‘L’)

t x|, <1
X E||F(t 4 84, Ya(t=),x) — F(t + 54, Y (=), x)||*v(dx) dz
+oo X . o
+ 16C2J V| F(t + 54, Y (1), x) — F(z, Y (1=), x)||*v(dx) dt

t [x] <1

1 _
<16L [Mz(zy)z“m — 24) +5025—1] -sup E| Y, () — Y(0)|2 + &7(),
seR
with
t

60 =160 [ | ey e
’ bl <1

X E||F(t + sp, Y(1—),x) — F(z, Y(z—), x)||*v(dx) dz

— 0

+0o0

+ 1602 J J eZ&([*‘L’)
t x|, <1

X E|F(t+ 54, Y(1—),x) — F(z, Y (1), x)||*v(dx) dx.

By Lebesgue dominated convergence theorem, one has &3 (f) — 0 as n — +oo0.
For I, similarly as the proof of I3, one has

1, < 32E

J;o J|XV>1 T(t — 1) P[G(T + 84, Yu(1—), X)

2

— G(t + s, Y (1), X)|N(dz, dx)

o

+ 32E

Jt ny>1 It = ) P[G(t + sn, Ya(7-), %)

— 0

2

— G(t 4+ sp, Y(t—), x)]v(dx) dt
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2
+ 3K J JI =PG5 V(). = 6 Fe), 9N )
—oo Jx[,>1 o
p 2
+ 32E J Jl ‘ T(t — 7)P[G(t + s, Y(1—),x) — G(z, Y (=), x)]v(dx) dt
- Jx]p =1 o
+ 3K JMJ T(t — D)I[G(x + s, Ya(t—), %)
t [x|, =1
2
— G(t 4+ sy, Y (1), x)|N(dz, dx)
+ 3K ij T(t = D)I[G(z + s, Ya(z—), %)
t |x],>1
2
— G(t + su, Y (=), x)]v(dx) dt
+0o0 a 2
+ 3K J Jl TG+ 3 V(). ) = Gl ¥ (e) ) )
t X[y =1 5
2

+ 32E

1

J+oo Jl n T(t — 1)J[G(t + sp, Y (1), x) — G(1, Y (1—), x)]v(dx) dt

1
<32L [MZ(Zy)z“_] I(1 = 20) + b(My*'T(1 — a))* + Eczé_' + bczé‘z]
-sup E||Y,(z) = ¥(2); + &),
with
t
(1) = 32M2J J (1 = 1) 2209

—oo J x|, =1

x E||G(t + sy, f/(r—),x) - G(r, f’(r—),x)sz(dx) dt

+326M*y* T (1 — a)

t
X J J (t—1) *e 770
-0 Jx|, =1

X E||G(x + 8, T (z=),x) — G(z, T(z=),x)|*¥(dx) de
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+o0

+ 326‘2 J J 625(171)
t |x|,>1

X E||G(t + su, Y (=), x) — G(z, Y (=), x)||*v(dx) dt

+o0

+ 3205712 J J el
t |x[;,>1

x E||G(t + sp, Y(1—),x) — G(z, Y (1—), x)||*v(dx) dx.
By Lebesgue dominated convergence theorem, one has &;(f) — 0 as n — +oo.

By the estimates of I;—I4, one has
E[|Y, (1) = Y(); < &"(2) +9~Su1]g E[|Y, (1) - Y(7)|;
TE

o

where &"(1) = Z?Zl &/"(t). Hence
sup E||Y, (1) — Y(1)||> < sup &"(1) + & -sup E||Y,(r) — Y (2)|2

o
teR teR 7eR

By 3 <1 and lim,_ ;4 sup,.g "(¢) =0, it follows that

§—>0 as n — +oo.

sup E|| Y, (1) - Y(1)|
teR

Since Y (t+s,) has the same distribution as Y,(¢), by [27], one has Y (¢ +s,) —
Y(¢) in distribution as n — 4o0o. Similarly, we have Y(¢—s,) — Y () in dis-
tribution as n — +o0. Hence Y is almost automorphic in one-dimensional
distribution. The proof is complete. ]

4. Example

Consider the stochastic heat differential equations with Dirichlet boundary
condition:

2
5 0.6 = S 0.0+ au(t.9) + £(0(.8)) + ot ) G
+ k(t, u(t, f))%—f(t, &, t>0,¢€(0,1),

u(t,0) =u(t,1)=0, >0,

(4,€)
(4.1)

where a > 0, f, g are square-mean almost automorphic with respect to 7, k is
Poisson square-mean almost automorphic with respect to ¢, W is a Q-Wiener
process with 7rQ < oo, and Z is a Lévy pure jump process which is independent
of W. Denote H=V :=C([0,1],R) equipped with the sup norm and defined
the operator 4 by

Au:=u" +au, ueD(A),
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where D(A) := {ue C*([0,1],R),u(0) = u(1) =0}. The operator 4 is sectorial,
and the resolvent and spectrum of A are respectively given by [29]

p(Ad)=C—{-n’n*+a:aeN}, o(d)={-n’n*+a:aeN},

if @ # n’n?, one has o(4)NiR =(. Hence, the analytic semigroup generated
by A is hyperbolic. For o€ (0,1), the intermediate space H, take the domains
of the fraction power of —A, ie., H,= D((—A)"). Then the stochastic heat
equation can be written as

dY = (AY + F(t,Y)) dt + G(t, Y) dW + J K(t, Y,z)N(dt,dz)
|Z]y <1

+ J K(t,Y,z)N(dt,dz)
1Zly =1

on the Hilbert space H, where

F(t,Y):= f(t,u), G, Y)dW :=g(t,u) dW
k(t,u) dZ = J K(t,Y,z)N(dt, dz) —G—J K(t,Y,z)N(dt,dz)

lz]<1 |z[y =1

with

ZN(t,dz) + J zN(t,dz), K(t,Y,z) =k(t,u)z.

|z, =1

209 - |

Here we assume for simplicity that the Lévy pure process Z on L2(0,1) is
decomposed as above by the Lévy-Itd decomposition.

Note that if f(¢,u), g(¢t,u) are Lipschitz with respect to u, then F(¢,Y),
G(t,Y) are Lipschitz with respect to Y. When k(¢,u) is Lipschitz with respect to
u, and v is a finite measure, then the Lipschitz condition holds for K. Hence,
assume that f(¢,u), g(¢,u) are Lipschitz with respect to u, and the finite intensity
measure v of the Poisson process Z on L?(0, 1) satisfies the Lipschitz condition
for K in the sense of (H,) with Lipschitz constant L. By Theorem 3.1, (4.1)
admits a unique almost automorphic in one-dimensional distribution mild solu-
tion if L is small enough.

Il <1
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