ON PROPER HOLOMORPHIC SELF-MAPPINGS OF GENERALIZED COMPLEX ELLIPSOIDS AND GENERALIZED HARTOGS TRIANGLES

Akio Kodama

Abstract

In this paper, we study proper holomorphic self-mappings of generalized complex ellipsoids and generalized Hartogs triangles. By making use of our previous result on the holomorphic automorphism group of a generalized complex ellipsoid and MontiMorbidelli's result on the extendability of a local CR-diffeomorphism between open subsets contained in the strictly pseudoconvex part of the boundary of a generalized complex ellipsoid, we obtain natural generalizations of some results due to Landucci, Chen- Xu and Zapalowski.

1. Introduction and results

Let D_{1} and D_{2} be two domains in \mathbf{C}^{n}. A continuous mapping $f: D_{1} \rightarrow D_{2}$ is said to be proper if $f^{-1}(K)$ is compact in D_{1} for every compact subset K of D_{2}. Proper holomorphic mappings between bounded domains have been studied from various points of view. (See, for instance, Bedford [5], Jarnicki-Pflug [13].) In connection with this, there is a fundamental question as follows:

Question. Let D be a bounded domain in \mathbf{C}^{n} with $n>1$. Then, is it true that every proper holomorphic mapping $f: D \rightarrow D$ must be biholomorphic?

The answer to this question is negative, in general, without any other assumptions on the domain D or on the mapping f. However, there already exist articles solving this question affirmatively.

In this paper, we would like to study this question in the case where D is a generalized complex ellipsoid or a generalized Hartogs triangle. In order to state our precise results, let us start with defining our generalized complex ellipsoids

[^0]and generalized Hartogs triangles. For any positive integers ℓ_{i}, m_{j} and any positive real numbers p_{i}, q_{j} with $1 \leq i \leq I, 1 \leq j \leq J$, we set
$$
\ell=\left(\ell_{1}, \ldots, \ell_{I}\right), \quad m=\left(m_{1}, \ldots, m_{J}\right), \quad p=\left(p_{1}, \ldots, p_{I}\right), \quad q=\left(q_{1}, \ldots, q_{J}\right)
$$
and define a generalized complex ellipsoid \mathscr{E}_{ℓ}^{p} and a generalized Hartogs triangle $\mathscr{H}_{\ell, m}^{p, q}$ by
\[

$$
\begin{aligned}
& \mathscr{E}_{\ell}^{p}=\left\{z \in \mathbf{C}^{|\ell|} ; \sum_{i=1}^{I}\left\|z_{i}\right\|^{2 p_{i}}<1\right\} \text { and } \\
& \mathscr{H}_{\ell, m}^{p, q}=\left\{(z, w) \in \mathbf{C}^{N} ; \sum_{i=1}^{I}\left\|z_{i}\right\|^{2 p_{i}}<\sum_{j=1}^{J}\left\|w_{j}\right\|^{2 q_{j}}<1\right\},
\end{aligned}
$$
\]

respectively, where

$$
\begin{aligned}
& z=\left(z_{1}, \ldots, z_{I}\right) \in \mathbf{C}^{\ell_{1}} \times \cdots \times \mathbf{C}^{\ell_{I}}=\mathbf{C}^{|\ell|}, \quad|\ell|=\ell_{1}+\cdots+\ell_{I}, \\
& w=\left(w_{1}, \ldots, w_{J}\right) \in \mathbf{C}^{m_{1}} \times \cdots \times \mathbf{C}^{m_{J}}=\mathbf{C}^{|m|}, \quad|m|=m_{1}+\cdots+m_{J}, \\
& \text { and } \quad \mathbf{C}^{N}=\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}, \quad N=|\ell|+|m| .
\end{aligned}
$$

For convenience and no loss of generality, in this paper we always assume that

$$
p_{2}, \ldots, p_{I} \neq 1, \quad q_{2}, \ldots, q_{J} \neq 1
$$

if $I \geq 2$ or $J \geq 2$. Hence, if $I=1$, then $\mathscr{E}_{f}^{p}=B^{\ell_{1}}$, the unit ball in $\mathbf{C}^{\ell_{1}}$, whether $p_{1}=1$ or not; and if $I \geq 2$, then \mathscr{E}_{ℓ}^{p} is different from the unit ball $B^{|k|}$ in $\mathbf{C}^{|\epsilon|}$. In general, both the domains \mathscr{E}_{ℓ}^{p} and $\mathscr{H}_{\ell, m}^{p, q}$ are not geometrically convex and their boundaries are not smooth. Notice that $\partial \mathscr{H}_{\ell, m}^{p, q}$ contains the origin 0 of \mathbf{C}^{N}.

Let us now return to our question above in the case where D is a generalized complex ellipsoid or a generalized Hartogs triangle. Then we have already known the following: If all the exponents p_{i} are positive integers, then \mathscr{E}_{ℓ}^{p} is a bounded pseudoconvex domain with real-analytic boundary. Hence, by a direct consequence of Bedford-Bell [6], every proper holomorphic self-mapping of \mathscr{E}_{ℓ}^{p} is a biholomorphic mapping. Independently, Landucci [18] studied the structure of proper holomorphic mappings between generalized complex ellipsoids \mathscr{E}_{ℓ}^{p} and $\mathscr{E}_{\ell^{\prime}}^{p^{\prime}}$ with $\ell_{i}, \ell_{i}^{\prime}=1, p_{i}, p_{i}^{\prime} \in \mathbf{N}(1 \leq i \leq I)$, and proved that every proper holomorphic self-mapping of such a generalized complex ellipsoid \mathscr{E}_{ℓ}^{p} must be a biholomorphic mapping. If some of p_{i}^{\prime} 's are not integers, then the boundary of \mathscr{E}_{ℓ}^{p} is no longer real-analytic. However, as is shown by Dini-Primicerio [11], even in such a case the same conclusion holds for \mathscr{E}_{ℓ}^{p}, provided that all the ℓ_{i} 's are equal to 1 . On the other hand, for the generalized Hartogs triangles, Landucci also studied in [19] the structure of proper holomorphic mappings between generalized Hartogs triangles $\mathscr{H}_{\ell, m}^{p, q}$ and $\mathscr{H}_{\ell^{\prime}, m^{\prime}}^{p^{\prime}, q^{\prime}}$ with $\ell_{i}, \ell_{i}^{\prime}=1, p_{i}, p_{i}^{\prime} \in \mathbf{N}$
$(1 \leq i \leq I)$ and $m, m^{\prime}=1, q, q^{\prime} \in \mathbf{N}$. In particular, he found the existence of a generalized Hartogs triangle $\mathscr{H}_{\ell, m}^{p, q}$ admitting a proper non-biholomorphic self-mapping. Landucci's result was later extended by Chen-Xu [9], [10] and Zapalowski [22] to the class of generalized Hartogs triangles $\mathscr{H}_{\ell, m}^{p, q}$ with $\ell_{i}, m_{j}=1$, $0<p_{i}, q_{j} \in \mathbf{R}$ for all i, j and $J>1$.

In view of these results, it would be naturally expected that the same conclusion as in the case where $\ell_{i}, m_{j}=1$ for all i, j is also valid for our generalized complex ellipsoids \mathscr{E}_{ℓ}^{p} with $\ell_{i} \geq 1$ or generalized Hartogs triangles $\mathscr{H}_{\ell, m}^{p, q}$ with $\ell_{i}, m_{j} \geq 1$. This cannot be achieved in full generality at this moment. However, under the assumption that all the exponents p_{i} and q_{j} are greater than or equal to 1 , we can give an affirmative answer to this. Before stating our results, observe that the boundary of \mathscr{E}_{ℓ}^{p} is C^{2}-smooth if and only if $p_{i} \geq 1$ for all $i=1, \ldots, I$. Therefore, in connection with our question, it would be the class of generalized complex ellipsoids \mathscr{E}_{ℓ}^{p} with $p_{i} \geq 1$ for all $i=1, \ldots, I$ that we should study first.

The main purpose of this paper is to establish the following theorems. (For the explicit descriptions of holomorphic automorphisms of \mathscr{E}_{ℓ}^{p}, see Section 2.)

Theorem 1. Let \mathscr{E}_{ℓ}^{p} be a generalized complex ellipsoid in $\mathbf{C}^{|\ell|}$ with $|\ell| \geq 2$. Assume that $1 \leq p_{i} \in \mathbf{R}$ for all $i=1, \ldots, I$. Then every proper holomorphic mapping $f: \mathscr{E}_{\ell}^{p} \rightarrow \mathscr{E}_{\ell}^{p}$ is necessarily a holomorphic automorphism of \mathscr{E}_{ℓ}^{p}.

It should be emphasized that if $1 \leq p_{i} \in \mathbf{R}$ for all i, then \mathscr{E}_{ℓ}^{p} is a geometrically convex bounded domain with C^{2}-smooth (but not C^{3}-smooth) boundary $\partial \mathscr{E}_{\ell}^{p}$, in general, and our $\mathscr{E}_{\ell}^{\mathscr{p}}$ in Theorem 1 admits the case where some of ℓ_{i} 's are greater than 1. Therefore our theorem is not an immediate consequence of any other papers.

The structure of proper holomorphic self-mappings of $\mathscr{H}_{\ell, m}^{p, q}$ with $|\ell||m|=1$, that is, $\mathscr{H}_{\ell, m}^{p, q} \subset \mathbf{C}^{2}$, is already discussed in [19], [22], in detail. So, in this paper, we would like to study our question in the case where D is a generalized Hartogs triangle $\mathscr{H}_{\ell, m}^{p, q}$ with $|\ell||m|>1$. Then, our Theorem 1 can be applied to prove the following theorems:

Theorem 2. Let $\mathscr{H}_{\ell, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C}^{|f|} \times \mathbf{C}^{|m|}$ with $|\ell| \geq 2,|m| \geq 2$. Assume that $1 \leq p_{i}, q_{j} \in \mathbf{R}$ for all $i=1, \ldots, I, j=1, \ldots, J$. Then a holomorphic mapping $\Phi: \mathscr{H}_{\ell, m}^{p, q} \rightarrow \mathscr{H}_{\ell, m}^{p, q}$ is proper if and only if Φ can be written in the form

$$
\begin{aligned}
& \Phi:\left(z_{1}, \ldots, z_{I}, w_{1}, \ldots, w_{J}\right) \mapsto\left(\tilde{z}_{1}, \ldots, \tilde{z}_{I}, \tilde{w}_{1}, \ldots, \tilde{w}_{J}\right), \\
& \tilde{z}_{i}=A_{i} z_{\sigma(i)} \quad(1 \leq i \leq I), \quad \tilde{w}_{j}=B_{j} w_{\tau(j)}(1 \leq j \leq J)
\end{aligned}
$$

(think of z_{i}, w_{j} as column vectors), where $A_{i} \in U\left(\ell_{i}\right), B_{j} \in U\left(m_{j}\right)$ and σ, τ are permutations of $\{1, \ldots, I\},\{1, \ldots, J\}$ respectively, satisfying the condition: $\sigma(i)=s$, $\tau(j)=t$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right),\left(m_{j}, q_{j}\right)=\left(m_{t}, q_{t}\right)$.

In particular, Φ is a holomorphic automorphism of $\mathscr{H}_{\ell, m}^{p, q}$.

Theorem 3. Let $\mathscr{H}_{\ell, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C}^{|f|} \times \mathbf{C}^{|m|}$ with $|\ell|=1,|m| \geq 2$. Assume that $1 \leq q_{j} \in \mathbf{R}$ for all $j=1, \ldots, J$. Then a holomorphic mapping $\Phi: \mathscr{H}_{\ell, m}^{p, q} \rightarrow \mathscr{H}_{\ell, m}^{p, q}$ is proper if and only if Φ can be written in the form

$$
\begin{aligned}
& \Phi:\left(z, w_{1}, \ldots, w_{J}\right) \mapsto\left(\tilde{z}, \tilde{w}_{1}, \ldots, \tilde{w}_{J}\right), \\
& \tilde{z}=A z, \quad \tilde{w}_{j}=B_{j} w_{\tau(j)}(1 \leq j \leq J),
\end{aligned}
$$

where $A \in \mathbf{C}$ with $|A|=1, B_{j} \in U\left(m_{j}\right)$ and τ is a permutation of $\{1, \ldots, J\}$ satisfying the condition: $\tau(j)=t$ can only happen when $\left(m_{j}, q_{j}\right)=\left(m_{t}, q_{t}\right)$.

In particular, Φ is a holomorphic automorphism of $\mathscr{H}_{\ell, m}^{p, q}$.
Theorem 4. Let $\mathscr{H}_{\ell, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}$ with $|\ell| \geq 2,|m|=1$. Assume that $1 \leq p_{i} \in \mathbf{R}$ for all $i=1, \ldots, I$. Then a holomorphic mapping $\Phi: \mathscr{H}_{\ell, m}^{p, q} \rightarrow \mathscr{H}_{\ell, m}^{p, q}$ is proper if and only if Φ is a transformation

$$
\Phi:\left(z_{1}, \ldots, z_{I}, w\right) \mapsto\left(\tilde{z}_{1}, \ldots, \tilde{z}_{I}, \tilde{w}\right)
$$

of the following form:
Case I. $I=1$.
(I.1) $q / p \in \mathbf{N}$: In this case, putting $r=q / p$, we have

$$
\tilde{z}_{1}=w^{k r} H\left(z_{1} / w^{r}\right), \quad \tilde{w}=B w^{k}
$$

where $k \in \mathbf{N}, H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$ and $B \in \mathbf{C}$ with $|B|=1$.
(I.2) $q / p \notin \mathbf{N}$: In this case, putting $r=q / p$, we have

$$
\tilde{z}_{1}=w^{(k-1) r} A z_{1}, \quad \tilde{w}=B w^{k}
$$

where $k \in \mathbf{N}, A \in U\left(\ell_{1}\right),(k-1) r \in \mathbf{Z}$ and $B \in \mathbf{C}$ with $|B|=1$.
Case II. $I \geq 2$.
(II.1) $p_{1}=1, q \in \mathbf{N}$: In this case, we have

$$
\tilde{z}_{1}=w^{k q} H\left(z_{1} / w^{q}\right), \quad \tilde{z}_{i}=w^{(k-1) q / p_{i}} \gamma_{i}\left(z_{1} / w^{q}\right) A_{i} z_{\sigma(i)} \quad(2 \leq i \leq I), \quad \tilde{w}=B w^{k},
$$

where
(1) $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$;
(2) γ_{i}^{\prime} 's are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ defined by

$$
\gamma_{i}\left(z_{1}\right)=\left(\frac{1-\|a\|^{2}}{\left(1-\left\langle z_{1}, a\right\rangle\right)^{2}}\right)^{1 / 2 p_{i}}, \quad a=H^{-1}(o) \in B^{\ell_{1}}
$$

where $o \in B^{\ell_{1}}$ is the origin of $\mathbf{C}^{\ell_{1}}$;
(3) $k \in \mathbf{N}, A_{i} \in U\left(\ell_{i}\right),(k-1) q / p_{i} \in \mathbf{Z}(2 \leq i \leq I)$ and $B \in \mathbf{C}$ with $|B|=1$;
(4) σ is a permutation of $\{2, \ldots, I\}$ satisfying the following: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.
(II.2) $p_{1}=1, q \notin \mathbf{N}$: In this case, we have

$$
\tilde{z}_{1}=w^{(k-1) q} A z_{1}, \quad \tilde{z}_{i}=w^{(k-1) q / p_{i}} A_{i} z_{\sigma(i)}(2 \leq i \leq I), \quad \tilde{w}=B w^{k},
$$

where $k \in \mathbf{N}, A \in U\left(\ell_{1}\right),(k-1) q \in \mathbf{Z}, \quad A_{i} \in U\left(\ell_{i}\right),(k-1) q / p_{i} \in \mathbf{Z} \quad(2 \leq i \leq I)$, $B \in \mathbf{C}$ with $|B|=1$, and σ is a permutation of $\{2, \ldots, I\}$ satisfying the condition: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.
(II.3) $p_{1} \neq 1$: In this case, we have

$$
\tilde{z}_{i}=w^{(k-1) q / p_{i}} A_{i} z_{\sigma(i)}(1 \leq i \leq I), \quad \tilde{w}=B w^{k}
$$

where $k \in \mathbf{N}, A_{i} \in U\left(\ell_{i}\right),(k-1) q / p_{i} \in \mathbf{Z}(1 \leq i \leq I), B \in \mathbf{C}$ with $|B|=1$, and σ is a permutation of $\{1, \ldots, I\}$ satisfying the condition: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.

In particular, Φ is a holomorphic automorphism of $\mathscr{H}_{t, m}^{p, q}$ if and only if $k=1$ in any cases.

Considering the general case where $\ell_{i}, m_{j} \geq 1$ in this paper, we obtain natural generalizations of some results due to Landucci [18], [19], Chen-Xu [9], [10] and Zapalowski [22]. Here it should be remarked that some of their techniques used in [9], [10], [18], [19] and [22] are not applicable to our case where $\ell_{i} \geq 1$ or $m_{j} \geq 1$. In fact, for instance, there is no several-variable analogue of the function $\lambda \mapsto \lambda^{a}\left(\lambda \in \mathbf{C}^{*}, 0<a \in \mathbf{R}\right)$ that plays crucial roles in their papers.

Finally, we would like to point out the following: Let $\mathscr{H}_{t, m}^{p, q}$ be a generalized Hartogs triangle in $\mathbf{C} \times \mathbf{C}^{|m|}$ with $m_{1}=\cdots=m_{J}=1$ and $J \geq 2$. Then, according to [22; Theorem 3, (b)], one obtains the following result which contradicts our Theorem 3: A holomorphic mapping $\Phi: \mathscr{H}_{\ell, m}^{p, q} \rightarrow \mathscr{H}_{\ell, m}^{p, q}$ is proper if and only if Φ has the form

$$
\Phi(z, w)=\left(\zeta z^{k}, h(w)\right), \quad(z, w) \in \mathscr{H}_{\ell, m}^{p, q},
$$

where $\zeta \in \mathbf{C}$ with $|\zeta|=1, k \in \mathbf{N}$ and $h: \mathscr{E}_{m}^{q} \rightarrow \mathscr{E}_{m}^{q}$ is a proper holomorphic mapping such that $h(0)=0$. In particular, there are non-trivial proper holomorphic selfmappings in such a $\mathscr{H}_{\ell, m}^{p, q}$. But, this is obviously incorrect. In fact, consider, for instance, the generalized Hartogs triangle $\mathscr{H}_{\mathscr{H}}:=\mathscr{H}_{\ell, m}^{p, q}$ and the holomorphic mapping $\Phi: \mathscr{H} \rightarrow \mathscr{H}$ defined by

$$
\mathscr{H}=\left\{(z, w) \in \mathbf{C} \times \mathbf{C}^{2} ;|z|<\|w\|^{2}<1\right\}, \quad \Phi(z, w)=\left(z^{2}, w\right), \quad(z, w) \in \mathscr{H},
$$

that is, $p=1 / 2, q=(1,1), \zeta=1, k=2$ and $h=\mathrm{id}$, the identity mapping, in (\dagger). Then Φ is holomorphic on $\mathbf{C}^{3}(\supset \overline{\mathscr{H}})$ and, for the boundary point $\left(z_{o}, w_{o}\right) \in$ $\partial \mathscr{H}$ given by $z_{o}=1 / 2, w_{o}=(1 / \sqrt{2}, 0)$, we have $\Phi\left(z_{o}, w_{o}\right)=(1 / 4,1 / \sqrt{2}, 0) \in \mathscr{H}$. Consequently, Φ is not proper, though it satisfies all the requirements of (\dagger). From this, the assertion in [22; Corollary 8] may also be corrected.

Our proof of Theorem 1 above is based on our previous result on the structure of holomorphic automorphism groups of generalized complex ellipsoids [15] and an extension theorem of local CR-diffeomorphisms defined near a C^{ω} smooth strictly pseudoconvex boundary point of a generalized complex ellipsoid due to Monti-Morbidelli [20]. Once Theorem 1 is proved, we can apply the same method used in our previous paper [16] to prove Theorems 2, 3 and 4. After some preparations in Sections 2 and 3, we prove our theorems in Section 4.

Acknowledgement. The author would like to express his thanks to Professor Atsushi Hayashimoto for fruitful discussions on CR-geometry. He is also grateful to Professors Roberto Monti and Daniele Morbidelli for kind informations on their joint paper [20].

Notation. Throughout this paper we use the following notation: For given points $z=\left(z_{1}, \ldots, z_{I}\right) \in \mathbf{C}^{|f|}, w=\left(w_{1}, \ldots, w_{J}\right) \in \mathbf{C}^{|m|}$ and $p=\left(p_{1}, \ldots, p_{I}\right)$, $q=\left(q_{1}, \ldots, q_{J}\right)$ as above, we set

$$
\begin{aligned}
& z_{i}=\left(z_{i}^{1}, \ldots, z_{i}^{\ell_{i}}\right) \quad(1 \leq i \leq I), \quad w_{j}=\left(w_{j}^{1}, \ldots, w_{j}^{m_{j}}\right) \quad(1 \leq j \leq J), \\
& \zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)=(z, w) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}, \\
& \zeta^{\prime}=\left(\zeta_{1}, \ldots, \zeta_{|q|}\right)=z, \quad \zeta^{\prime \prime}=\left(\zeta_{|\ell|+1}, \ldots, \zeta_{N}\right)=w \quad \text { and } \\
& \rho^{p}(z)=\sum_{i=1}^{I}\left\|z_{i}\right\|^{2 p_{i}}, \quad \rho^{q}(w)=\sum_{j=1}^{J}\left\|w_{j}\right\|^{2 q_{j}} .
\end{aligned}
$$

As usual, we write

$$
\zeta^{\alpha}=\zeta_{1}^{\alpha_{1}} \cdots \zeta_{N}^{\alpha_{N}} \quad \text { for } \zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right) \in \mathbf{C}^{N}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbf{Z}^{N} .
$$

For a given $n \in \mathbf{N}$, we denote by $U(n)$ the unitary group of degree n, and for a set $S \subset \mathbf{C}^{n}, \partial S$ (resp. \bar{S}) stands for the boundary (resp. closure) of S. We denote by $\langle\cdot, \cdot\rangle$ the standard Hermitian inner product on \mathbf{C}^{n}, that is,

$$
\langle\zeta, \eta\rangle=\sum_{j=1}^{n} \zeta_{j} \bar{\eta}_{j} \quad \text { for } \zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right), \eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbf{C}^{n} .
$$

Let W be a domain in \mathbf{C}^{n}. Then we denote by $\operatorname{Aut}(W)$ the group of all holomorphic automorphisms of W equipped with the compact-open topology. For a given holomorphic mapping $F: W \rightarrow \mathbf{C}^{n}$, we denote by $J_{F}(\zeta)$ the Jacobian determinant of F at $\zeta \in W$ and put $V_{F}=\left\{\zeta \in W ; J_{F}(\zeta)=0\right\}$.

2. Some known facts

In this section, for later purpose, we collect some known facts on the holomorphic automorphisms of generalized complex ellipsoids \mathscr{E}_{ℓ}^{p} in $\mathbf{C}^{|\ell|}=$ $\mathbf{C}^{\ell_{1}} \times \cdots \times \mathbf{C}^{\ell_{1}}$.

If $I=1$, then \mathscr{E}_{ℓ}^{p} is the unit ball $B^{\ell_{1}}$ in $\mathbf{C}^{\ell_{1}}$ and the structure of the holomorphic automorphism group $\operatorname{Aut}\left(B^{\ell_{1}}\right)$ of $B^{\ell_{1}}$ is well-known. And, if $I \geq 2$ (hence, $p_{i} \neq 1$ for all $i=2, \ldots, I$ by our assumption), we have the following:

Theorem A (Kodama [15]). The holomorphic automorphism group Aut $\left(\mathscr{E}_{\ell}^{p}\right)$ consists of all transformations

$$
\Phi:\left(z_{1}, \ldots, z_{I}\right) \mapsto\left(\tilde{z}_{1}, \ldots, \tilde{z}_{I}\right)
$$

of the following form:

Case I. $p_{1}=1$. In this case, we have

$$
\tilde{z}_{1}=H\left(z_{1}\right), \quad \tilde{z}_{i}=\gamma_{i}\left(z_{1}\right) A_{i} z_{\sigma(i)} \quad(2 \leq i \leq I),
$$

(think of z_{i} as column vectors), where
(1) $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$;
(2) γ_{i} 's are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ defined by

$$
\gamma_{i}\left(z_{1}\right)=\left(\frac{1-\|a\|^{2}}{\left(1-\left\langle z_{1}, a\right\rangle\right)^{2}}\right)^{1 / 2 p_{i}}, \quad a=H^{-1}(o) \in B^{\ell_{1}}
$$

where $o \in B^{\ell_{1}}$ is the origin of $\mathbf{C}^{\ell_{1}}$;
(3) $A_{i} \in U\left(\ell_{i}\right)$, the unitary group of degree ℓ_{i};
(4) σ is a permutation of $\{2, \ldots, I\}$ satisfying the following: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.

Case II. $p_{1} \neq 1$. In this case, we have

$$
\tilde{z}_{i}=A_{i} z_{\sigma(i)} \quad(1 \leq i \leq I),
$$

where $A_{i} \in U\left(\ell_{i}\right)$ and σ is a permutation of $\{1, \ldots, I\}$ satisfying the condition: $\sigma(i)=s$ can only happen when $\left(\ell_{i}, p_{i}\right)=\left(\ell_{s}, p_{s}\right)$.

Let \mathscr{E}_{ℓ}^{p} be a generalized complex ellipsoid in $\mathbf{C}^{|t|}=\mathbf{C}^{\ell_{1}} \times \cdots \times \mathbf{C}^{\ell_{1}}$ with $I \geq 2$ and assume that the exponents p_{i} and the integers ℓ_{i} satisfy the condition

$$
p_{1}=1, \quad \ell_{1} \geq 1 \quad \text { and } \quad \mathbf{R} \ni p_{i}>1, \quad \ell_{i} \geq 2(2 \leq i \leq I)
$$

Define here a subset \mathscr{S} of $\partial \mathscr{E}_{\ell}^{p}$ by

$$
\mathscr{S}=\left\{\left(z_{1}, z_{2}, \ldots, z_{I}\right) \in \partial \mathscr{E}_{\ell}^{p} ;\left\|z_{2}\right\| \cdots\left\|z_{I}\right\| \neq 0\right\} .
$$

By routine computations, it then follows that \mathscr{S} is just the set consisting of all C^{ω}-smooth strictly pseudoconvex boundary points of \mathscr{E}_{ℓ}^{p}. Note that \mathscr{S} is a simply connected, connected real hypersurface in $\mathbf{C}^{|\ell|}$, since $\ell_{i} \geq 2$ for all $i=$ $2, \ldots, I$. For this C^{ω}-smooth strictly pseudoconvex real hypersurface \mathscr{S}, we have the following:

Theorem B (Monti-Morbidelli [20]). Let \mathscr{E}_{ℓ}^{p} be a generalized complex ellipsoid in $\mathbf{C}^{|f|}$ satisfying the condition (\ddagger). Let O, O^{\prime} be connected open subsets of \mathscr{S} and let $f: O \rightarrow O^{\prime}$ be a CR-diffeomorhism between O and O^{\prime}. Then f extends to a global biholomorphic mapping $\hat{f}: \mathscr{E}_{\ell}^{p} \rightarrow \mathscr{E}_{\ell}^{p}$.

In [20] they proved more: the extension \hat{f} can be written as a composite mapping of four standard holomorphic automorphisms of \mathscr{E}_{ℓ}^{p}, provided that all the exponents p_{i} are positive integers. Here, observe that they do not use essentially the fact that all the p_{i} 's are positive integers except for the proofs of Propositions 3.4 and 5.1 in [20]. Moreover, if the condition (\ddagger) is satisfied, one can see that their proofs remain valid for these propositions even in the case where some of p_{i} 's are not integers. Therefore, Theorem B has already been
proved implicitly in [20]. Using power series expansion technique, Hayashimoto [12] gave an alternative proof of Monti-Morbidelli's theorem with some weaker conditions on the dimensions ℓ_{i} and the exponents $p_{i} \in \mathbf{N}$. However it seems difficult to apply the same technique to our general case where some of p_{i} 's are not integers.

3. Some lemmas

In this section, we shall prove several lemmas which will play crucial roles in our proofs of the theorems.
3.1. A Lemma for \mathscr{E}_{ℓ}^{p}. In this Subsection, we write $\mathscr{E}=\mathscr{E}_{\ell}^{p}$ for the sake of simplicity, and $f: \mathscr{E} \rightarrow \mathscr{E}$ denotes an arbitrarily given proper holomorphic mapping.

First of all, since \mathscr{E} is a bounded complete Reinhardt domain in $\mathbf{C}^{|f|}$, by a result of Bell [8] there exists a connected open neighborhood D of $\overline{\mathscr{E}}$ such that f extends to a holomorphic mapping $\hat{f}: D \rightarrow \mathbf{C}^{|f|}$. Therefore, replacing f by \hat{f} if necessary, we may assume that f itself is a holomorphic mapping defined on D.

Under this assumption, we wish to prove the following:
Lemma 1. Let \mathscr{E} be a generalized complex ellipsoid in $\mathbf{C}^{|\ell|}$ with $I \geq 2$. Assume that $p_{i}>1$ and $\ell_{i} \geq 2$ for all $i=1, \ldots, I$. Then the proper holomorphic mapping $f: \mathscr{E} \rightarrow \mathscr{E}$ is an automorphism of \mathscr{E}.

Proof. Once it is shown that $V_{f}=\emptyset$, then $f: \mathscr{E} \rightarrow \mathscr{E}$ is an unbranched covering; and hence, it must be a biholomorphic mapping, since \mathscr{E} is a simply connected domain. Assuming to the contrary that $V_{f} \neq \emptyset$, we wish to derive a contradiction. To this end, let us consider the functions $r(z)$ and $R(z)$ defined by

$$
r(z)=\rho^{p}(z)-1, \quad z \in \mathbf{C}^{|f|}, \quad \text { and } \quad R(z)=r(f(z)), \quad z \in D .
$$

It then follows from the Hopf lemma that $R(z)$ is a C^{2}-smooth defining function for \mathscr{E} as well as $r(z)$. Thus, if we set

$$
D_{\varepsilon}=\{z \in D ; R(z)<\varepsilon\} \quad \text { and } \quad D_{\varepsilon}^{\prime}=\left\{z \in \mathbf{C}^{|f|} ; r(z)<\varepsilon\right\}
$$

for a sufficiently small $\varepsilon>0$, then we have $\bar{\varepsilon} \subset D_{\varepsilon} \cap D_{\varepsilon}^{\prime}, \overline{D_{\varepsilon} \cup D_{\varepsilon}^{\prime}} \subset D$ and f gives rise to a proper holomorphic mapping, say again f, from D_{ε} onto D_{ε}^{\prime}. Hence, for any irreducible component V of $V_{f} \cap D_{\varepsilon}$, it follows from Remmert's proper mapping theorem that $f(V)$ is a complex analytic subvariety of D_{ε}^{\prime} and the restriction $\tilde{f}:=f \mid V: V \rightarrow f(V)$ is also proper. In particular, V and $f(V)$ both have pure \mathbf{C}-dimension $|\ell|-1$ and $\tilde{f}^{-1}(\operatorname{Sing} f(V))$ is nowhere dense in V. Therefore, by repeating exactly the same argument as in [4; p. 479], one can see that there exists a connected complex manifold M of \mathbf{C}-dimension $|\ell|-1$ such that M is open dense in V and \tilde{f} gives rise to a local biholomorphic
mapping from M onto $\tilde{f}(M)$. Accordingly, both $M \cap \partial \mathscr{E}$ and $\tilde{f}(M) \cap \partial \mathscr{E}$ are C^{2}-differentiable submanifolds of $\partial \mathscr{E}$ with the same \mathbf{R}-dimension $2|\ell|-3$. Now let us set

$$
\begin{aligned}
& \mathscr{S}=\left\{\left(z_{1}, \ldots, z_{I}\right) \in \partial \mathscr{E} ;\left\|z_{1}\right\| \cdots\left\|z_{I}\right\| \neq 0\right\} \quad \text { and } \\
& \mathscr{W}_{i}=\left\{\left(z_{1}, \ldots, z_{I}\right) \in \partial \mathscr{E} ; z_{i}=0\right\} \quad(1 \leq i \leq I) .
\end{aligned}
$$

Then \mathscr{S} is the set of all C^{2}-smooth strictly pseudoconvex boundary points of \mathscr{E} and $\partial \mathscr{E} \backslash \mathscr{S}=\bigcup_{i=1}^{I} \mathscr{W}_{i}$ is the set of all weakly pseudoconvex boundary points of \mathscr{E}. Note that each \mathscr{W}_{i} is a C^{2}-differentiable submanifold of $\partial \mathscr{E}$ with $\operatorname{dim}_{\mathrm{R}} \mathscr{W}_{i}=$ $2|\ell|-2 \ell_{i}-1 \leq 2|\ell|-5$, because $\ell_{i} \geq 2$ by our assumption. Thus $\bigcup_{i=1}^{I} \mathscr{W}_{i}$ is too small to contain $M \cap \partial \mathscr{E}$; so that there exists a point $z^{o} \in \mathscr{S} \cap(M \cap \partial \mathscr{E}) \subset$ $M \subset V_{f}$. On the other hand, by using the same method as in the proof of [8; Theorem 3], it can be checked that $J_{f}\left(z^{o}\right) \neq 0$ and f cannot be branched at the strictly pseudoconvex boundary point $z^{o} \in \mathscr{S}$; so that $z^{o} \notin V_{f}$. This is a contradiction; thereby, the proof is completed.
3.2. Lemmas for $\mathscr{H}_{\ell, m}^{p, q}$. Throughout this Subsection, we write $\mathscr{H}=\mathscr{H}_{\ell, m}^{p, q}$, where $\mathscr{H}_{\ell, m}^{p, q}$ is a generalized Hartogs triangle in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$ with $|\ell||m|>1$. And, $\Phi: \mathscr{H} \rightarrow \mathscr{H}$ denotes an arbitrarily given proper holomorphic mapping.

Our proofs of the following lemmas will be carried out along the same lines as in [19], [9], [16], [22]; and some of them will be presented only in outline.

Let $S_{\mathscr{H}}=\left\{\alpha \in \mathbf{Z}^{N} ; \zeta^{\alpha} \in \mathcal{O}(\mathscr{H}),\left\|\zeta^{\alpha}\right\|_{A^{2}(\mathscr{H})}<\infty\right\}$, where $\mathcal{O}(\mathscr{H})$ denotes the set of all holomorphic functions on \mathscr{H} and $A^{2}(\mathscr{H})$ is the Bergman space of \mathscr{H} with the norm $\|\cdot\|_{A^{2}(\mathscr{H})}$. Then it is known [3] that the Bergman kernel function $K=K_{\mathscr{H}}$ for \mathscr{H} can be expressed as

$$
\begin{equation*}
K(\zeta, \eta)=\sum_{\alpha \in S_{\mathscr{H}}} c_{\alpha} \zeta^{\alpha} \bar{\eta}^{\alpha}, \quad \zeta, \eta \in \mathscr{H} \tag{3.1}
\end{equation*}
$$

with $c_{\alpha}>0$ for each $\alpha \in S_{\mathscr{H}}$. By making use of this special form of $K(\zeta, \eta)$, we can show the following (cf. [16; Lemma 1]):

Lemma 2. The Bergman kernel function $K(\zeta, \eta)$ extends holomorphically in ζ and anti-holomorphically in η to an open neighborhood of $(\overline{\mathscr{H}} \backslash\{0\}) \times \mathscr{H}$ in $\mathbf{C}^{2 N}$.

Thanks to this lemma, we can prove the following:
Lemma 3. Let ζ_{o} be an arbitrary point of $\partial \mathscr{H} \backslash\{0\}$. Then there exists a connected open neighborhood $U_{\zeta_{o}}$ of ζ_{o} in $\mathbf{C}^{N} \backslash\{0\}$ such that Φ extends to a holomorphic mapping $\hat{\Phi}: \mathscr{H} \cup U_{\zeta_{0}} \rightarrow \mathbf{C}^{\varsigma^{N}}$.

Proof. Let $P: L^{2}(\mathscr{H}) \rightarrow A^{2}(\mathscr{H})$ be the Bergman projection defined by

$$
P f(\zeta)=\int_{\mathscr{H}} K(\zeta, \eta) f(\eta) d V_{\eta}, \quad f \in L^{2}(\mathscr{H})
$$

It then follows from Lemma 2 that $P f$ can be extended to a holomorphic function, say $\hat{P} f$, defined on some domain $\mathscr{H} \cup O_{\zeta_{o}}$, where $O_{\zeta_{o}}$ is a connected open neighborhood of ζ_{o} contained in $\mathbf{C}^{N} \backslash\{0\}$.

Let $\phi \in C_{0}^{\infty}(\mathscr{H})$ be a non-negative function such that $\phi\left(\zeta_{1}, \ldots, \zeta_{N}\right)=$ $\phi\left(\left|\zeta_{1}\right|, \ldots,\left|\zeta_{N}\right|\right)$ and $\int_{\mathscr{H}} \phi(\zeta) d V_{\zeta}=1$. For any $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbf{Z}^{N}$ with $\alpha_{j} \geq 0$ $(1 \leq j \leq N)$, we set

$$
\phi_{\alpha}(\zeta)=\left(c_{\alpha} \alpha!\right)^{-1}(-1)^{|\alpha|} \partial^{|\alpha|} \phi(\zeta) / \partial \bar{\zeta}_{1}^{\alpha_{1}} \cdots \partial \bar{\zeta}_{N}^{\alpha_{N}}, \quad \zeta \in \mathscr{H},
$$

where c_{α} is the same constant appearing in (3.1) and $\alpha!=\alpha_{1}!\cdots \alpha_{N}!,|\alpha|=$ $\alpha_{1}+\cdots+\alpha_{N}$. Then, thanks to the concrete description of the expansion of K as in (3.1), we can compute explicitly $P \phi_{\alpha}$ as $P \phi_{\alpha}(\zeta)=\zeta^{\alpha}, \zeta \in \mathscr{H}$. Consequently, by analytic continuation

$$
\begin{equation*}
\hat{P} \phi_{\alpha}(\zeta)=\zeta^{\alpha}, \quad \zeta \in \mathscr{H} \cup O_{\zeta_{0}} \tag{3.2}
\end{equation*}
$$

Now, express $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ with respect to the ζ-coordinate system in \mathbf{C}^{N}. Then, applying the transformation law by the Bergman projection under proper holomorphic mapping (cf. [7]) and using the fact (3.2), we have that

$$
\begin{aligned}
\left(J_{\Phi} \cdot\left(\Phi_{1}\right)^{\alpha_{1}} \cdots\left(\Phi_{N}\right)^{\alpha_{N}}\right)(\zeta) & =\left(J_{\Phi} \cdot P \phi_{\alpha} \circ \Phi\right)(\zeta) \\
& =P\left(J_{\Phi} \cdot \phi_{\alpha} \circ \Phi\right)(\zeta)=\int_{\mathscr{H}} K(\zeta, \eta)\left(J_{\Phi} \cdot \phi_{\alpha} \circ \Phi\right)(\eta) d V_{\eta}
\end{aligned}
$$

for $\zeta \in \mathscr{H}$. Here, since the last term extends holomorphically to the function $\hat{P}\left(J_{\Phi} \cdot \phi_{\alpha} \circ \Phi\right)$ on $\mathscr{H} \cup O_{\zeta_{o}}$, we may assume that $J_{\Phi} \cdot\left(\Phi_{1}\right)^{\alpha_{1}} \cdots\left(\Phi_{N}\right)^{\alpha_{N}}$ is also a holomorphic function defined on $\mathscr{H} \cup O_{\zeta_{0}}$. In partiqular, considering the special case where $\alpha_{j}=0$ for all j, we may assume that J_{Φ} is also a holomorphic function defined on $\mathscr{H} \cup O_{\zeta_{0}}$. Then, by the argument in the proof of [7; Theorem 1] using the fact that the ring $\mathcal{O}_{\zeta_{0}}$ of germs of holomorphic functions at ζ_{o} is a unique factorization domain, it can be shown that every component function Φ_{j} of Φ is actually holomorphic on some small open neighborhood $U_{\zeta_{o}}$ of ζ_{o}, as desired.

By Lemma 3 there exists a connected open neighborhood D of $\overline{\mathscr{H}} \backslash\{0\}$ in \mathbf{C}^{N} such that Φ extends to a holomorphic mapping $\hat{\Phi}: D \rightarrow \mathbf{C}^{N}$. So, in the following part of this paper, we assume that Φ itself is holomorphic on D and V_{Φ} is a complex analytic subvariety of D (of $\operatorname{dim}_{C} V_{\Phi}=N-1$ if $V_{\Phi} \neq \emptyset$).

We now define the subsets $\mathscr{B}_{1}, \mathscr{B}_{2}$ and \mathscr{B}_{3} of the boundary $\partial \mathscr{H}$ by setting

$$
\begin{aligned}
\mathscr{B}_{1} & :=\left\{(z, w) \in \partial \mathscr{H} ; \rho^{p}(z)<\rho^{q}(w)=1\right\}, \\
\mathscr{B}_{2} & :=\left\{(z, w) \in \partial \mathscr{H} ; 0<\rho^{p}(z)=\rho^{q}(w)<1\right\}, \\
\mathscr{B}_{3} & :=\left\{(z, w) \in \partial \mathscr{H} ; \rho^{p}(z)=\rho^{q}(w)=1\right\} .
\end{aligned}
$$

Then $\partial \mathscr{H}=\{0\} \cup \mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \mathscr{B}_{3}$ (disjoint union) and $\mathscr{B}_{1}, \mathscr{B}_{2}$ are open in $\partial \mathscr{H}$, while \mathscr{B}_{3} is closed and nowhere dense in $\partial \mathscr{H}$.

Lemma 4. In the notation above, we have

$$
\Phi\left(\mathscr{B}_{1}\right) \cap \mathscr{B}_{2}=\emptyset, \quad \Phi\left(\mathscr{B}_{2}\right) \cap \mathscr{B}_{1}=\emptyset \quad \text { and } \quad \Phi\left(\overline{\mathscr{B}}_{1}\right) \subset \overline{\mathscr{B}}_{1}, \quad \Phi\left(\mathscr{B}_{2}\right) \subset \overline{\mathscr{B}}_{2} .
$$

Proof. To prove the first assertion, assuming the existence of a point $(a, b) \in \mathscr{B}_{1}$ such that $(\tilde{a}, \tilde{b}):=\Phi(a, b) \in \mathscr{B}_{2}$, we wish to derive a contradiction. To this end, notice that $V_{\Phi} \cap \partial \mathscr{H}$ is nowhere dense in $\partial \mathscr{H}$. Thus, taking a nearby point of (a, b) if necessary, we may assume that $J_{\Phi}(a, b) \neq 0$ and every component of (a, b) is non-zero:

$$
a_{i}^{\alpha} \neq 0 \quad\left(1 \leq i \leq I, 1 \leq \alpha \leq \ell_{i}\right) ; \quad b_{j}^{\mu} \neq 0 \quad\left(1 \leq j \leq J, 1 \leq \mu \leq m_{j}\right) .
$$

Accordingly, we can choose a small connected open neighborhood O of (a, b) in such a way that Φ gives rise to a biholomorphic mapping, say again, $\Phi: O \rightarrow$ $\Phi(O)=: \tilde{O} \subset \mathbf{C}^{N}$ with $\Phi(O \cap \mathscr{H})=\tilde{O} \cap \mathscr{H}$ and $\Phi\left(O \cap \mathscr{B}_{1}\right)=\tilde{O} \cap \mathscr{B}_{2}$. Without loss of generality, we may further assume that $O \cap \partial \mathscr{H} \subset \mathscr{B}_{1}$ and $O \cup \tilde{O} \subset\left(\mathbf{C}^{*}\right)^{N}$. Here define the functions $\gamma(z, w)$ and $r(z, w)$ by

$$
\gamma(z, w)=\rho^{q}(w)-1, \quad(z, w) \in O ; \quad r(z, w)=\rho^{p}(z)-\rho^{q}(w), \quad(z, w) \in \tilde{O} .
$$

It then follows that $\gamma(z, w)$ (resp. $r(z, w)$) is a C^{ω}-smooth defining function for \mathscr{H} on the open neighborhood O (resp. $\tilde{O})$ of the point $(a, b)(\operatorname{resp} .(\tilde{a}, \tilde{b}))$. And, by direct calculations we obtain that the complex tangent space $T_{(a, b)}^{c}\left(\mathscr{B}_{1}\right)$ to \mathscr{B}_{1} at (a, b) and the Levi form $L_{\gamma}((a, b) ;(s, t))$ of γ for $(s, t) \in T_{(a, b)}^{c}\left(\mathscr{B}_{1}\right)$ are given, respectively, as follows:

$$
\begin{aligned}
& T_{(a, b)}^{c}\left(\mathscr{B}_{1}\right)=\left\{(s, t) \in \mathbf{C}^{|t|} \times \mathbf{C}^{|m|} ; \sum_{j=1}^{J} q_{j}\left\|b_{j}\right\|^{2\left(q_{j}-1\right)}\left\langle t_{j}, b_{j}\right\rangle=0\right\}, \\
& L_{\gamma}((a, b) ;(s, t))= \\
& \sum_{j=1}^{J} q_{j}\left(q_{j}-1\right)\left\|b_{j}\right\|^{2\left(q_{j}-2\right)}\left|\left\langle t_{j}, b_{j}\right\rangle\right|^{2} \\
& \\
& \quad+\sum_{j=1}^{J} q_{j}\left\|b_{j}\right\|^{2\left(q_{j}-1\right)}\left\|t_{j}\right\|^{2} \geq 0 \quad \text { for all }(s, t) \in T_{(a, b)}^{c}\left(\mathscr{B}_{1}\right)
\end{aligned}
$$

by Schwarz's inequality. Thus $O \cap \mathscr{H}$ is Levi pseudoconvex at $(a, b) \in O \cap \mathscr{B}_{1} \subset$ $\partial(O \cap \mathscr{H})$.

On the other hand, the corresponding objects at the point $\Phi(a, b)=(\tilde{a}, \tilde{b})$ are given as follows: To simplify discussion, we change notation and write (a, b) in place of (\tilde{a}, \tilde{b}). Then

$$
\begin{align*}
T_{(a, b)}^{c}\left(\mathscr{B}_{2}\right)=\{ & (s, t) \in \mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|} ; \sum_{i=1}^{I} p_{i}\left\|a_{i}\right\|^{2\left(p_{i}-1\right)}\left\langle s_{i}, a_{i}\right\rangle \tag{3.3}\\
& \left.-\sum_{j=1}^{J} q_{j}\left\|b_{j}\right\|^{2\left(q_{j}-1\right)}\left\langle t_{j}, b_{j}\right\rangle=0\right\},
\end{align*}
$$

$$
\begin{align*}
L_{r}((a, b) ;(s, t))= & \sum_{i=1}^{I} p_{i}\left(p_{i}-1\right)\left\|a_{i}\right\|^{2\left(p_{i}-2\right)}\left|\left\langle s_{i}, a_{i}\right\rangle\right|^{2} \tag{3.4}\\
& +\sum_{i=1}^{I} p_{i}\left\|a_{i}\right\|^{2\left(p_{i}-1\right)}\left\|s_{i}\right\|^{2}-\sum_{j=1}^{J} q_{j}\left(q_{j}-1\right)\left\|b_{j}\right\|^{2\left(q_{j}-2\right)}\left|\left\langle t_{j}, b_{j}\right\rangle\right|^{2} \\
& -\sum_{j=1}^{J} q_{j}\left\|b_{j}\right\|^{2\left(q_{j}-1\right)}\left\|t_{j}\right\|^{2} \quad \text { for all }(s, t) \in T_{(a, b)}^{c}\left(\mathscr{B}_{2}\right) .
\end{align*}
$$

We have now two cases to consider:
CASE 1. $|m|=1$: For the defining function $\gamma(z, w)=\rho^{q}(w)-1=|w|^{2 q}-1$ for \mathscr{H} on the open neighborhood O of the point (a, b), it is easily seen that, for every point $(z, w) \in O \cap \mathscr{B}_{1}$,

$$
T_{(z, w)}^{c}\left(\mathscr{B}_{1}\right)=\mathbf{C}^{|\ell|} \times\{0\} \quad \text { and } \quad L_{\gamma}((z, w) ;(s, t))=0, \quad(s, t) \in T_{(z, w)}^{c}\left(\mathscr{B}_{1}\right),
$$

that is, $O \cap \mathscr{B}_{1}$ is a Levi-flat real hypersurface in \mathbf{C}^{N} in this case.
Once it is shown that $\tilde{O} \cap \mathscr{B}_{2}$ is not Levi-flat at $\Phi(a, b)=(\tilde{a}, \tilde{b}) \in \tilde{O} \cap \mathscr{B}_{2}$, we arrive at a contradiction, since $\Phi: O \rightarrow \tilde{O}$ is a biholomorphic mapping with $\Phi\left(O \cap \mathscr{B}_{1}\right)=\tilde{O} \cap \mathscr{B}_{2}$ and $O \cap \mathscr{B}_{1}$ is Levi-flat at $(a, b) \in O \cap \mathscr{B}_{1}$. Therefore we have only to prove that $\tilde{O} \cap \mathscr{B}_{2}$ is not Levi-flat at (\tilde{a}, \tilde{b}). To this end, we again use the notation (a, b) instead of (\tilde{a}, \tilde{b}) for a while.

Consider first the case $I=1$. Then, putting $p=p_{1}, \ell=\ell_{1}$ and $r=q / p$, we have

$$
\mathscr{H}=\left\{(z, w) \in \mathbf{C}^{\ell} \times \mathbf{C} ;\|z\|^{2}<|w|^{2 r}<1\right\} \quad \text { (as sets); }
$$

accordingly, we may assume that $p=1$ from the beginning. Hence the defining function $r(z, w)$ for \mathscr{H} on \tilde{O} has the simple form $r(z, w)=\|z\|^{2}-|w|^{2 q}$. Note that $\ell \geq 2$ by our assumption $|\ell||m|>1$. Thus there exists a non-zero element $s \in \mathbf{C}^{\ell}$ such that $|\langle s, a\rangle|<\|s\|\|a\|$. Choose an element $t \in \mathbf{C}$ in such a way that $\langle s, a\rangle=q|b|^{2(q-1)} \bar{b} t$. It then follows from (3.3) and (3.4) that $(s, t) \in T_{(a, b)}^{c}\left(\mathscr{B}_{2}\right)$ and

$$
L_{r}((a, b) ;(s, t))=\left\{\|s\|^{2}\|a\|^{2}-|\langle s, a\rangle|^{2}\right\} /|b|^{2 q}>0 ;
$$

which implies that $\tilde{O} \cap \mathscr{B}_{2}$ is not Levi-flat at (a, b), as desired.
Consider next the case $I \geq 2$. In this case, we choose two elements $s \in \mathbf{C}^{|\ell|}$ and $t \in \mathbf{C}$ in such a way that

$$
s=\left(s_{1}, s_{2}, \ldots, s_{I}\right)=\left(a_{1}, 0, \ldots, 0\right) \quad \text { and } \quad t=p_{1}\left\|a_{1}\right\|^{2 p_{1}} /\left\{q|b|^{2(q-1)} \bar{b}\right\} .
$$

Then it is obvious that (s, t) is a non-zero element of $T_{(a, b)}^{c}\left(\mathscr{B}_{2}\right)$ by (3.3). Moreover, since $\sum_{i=1}^{I}\left\|a_{i}\right\|^{2 p_{i}}=|b|^{2 q}$, we obtain by (3.4) that

$$
L_{r}((a, b) ;(s, t))=p_{1}^{2}\left\|a_{1}\right\|^{2 p_{1}}\left(\left\|a_{2}\right\|^{2 p_{2}}+\cdots+\left\|a_{I}\right\|^{2 p_{I}}\right) /|b|^{2 q}>0
$$

accordingly, $\tilde{O} \cap \mathscr{B}_{2}$ is not Levi-flat at (a, b), as required. Therefore we have shown that there does not exist a point $(a, b) \in \mathscr{B}_{1}$ such that $\Phi(a, b) \in \mathscr{B}_{2}$ in Case 1 .

Case 2. $|m| \geq 2$: If $m_{1} \geq 2$, one can choose a non-zero element $t_{1} \in \mathbf{C}^{m_{1}}$ in such a way that $\left\langle t_{1}, b_{1}\right\rangle=0$. Put $t=\left(t_{1}, 0, \ldots, 0\right) \in \mathbf{C}^{|m|}$. Then $(0, t) \in T_{(a, b)}^{c}\left(\mathscr{B}_{2}\right)$ by (3.3) and

$$
L_{r}((a, b) ;(0, t))=-q_{1}\left\|b_{1}\right\|^{2\left(q_{1}-1\right)}\left\|t_{1}\right\|^{2}<0
$$

by (3.4). Thus $\tilde{O} \cap \mathscr{H}$ is not Levi pseudoconvex at the point $\Phi(a, b)$. However, this is a contradiction, since $\Phi: O \rightarrow \tilde{O}$ is a biholomorphic mapping with $\Phi(O \cap \mathscr{H})=\tilde{O} \cap \mathscr{H}$ and $O \cap \mathscr{H}$ is Levi pseudoconvex at $(a, b) \in O \cap \mathscr{B}_{1} \subset$ $\partial(O \cap \mathscr{H})$, as shown before.

If $m_{1}=1$, then $m_{2} \geq 1$ by our assumption $|m| \geq 2$. Hence there exists a non-trivial solution $\left(t_{1}, t_{2}^{1}\right) \in\left(\mathbf{C}^{*}\right)^{2}$ of the equation

$$
q_{1}\left|b_{1}\right|^{2\left(q_{1}-1\right)} \bar{b}_{1} t_{1}+q_{2}\left\|b_{2}\right\|^{2\left(q_{2}-1\right)} \bar{b}_{2}^{1} t_{2}^{1}=0
$$

Put $t=\left(t_{1}, t_{2}, 0, \ldots, 0\right) \in \mathbf{C}^{|m|} \quad$ with $\quad t_{2}=\left(t_{2}^{1}, 0, \ldots, 0\right) \in \mathbf{C}^{m_{2}}$. Then $(0, t) \in$ $T_{(a, b)}^{c}\left(\mathscr{B}_{2}\right)$ by (3.3) and

$$
\begin{aligned}
L_{r}((a, b) ;(0, t))= & -q_{1}\left(q_{1}-1\right)\left|b_{1}\right|^{2\left(q_{1}-2\right)}\left|\bar{b}_{1} t_{1}\right|^{2}-q_{1}\left|b_{1}\right|^{2\left(q_{1}-1\right)}\left|t_{1}\right|^{2} \\
& -q_{2}\left(q_{2}-1\right)\left\|b_{2}\right\|^{2\left(q_{2}-2\right)}\left|\bar{b}_{2}^{1} t_{2}^{1}\right|^{2}-q_{2}\left\|b_{2}\right\|^{2\left(q_{2}-1\right)}\left|t_{2}^{1}\right|^{2} \\
= & -q_{1}^{2}\left|b_{1}\right|^{2\left(q_{1}-1\right)}\left|t_{1}\right|^{2}-q_{2}^{2}\left\|b_{2}\right\|^{2\left(q_{2}-2\right)}\left|b_{2}^{1}\right|^{2}\left|t_{2}^{1}\right|^{2} \\
& -q_{2}\left\|b_{2}\right\|^{2\left(q_{2}-2\right)}\left(\left\|b_{2}\right\|^{2}-\left|b_{2}^{1}\right|^{2}\right)\left|t_{2}^{1}\right|^{2} \\
\leq & -q_{1}^{2}\left|b_{1}\right|^{2\left(q_{1}-1\right)}\left|t_{1}\right|^{2}-q_{2}^{2}\left\|b_{2}\right\|^{2\left(q_{2}-2\right)}\left|b_{2}^{1}\right|^{2}\left|t_{2}^{1}\right|^{2}<0
\end{aligned}
$$

by (3.4); which says that $\tilde{O} \cap \mathscr{H}$ is not Levi pseudoconvex at the point $\Phi(a, b)$, as desired. Therefore we arrive at the same contradiction as above. Eventually, we have shown the first assertion $\Phi\left(\mathscr{B}_{1}\right) \cap \mathscr{B}_{2}=\emptyset$ in any cases.

To prove the second assertion, assume that there exists a point $(a, b) \in \mathscr{B}_{2}$ such that $\Phi(a, b) \in \mathscr{B}_{1}$. Then, interchanging the role of \mathscr{B}_{1} and \mathscr{B}_{2} and repeating exactly the same argument as in the proof of the first assertion, we obtain a contradiction; proving $\Phi\left(\mathscr{B}_{2}\right) \cap \mathscr{B}_{1}=\emptyset$. In particular, we see that $\Phi\left(\mathscr{B}_{2}\right) \subset\{0\} \cup$ $\mathscr{B}_{2} \cup \mathscr{B}_{3}=\overline{\mathscr{B}}_{2}$.

Finally we claim that $\Phi\left(\mathscr{B}_{1}\right) \nRightarrow 0$. Indeed, assume to the contrary that there exists a point $(a, b) \in \mathscr{B}_{1}$ such that $\Phi(a, b)=0$. Let \hat{O} be an open neighborhood of $0 \in \mathbf{C}^{N}$ so small that $\hat{O} \cap \overline{\mathscr{B}}_{1}=\emptyset$. Since Φ is continuous at (a, b) by Lemma 3, there is an open neighborhood U of (a, b) such that $\Phi(U) \subset \hat{O}$. Take a point $(\hat{a}, \hat{b}) \in U \cap \mathscr{B}_{1}$ with $J_{\Phi}(\hat{a}, \hat{b}) \neq 0$. Then there exists a small open neighborhood V of (\hat{a}, \hat{b}) such that $V \subset U$ and Φ induces a biholomorphic mapping, say again, $\Phi: V \rightarrow \Phi(V)$ with $\Phi\left(V \cap \mathscr{B}_{1}\right)=\Phi(V) \cap \partial \mathscr{H}$. Then, since $\Phi\left(V \cap \mathscr{B}_{1}\right)$ is now a non-empty open subset of $\hat{O} \cap \partial \mathscr{H}$, we have $\Phi\left(V \cap \mathscr{B}_{1}\right) \cap \mathscr{B}_{2} \neq \emptyset$.

But, this contradicts the first assertion; proving our claim. Therefore, taking the first assertion into account, we conclude that $\Phi\left(\mathscr{B}_{1}\right) \subset \mathscr{B}_{1} \cup \mathscr{B}_{3}=\overline{\mathscr{B}}_{1}$ and hence $\Phi\left(\overline{\mathscr{B}}_{1}\right) \subset \overline{\mathscr{B}}_{1}$ by the continuity of Φ on $\overline{\mathscr{H}} \backslash\{0\}$.

Lemma 5. Let us write $\Phi=(f, g)$ with respect to the coordinate system (z, w) in $\mathbf{C}^{|f|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$. Then $g: \mathscr{H} \rightarrow \mathbf{C}^{|m|}$ does not depend on the variables z; accordingly it has the form $g(z, w)=g(w)$ on \mathscr{H}.

Proof. By the proof of Lemma 4, we can choose a point $(a, b) \in \mathscr{B}_{1} \cap\left(\mathbf{C}^{*}\right)^{N}$ satisfying the following: $J_{\Phi}(a, b) \neq 0,(\tilde{a}, \tilde{b}):=\Phi(a, b) \in \mathscr{B}_{1} \cap\left(\mathbf{C}^{*}\right)^{N}$ and there exist connected open neighborhoods O, \tilde{O} of $(a, b),(\tilde{a}, \tilde{b})$, respectively, with $O \cup \tilde{O} \subset\left(\mathbf{C}^{*}\right)^{N}$ such that $O \cap \partial \mathscr{H} \subset \mathscr{B}_{1}, \tilde{O} \cap \partial \mathscr{H} \subset \mathscr{B}_{1}$ and Φ defines a biholomorphic mapping, say again, $\Phi: O \rightarrow \tilde{O}$ with $\Phi(O \cap \mathscr{H})=\tilde{O} \cap \mathscr{H}$ and $\Phi\left(O \cap \mathscr{B}_{1}\right)$ $=\tilde{O} \cap \mathscr{B}_{1} . \quad$ Let $P_{a}\left(\right.$ resp. $\left.P_{b}\right)$ be a polydisc in $\mathbf{C}^{|t|}\left(\right.$ resp. $\left.\mathbf{C}^{|m|}\right)$ with center a (resp. b) so small that $P_{(a, b)}:=P_{a} \times P_{b}$ has the compact closure in O. The proof is now divided into two cases as follows:

Case 1. $\quad J=1$: As a defining function for \mathscr{B}_{1}, one can choose $\rho(z, w):=$ $\|w\|^{2}-1$ in this case. Taking a point $w \in P_{b}$ with $\|w\|^{2}=1$ arbitrarily, we put $g_{w}(z):=g(z, w), z \in P_{a}$, and define $\hat{\rho}\left(\zeta^{\prime}\right):=\left\|g_{w}(z)\right\|^{2}, \zeta^{\prime}=z \in P_{a}$. Then $\hat{\rho}\left(\zeta^{\prime}\right)=1$ whenever $\|w\|^{2}=1$. Therefore, representing $g=\left(g_{|f|+1}, \ldots, g_{N}\right)$ with respect to the coordinate system $\zeta^{\prime \prime}=\left(\zeta_{|| |+1}, \ldots, \zeta_{N}\right)$ in $\mathbf{C}^{|m|}$ and differentiating the both sides of the equation $\hat{\rho}\left(\zeta^{\prime}\right)=1$ by $\zeta_{k}, \bar{\zeta}_{k}(1 \leq k \leq|\ell|)$, we obtain that, for every point $\zeta^{\prime \prime}=w \in P_{b}$ with $\left\|\zeta^{\prime \prime}\right\|^{2}=1$,

$$
\sum_{j=|\ell|+1}^{N}\left|\frac{\partial g_{j}}{\partial \zeta_{k}}\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)\right|^{2}=0 \quad \text { for all } \zeta^{\prime} \in P_{a}, 1 \leq k \leq|\ell|
$$

Hence, putting $H:=\left\{\left(\zeta^{\prime}, \zeta^{\prime \prime}\right) \in P_{(a, b)} ;\left\|\zeta^{\prime \prime}\right\|^{2}=1\right\}$, we have $\partial g_{j}\left(\zeta^{\prime}, \zeta^{\prime \prime}\right) / \partial \zeta_{k}=0$ on H for every j, k. Since g is holomorphic on $P_{(a, b)}$ and H is a real-analytic hypersurface in $P_{(a, b)}$, it is obvious that every $\partial g_{j}\left(\zeta^{\prime}, \zeta^{\prime \prime}\right) / \partial \zeta_{k}=0$ on $P_{(a, b)}$. Therefore $g\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)$ does not depend on $z=\zeta^{\prime}$ on $P_{(a, b)}$ and hence on \mathscr{H}^{\prime} by analytic continuation, as desired.

CASE 2. $J \geq 2$: In this case, taking a point $w \in P_{b}$ with $\rho^{q}(w)=1$ arbitrarily, we set $g_{w}(z)=g(z, w), z \in P_{a}$. Then, since $g_{w}\left(P_{a}\right) \subset\left(\mathbf{C}^{*}\right)^{|m|}$ by our choice of \tilde{O}, we can define a C^{ω}-smooth plurisubharmonic function $\hat{\rho}$ on P_{a} by setting $\hat{\rho}(z):=\rho^{q}\left(g_{w}(z)\right), z \in P_{a}$. It then follows that $\hat{\rho}(z)=1$ on P_{a}, since

$$
\Phi\left(P_{a} \times\{w\}\right) \subset \Phi\left(O \cap \mathscr{B}_{1}\right) \subset\left\{(u, v) \in \tilde{O} ; \rho^{q}(v)=1\right\}
$$

This combined with the strictly plurisubharmonicity of ρ^{q} on $\left(\mathbf{C}^{*}\right)^{|m|}$ implies that $g_{w}(z)$ is a constant mapping on P_{a}. As a result, defining the real-analytic hypersurface H in P_{b} by $H:=\left\{w \in P_{b} ; \rho^{q}(w)=1\right\}$, we have shown that

$$
\begin{equation*}
g_{w}(z)=g(z, w) \text { is constant on } P_{a} \text { for any } w \in H \tag{3.5}
\end{equation*}
$$

Now, the holomorphic mapping g can be expanded uniquely as

$$
g(z, w)=g\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)=\sum_{v^{\prime}} a_{v^{\prime}}\left(\zeta^{\prime \prime}\right)\left(\zeta^{\prime}-\zeta_{o}^{\prime}\right)^{v^{\prime}}, \quad\left(\zeta^{\prime}, \zeta^{\prime \prime}\right) \in P_{(a, b)},
$$

which converges absolutely and uniformly on $P_{(a, b)}$, where $\zeta_{o}^{\prime}=a$ and

$$
a_{v^{\prime}}\left(\zeta^{\prime \prime}\right)=\left(a_{v^{\prime}}^{1}\left(\zeta^{\prime \prime}\right), \ldots, a_{v^{\prime}}^{|m|}\left(\zeta^{\prime \prime}\right)\right)
$$

are $|m|$-tuples of holomorphic functions on P_{b}, and the summation is taken over all $v^{\prime}=\left(v_{1}, \ldots, v_{|\ell|}\right) \in \mathbf{Z}^{|\ell|}$ with $v_{1}, \ldots, v_{|\ell|} \geq 0$. Then the assertion (3.5) tells us that

$$
a_{v^{\prime}}\left(\zeta^{\prime \prime}\right)=0, \quad \zeta^{\prime \prime} \in H, \quad \text { for } v^{\prime} \neq 0
$$

Since $a_{v^{\prime}}\left(\zeta^{\prime \prime}\right)$ are holomorphic on P_{b} and H is a real-analytic hypersurface in P_{b}, we have that $a_{\nu^{\prime}}\left(\zeta^{\prime \prime}\right)=0$ on P_{b} for $v^{\prime} \neq 0$; consequently, $g(z, w)=a_{0}\left(\zeta^{\prime \prime}\right)$ does not depend on $z=\zeta^{\prime}$ globally by analytic continuation.

Eventually, we have proved that $g(z, w)$ does not depend on z in any cases; thereby, completing the proof.

4. Proofs of Theorems

Throughout this section, we denote by \mathscr{E}_{ℓ}^{p} the generalized complex ellipsoid in $\mathbf{C}^{|\ell|}$ as in Theorem 1 and write $\mathscr{E}=\mathscr{E}_{\ell}^{p}$. Also, $\mathscr{H}_{\ell, m}^{p, q}$ denotes the generalized Hartogs triangle in $\mathbf{C}^{|\ell|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$ as in Theorems 2, 3 and 4 with $|\ell||m|>1$ and we write $\mathscr{H}=\mathscr{H}_{\ell, m}^{p, q}$ for the sake of simplicity.

The proofs of our theorems will be carried out in the following four Subsections.
4.1. Proof of Theorem 1. Before undertaking the proof, we need a preparation. Let $p_{1}, \ldots, p_{I} \geq 1$ be the real numbers appearing in Theorem 1. Assuming that $I \geq 2$ and $\ell_{2}=\cdots=\ell_{s}=1(2 \leq s \leq I)$ for a while, we consider the correspondence $\pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$ defined by

$$
z \mapsto\left(z_{1},\left(z_{2}\right)^{p_{2}}, \ldots,\left(z_{s}\right)^{p_{s}}, z_{s+1}, \ldots, z_{I}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathbf{C}^{|\ell|} .
$$

If all the p_{i} 's are integers, this is a single-valued holomorphic mapping from $\mathbf{C}^{|\ell|}$ onto itself. However, if some of them are irrationals, then it provides an infinitely-many-valued holomorphic mapping from $\mathbf{C}^{t_{1}} \times\left(\mathbf{C}^{*}\right)^{s-1} \times \mathbf{C}^{\ell_{s+1}} \times \cdots \times$ $\mathbf{C}^{t_{1}}$ onto itself. Thus, for later use, we need to introduce the concept of principal branch of $\pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$. For this purpose, let us fix an arbitrary point

$$
z^{o}=\left(z_{1}^{o}, \ldots, z_{I}^{o}\right) \in \mathbf{C}^{|\ell|} \quad \text { with } z_{2}^{o} \cdots z_{s}^{o} \neq 0
$$

Write each $z_{i}^{o}(2 \leq i \leq s)$ in the form

$$
z_{i}^{o}=r_{i}^{o} \exp \left(\sqrt{-1} \theta_{i}^{o}\right) \text { with } r_{i}^{o}>0,0 \leq \theta_{i}^{o}<2 \pi
$$

and set

$$
\begin{aligned}
& W_{i}\left(z_{i}^{o}\right)=\left\{z_{i}=r_{i} \exp \left(\sqrt{-1} \theta_{i}\right) ; r_{i}>0,\left|\theta_{i}-\theta_{i}^{o}\right|<\pi\right\}=\mathbf{C} \backslash\left\{t z_{i}^{o} ; t \leq 0\right\} ; \\
& W\left(z^{o}\right)=\mathbf{C}^{\ell} \times W_{2}\left(z_{2}^{o}\right) \times \cdots \times W_{s}\left(z_{s}^{o}\right) \times \mathbf{C}^{\ell_{s+1}} \times \cdots \times \mathbf{C}^{\ell_{t}} ; \\
& \Pi_{i}\left(z_{i}\right)=\left(r_{i}\right)^{p_{i}} \exp \left(\sqrt{-1} p_{i} \theta_{i}\right), \quad z_{i}=r_{i} \exp \left(\sqrt{-1} \theta_{i}\right) \in W_{i}\left(z_{i}^{o}\right) \\
& \Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}(z)=\left(z_{1}, \Pi_{2}\left(z_{2}\right), \ldots, \Pi_{s}\left(z_{s}\right), z_{s+1}, \ldots, z_{I}\right)
\end{aligned}
$$

for $z=\left(z_{1}, \ldots, z_{I}\right) \in W\left(z^{o}\right)$. Then $W\left(z^{o}\right)$ is a connected open dense subset of $\mathbf{C}^{|\ell|}$ containing z^{o} and $\Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$ is a single-valued holomorphic mapping from $W\left(z^{o}\right)$ into $\mathbf{C}^{|t|}$. Moreover, it is injective on a small open neighborhood of z^{o}, since its Jacobian determinant does not vanish at z^{o}.

Definition. We call this mapping $\Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}: W\left(z^{o}\right) \rightarrow \mathbf{C}^{|\ell|}$ the principal branch of $\pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$ on $W\left(z^{o}\right)$.

Of course, in the case where $\ell_{1}=1$ as well as $\ell_{2}=\cdots=\ell_{s}=1$, one can define the principal branch $\Pi_{\left(p_{1}, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}: W\left(z^{o}\right) \rightarrow \mathbf{C}^{|\ell|}$ of $\pi_{\left(p_{1}, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$ on $W\left(z^{o}\right)$ in exactly the same manner as above.

Now we are ready to prove Theorem 1. If $I=1$, then \mathscr{E} is the unit ball $B^{\ell_{1}}$ in $\mathbf{C}^{\ell_{1}}$ with $\ell_{1} \geq 2$. Thus Theorem 1 is nothing but the main theorem of Alexander [1]. So, we assume that $I \geq 2$ in the following part. Accordingly, \mathscr{E} is different from the unit ball and $p_{i}>1$ for every $i=2, \ldots, I$. Moreover, in the cases where $\ell_{i}=1$ for all $i=1, \ldots, I$ or $p_{1}=1, \ell_{i}=1$ for $i=2, \ldots, I$, Theorem 1 is an immediate consequence of Dini-Primicerio [11]. Therefore, in order to complete the proof, we have to consider the following five cases:

Case (a). $\quad p_{1}=1$ and $\ell_{i} \geq 2(2 \leq i \leq I)$: In this case, \mathscr{E} satisfies the condition (\ddagger) in Section 2. On the other hand, by a result of Bell [8], our proper holomorphic mapping $f: \mathscr{E} \rightarrow \mathscr{E}$ extends to a holomorphic mapping defined on an open neighborhood D of \bar{E}. Choose a C^{ω}-smooth strictly pseudoconvex boundary point z^{o} of \mathscr{E}. Then, since $J_{f}\left(z^{o}\right) \neq 0$ and f is unbranched at z^{o} (cf. [8]), one can find an open neighborhood $V_{z^{o}}$ of z^{o} such that f gives rise to a biholomorphic mapping, say again f, from $V_{z^{\circ}}$ onto $f\left(V_{z^{o}}\right)$ with $f\left(V_{z^{\circ}} \cap \partial \mathscr{E}\right)=$ $f\left(V_{z^{o}}\right) \cap \partial \mathscr{E}$. Shrinking $V_{z^{\circ}}$ if necessary, we may assume that $O:=V_{z^{\circ}} \cap \partial \mathscr{E}$ is a connected open subset of $\partial \mathscr{E}$ consisting of strictly pseudoconvex boundary points. Thus, if we define a connected open subset O^{\prime} of $\partial \mathscr{E}$ by setting $O^{\prime}:=f\left(V_{z^{\circ}}\right) \cap \partial \mathscr{E}$, then O, O^{\prime} and f satisfy all the requirements of Theorem B in Section 2; consequently, f is, in fact, a holomorphic automorphism of \mathscr{E}.

CASE (b). $\quad p_{1}=1$ and $\ell_{i}=1, \ell_{j} \geq 2$ for some $2 \leq i, j \leq I$: In this case, we may rename the indices so that for some integer s with $2 \leq s<I$, one has

$$
\ell_{2}=\cdots=\ell_{s}=1, \quad \text { while } \ell_{i} \geq 2 \text { for } s+1 \leq i \leq I
$$

Choose a point

$$
z^{o}=\left(z_{1}^{o}, \ldots, z_{I}^{o}\right) \in \partial \mathscr{E} \quad \text { with }\left|z_{2}^{o}\right| \cdots\left|z_{s}^{o}\right|\left\|z_{s+1}^{o}\right\| \cdots\left\|z_{I}^{o}\right\| \neq 0
$$

Then z^{o} is a C^{ω}-smooth strictly pseudoconvex boundary point of \mathscr{E} and f is unbranched at z^{o}. Hence there exist a connected open neighborhood $V_{z^{\circ}}$ of z^{o} and a connected open neighborhood $V_{w^{o}}$ of $w^{o}:=f\left(z^{o}\right)$ such that f gives rise to a biholomorphic mapping, say again f, from $V_{z^{o}}$ onto $V_{w^{o}}$. In particular, w^{0} is also a C^{ω}-smooth strictly pseudoconvex boundary point of \mathscr{E}. Therefore, without loss of generality, we may assume that

$$
V_{z^{o}} \cup V_{w^{o}} \subset\left\{z \in \mathbf{C}^{|\ell|} ;\left|z_{2}\right| \cdots\left|z_{s}\right|\left\|z_{s+1}\right\| \cdots\left\|z_{I}\right\| \neq 0\right\} .
$$

Consider here the principal branches

$$
\Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}: W\left(z^{o}\right) \rightarrow \mathbf{C}^{|\ell|}, \quad \Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}: W\left(w^{o}\right) \rightarrow \mathbf{C}^{|\ell|}
$$

and a generalized complex ellipsoid $\hat{\mathscr{E}}$ in $\mathbf{C}^{|\ell|}$ defined by

$$
\hat{\mathscr{E}}=\left\{u \in \mathbf{C}^{|\ell|} ;\left\|u_{1}\right\|^{2}+\left\|u_{s+1}\right\|^{2 p_{s+1}}+\cdots+\left\|u_{I}\right\|^{2 p_{I}}<1\right\}
$$

where $u=\left(u_{1}, u_{s+1}, \ldots, u_{I}\right) \in \mathbf{C}^{\ell_{1}+s-1} \times \mathbf{C}^{\ell_{s+1}} \times \cdots \times \mathbf{C}^{\ell_{I}}=\mathbf{C}^{|/|}$. Then, shrinking $V_{z^{o}}$ if necessary, we may further assume that $V_{z^{o}} \subset W\left(z^{o}\right), V_{w^{o}} \subset W\left(w^{o}\right)$ and both the restrictions

$$
\begin{aligned}
& \Pi_{z^{o}}:=\Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)} \mid V_{z^{o}}: V_{z^{o}} \rightarrow \Pi_{z^{o}}\left(V_{z^{o}}\right) \quad \text { and } \\
& \Pi_{w^{o}}:=\Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)} \mid V_{w^{o}}: V_{w^{o}} \rightarrow \Pi_{w^{o}}\left(V_{w^{o}}\right)
\end{aligned}
$$

are biholomorphic mappings. Since $\left|\Pi_{i}\left(z_{i}\right)\right|^{2}=\left|z_{i}\right|^{2 p_{i}}$ for $i=2, \ldots, s$, we now have

$$
\Pi_{z^{o}}\left(V_{z^{o}} \cap \partial \mathscr{E}\right)=\Pi_{z^{o}}\left(V_{z^{o}}\right) \cap \partial \hat{\mathscr{E}} \quad \text { and } \quad \Pi_{w^{o}}\left(V_{w^{o}} \cap \partial \mathscr{E}\right)=\Pi_{W^{o}}\left(V_{w^{o}}\right) \cap \partial \hat{\mathscr{E}} .
$$

Thus, putting $\hat{O}_{z^{o}}:=\Pi_{z^{o}}\left(V_{z^{o}}\right) \cap \partial \hat{\mathscr{E}}, \hat{O}_{w^{o}}:=\Pi_{w^{o}}\left(V_{w^{o}}\right) \cap \partial \hat{\mathscr{E}}$, we obtain a biholomorphic mapping

$$
\hat{f}:=\Pi_{w^{o}} \circ f \circ \Pi_{z^{o}}^{-1}: \Pi_{z^{o}}\left(V_{z^{o}}\right) \rightarrow \Pi_{w^{o}}\left(V_{w^{o}}\right)
$$

with $\hat{f}\left(\hat{O}_{z^{o}}\right)=\hat{O}_{w^{o}}$. Notice that the connected open subsets $\hat{O}_{z^{o}}, \hat{O}_{w^{o}}$ of $\partial \hat{\mathscr{E}}$ are contained in the strictly pseudoconvex part of $\partial \hat{\mathscr{E}}$ and \hat{f} induces a CRdiffeomorphism from $\hat{O}_{z^{o}}$ onto $\hat{O}_{w^{o}}$. Also, note that $\hat{\mathscr{E}}$ satisfies the condition (\ddagger) in Section 2. It then follows from Theorem B that \hat{f} extends to a holomorphic automorphism, say again \hat{f}, of $\hat{\mathscr{E}}$. Thus we have

$$
\begin{equation*}
\hat{f}\left(\Pi_{z^{o}}(z)\right)=\Pi_{w^{o}}(f(z)) \quad \text { for all } z \in \mathscr{E} \cap W\left(z^{o}\right) \cap f^{-1}\left(W\left(w^{o}\right)\right) \tag{4.1}
\end{equation*}
$$

by analytic continuation. Recall here that by Theorem A the holomorphic automorphism \hat{f} has the form

$$
\begin{gathered}
\hat{f}(u)=\left(H\left(u_{1}\right), \gamma_{s+1}\left(u_{1}\right) A_{s+1} u_{\sigma(s+1)}, \ldots, \gamma_{I}\left(u_{1}\right) A_{I} u_{\sigma(I)}\right), \\
u=\left(u_{1}, u_{s+1}, \ldots, u_{I}\right) \in \hat{\mathscr{E}} \subset \mathbf{C}^{\ell_{1}+s-1} \times \mathbf{C}^{\ell_{s+1}} \times \cdots \times \mathbf{C}^{\ell_{I}}=\mathbf{C}^{|\ell|}
\end{gathered}
$$

(think of u_{i} as column vectors), where $H \in \operatorname{Aut}\left(B^{\ell_{1}+s-1}\right), \gamma_{i}$'s are nowhere vanishing holomorphic functions on $B^{\ell_{1}+s-1}, A_{i} \in U\left(\ell_{i}\right)$ and σ is a permutation of $\{s+1, \ldots, I\}$ satisfying the same conditions as in Theorem A. Now, representing $f=\left(f_{1}, \ldots, f_{I}\right)$ with respect to the given coordinate system $z=\left(z_{1}, \ldots, z_{I}\right)$ in $\mathbf{C}^{\ell_{1}} \times \cdots \times \mathbf{C}^{L_{I}}=\mathbf{C}^{|\ell|}$, we put

$$
z^{\prime}=\left(z_{1}, \ldots, z_{s}\right), \quad z^{\prime \prime}=\left(z_{s+1}, \ldots, z_{I}\right) ; \quad f^{\prime}=\left(f_{1}, \ldots, f_{s}\right), \quad f^{\prime \prime}=\left(f_{s+1}, \ldots, f_{I}\right) ;
$$

so that $z=\left(z^{\prime}, z^{\prime \prime}\right)$ and $f=\left(f^{\prime}, f^{\prime \prime}\right)$. Putting $\hat{u}_{1}=\left(z_{1}, \Pi_{2}\left(z_{2}\right), \ldots, \Pi_{s}\left(z_{s}\right)\right)$, we then obtain by (4.1) that

$$
\begin{align*}
& \left(f_{1}(z), \Pi_{2}\left(f_{2}(z)\right), \ldots, \Pi_{s}\left(f_{s}(z)\right)\right)=H\left(\hat{u}_{1}\right) \quad \text { and } \tag{4.2}\\
& f^{\prime \prime}(z)=\left(\gamma_{s+1}\left(\hat{u}_{1}\right) A_{s+1} z_{\sigma(s+1)}, \ldots, \gamma_{I}\left(\hat{u}_{1}\right) A_{I} z_{\sigma(I)}\right)
\end{align*}
$$

for all $z \in \mathscr{E} \cap W\left(z^{o}\right) \cap f^{-1}\left(W\left(w^{o}\right)\right)$. Consequently, it follows from the first equation in (4.2) that $f^{\prime}(z)$ does not depend on the variables $z^{\prime \prime}$ on the nonempty open subset $\mathscr{E} \cap W\left(z^{o}\right) \cap f^{-1}\left(W\left(w^{o}\right)\right)$ of \mathscr{E}; and hence, $f^{\prime}(z)$ has the form $f^{\prime}(z)=f^{\prime}\left(z^{\prime}\right)$ on \mathscr{E} by analytic continuation. Moreover, notice that the set $\left\{z=\left(z^{\prime}, z^{\prime \prime}\right) \in W\left(z^{o}\right) ; z^{\prime \prime}=0\right\}$ is open dense in $\mathbf{C}^{\ell_{1}+s-1} \times\{0\} \equiv \mathbf{C}^{\ell_{1}+s-1}$, where we have put $0=0^{\prime \prime}$ for simplicity. Then by the second equation in (4.2) we have $f^{\prime \prime}(z)=0$ for all points $z \in \mathscr{E}$ of the form $z=\left(z^{\prime}, 0\right)$. Therefore, if we put

$$
\mathscr{E}^{[s]}=\left\{z^{\prime} \in \mathbf{C}^{\ell_{1}+s-1} ;\left\|z_{1}\right\|^{2}+\left|z_{2}\right|^{2 p_{2}}+\cdots+\left|z_{s}\right|^{2 p_{s}}<1\right\}
$$

and define $f^{[s]}: \mathscr{E}^{[s]} \rightarrow \mathbf{C}^{\ell_{1}+s-1}$ by

$$
f^{[s]}\left(z^{\prime}\right)=f^{\prime}\left(z^{\prime}\right)=f^{\prime}\left(z^{\prime}, 0\right) \quad \text { for } z^{\prime} \in \mathscr{E}^{[s]},
$$

then $\mathscr{E}^{[s]}$ is a generalized complex ellipsoid in $\mathbf{C}^{\ell_{1}+s-1}$ with $\ell_{1}+s-1 \geq 2$, $\left.f^{[s]} \mathscr{E}^{[s]}\right)=\mathscr{E}^{[s]}$, and $f^{[s]}: \mathscr{E}^{[s]} \rightarrow \mathscr{E}^{[s]}$ is a proper holomorphic mapping; so that $f^{[s]}$ has to be a holomorphic automorphism of $\mathscr{E}^{[s]}$ by Dini-Primicerio [11]. This combined with the fact (4.2) guarantees that the proper holomorphic mapping $f=\left(f^{\prime}, f^{\prime \prime}\right)=\left(f^{[s]}, f^{\prime \prime}\right)$ is injective on \mathscr{E}; and hence, it is necessarily a holomorphic automorphism of \mathscr{E}, as desired.

CASE (c). $\quad p_{1}>1$ and $\ell_{i} \geq 2(2 \leq i \leq I)$: If $\ell_{1}=1$, in the proof of Case (b) we replace $z^{o}, \Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$ and $\hat{\mathscr{E}}$ by a point

$$
\tilde{z}^{o}=\left(\tilde{z}_{1}^{o}, \tilde{z}_{2}^{o}, \ldots, \tilde{z}_{I}^{o}\right) \in \partial \mathscr{E} \quad \text { with }\left|\tilde{z}_{1}^{o}\right|\left\|\tilde{z}_{2}^{o}\right\| \cdots\left\|\tilde{z}_{I}^{o}\right\| \neq 0
$$

the principal branch $\Pi_{\left(p_{1}, 1, \ldots, 1\right)}: W\left(\tilde{z}^{o}\right) \rightarrow \mathbf{C}^{|\epsilon|}$, and

$$
\tilde{\mathscr{E}}=\left\{u \in \mathbf{C}^{|\epsilon|} ;\left|u_{1}\right|^{2}+\left\|u_{2}\right\|^{2 p_{2}}+\cdots+\left\|u_{I}\right\|^{2 p_{I}}<1\right\},
$$

where $u=\left(u_{1}, u_{2}, \ldots, u_{I}\right) \in \mathbf{C} \times \mathbf{C}^{\ell_{2}} \times \cdots \times \mathbf{C}^{t_{I}}=\mathbf{C}^{|/|}$. Then, by repeating the same argument as in Case (b), we see that there exists a holomorphic automorphism

$$
\tilde{f}(u)=\left(H\left(u_{1}\right), \gamma_{2}\left(u_{1}\right) A_{2} u_{\sigma(2)}, \ldots, \gamma_{I}\left(u_{1}\right) A_{I} u_{\sigma(I)}\right)
$$

of $\tilde{\mathscr{E}}$ such that

$$
\begin{align*}
& \Pi_{1}\left(f_{1}(z)\right)=H\left(\tilde{u}_{1}\right) \quad \text { with } \tilde{u}_{1}:=\Pi_{1}\left(z_{1}\right), \quad \text { and } \tag{4.3}\\
& \left(f_{2}(z), \ldots, f_{I}(z)\right)=\left(\gamma_{2}\left(\tilde{u}_{1}\right) A_{2} z_{\sigma(2)}, \ldots, \gamma_{I}\left(\tilde{u}_{1}\right) A_{I} z_{\sigma(I)}\right)
\end{align*}
$$

for all $z \in \mathscr{E} \cap W\left(\tilde{z}^{o}\right) \cap f^{-1}\left(W\left(\tilde{w}^{o}\right)\right)$, where $\tilde{w}^{o}:=f\left(\tilde{z}^{o}\right)$. Thus $f_{1}(z)$ does not depend on the variables $\left(z_{2}, \ldots, z_{I}\right)$ and so it has the form $f_{1}(z)=f_{1}\left(z_{1}\right)$. Here, observe that the correspondence

$$
\Phi:\left(z_{1}, z_{2}, \ldots, z_{I}\right) \mapsto\left(z_{1}, A_{2} z_{\sigma(2)}, \ldots, A_{I} z_{\sigma(I)}\right)
$$

defines an automorphism of \mathscr{E} and the proper holomorphic self-mapping $\Psi:=$ $\Phi^{-1} \circ f$ of \mathscr{E} has the form

$$
\begin{equation*}
\Psi\left(z_{1}, z_{2}, \ldots, z_{I}\right)=\left(f_{1}\left(z_{1}\right), \gamma_{2}\left(\Pi_{1}\left(z_{1}\right)\right) z_{2}, \ldots, \gamma_{I}\left(\Pi_{1}\left(z_{1}\right)\right) z_{I}\right) \tag{4.4}
\end{equation*}
$$

on the non-empty open subset $\mathscr{E} \cap W\left(\tilde{z}^{o}\right) \cap f^{-1}\left(W\left(\tilde{w}^{o}\right)\right)$ of \mathscr{E}, since $\gamma_{\sigma(i)}\left(u_{1}\right)=$ $\gamma_{i}\left(u_{1}\right)$ for $i=2, \ldots, I$. Thus we may assume from the beginning that $f(z)$ has the form on the right-hand side of (4.4) on $\mathscr{E} \cap W\left(\tilde{z}^{o}\right) \cap f^{-1}\left(W\left(\tilde{w}^{o}\right)\right)$. Under this assumption, we assert that f can be written in the form

$$
\begin{equation*}
f(z)=\left(f_{1}\left(z_{1}\right), \lambda_{2}\left(z_{1}\right) z_{2}, \ldots, \lambda_{I}\left(z_{1}\right) z_{I}\right) \quad \text { on } \mathscr{E}, \tag{4.5}
\end{equation*}
$$

where λ_{i} 's are nowhere vanishing holomorphic functions on Δ such that

$$
\lambda_{i}\left(z_{1}\right)=\gamma_{i}\left(\Pi_{1}\left(z_{1}\right)\right), \quad z_{1} \in \Delta \cap W_{1}\left(\tilde{z}_{1}^{o}\right), \quad 2 \leq i \leq I
$$

Indeed, this can be seen as follows. First of all, write $f_{i}=\left(f_{i}^{1}, \ldots, f_{i}\right)$ with respect to the coordinate system $z_{i}=\left(z_{i}^{1}, \ldots, z_{i}^{\ell_{i}}\right)$ in $\mathbf{C}^{t_{i}}$ for $i=2, \ldots, I$. Being a holomorphic function on the complete Reinhardt domain \mathscr{E}, every component function f_{i}^{α} can now be expanded uniquely as

$$
f_{i}^{\alpha}(z)=\sum_{k=0}^{\infty} P_{k}\left(z_{1} ; z_{2}, \ldots, z_{I}\right), \quad z \in \mathscr{E},
$$

which converges absolutely and uniformly on compact subsets of \mathscr{E}, where $P_{k}\left(z_{1} ; z_{2}, \ldots, z_{I}\right)$ is a homogeneous polynomial of degree k in $\left(z_{2}, \ldots, z_{I}\right)=$ $\left(z_{2}^{1}, \ldots, z_{I}^{\ell_{I}}\right)$ whose coefficients are all holomorphic functions of z_{1} defined on Δ. Then, the fact (4.4) tells us that, for every $k \neq 1$, we have $P_{k}\left(z_{1} ; z_{2}, \ldots, z_{I}\right)=0$ on \mathscr{E} by analytic continuation. Clearly this implies that f can be described as in (4.5) by using some functions λ_{i} defined on Δ. Moreover, since f is proper, every λ_{i} cannot vanish at any point of Δ; proving our assertion.

Now, we put

$$
\mathscr{E}^{[2]}=\left\{\left(z_{1}, z_{2}^{1}\right) \in \mathbf{C}^{2} ;\left|z_{1}\right|^{2 p_{1}}+\left|z_{2}^{1}\right|^{2 p_{2}}<1\right\}
$$

and regard this as a complex submanifold of \mathscr{E} in the canonical manner. Then $f\left(\mathscr{E}^{[2]}\right)=\mathscr{E}^{[2]}$ by (4.5) and the correspondence

$$
f^{[2]}:\left(z_{1}, z_{2}^{1}\right) \mapsto\left(f_{1}\left(z_{1}\right), \lambda_{2}\left(z_{1}\right) z_{2}^{1}\right), \quad\left(z_{1}, z_{2}^{1}\right) \in \mathscr{E}^{[2]}
$$

gives a proper holomorphic self-mapping of $\mathscr{E}^{[2]}$. It then follows from a result of Dini-Primicerio [11] that $f^{[2]}$ is a holomorphic automorphism of $\mathscr{E}^{[2]}$ and it is, in fact, a linear automorphism of $\mathscr{E}^{[2]}$. In particular, $f_{1} \in \operatorname{Aut}(\Delta)$ and $f: \mathscr{E} \rightarrow \mathscr{E}$ is injective by (4.5); consequently, f is a holomorphic automorphism of \mathscr{E}.

If $\ell_{1} \geq 2$, then we have that $p_{i}>1$ and $\ell_{i} \geq 2$ for all $i=1, \ldots, I$. Hence f is a holomorphic automorphism of \mathscr{E} by Lemma 1 .

Case (d). $p_{1}>1$ and $\ell_{i}=1, \ell_{j} \geq 2$ for some $2 \leq i, j \leq I$: As in Case (b) we may assume that

$$
\ell_{i}=1 \quad(2 \leq i \leq s) \quad \text { and } \quad \ell_{j} \geq 2 \quad(s+1 \leq i \leq I)
$$

for some integer s with $2 \leq s<I$.
If $\ell_{1}=1$, in the proof of Case (b) we replace z^{o} and $\Pi_{\left(1, p_{2}, \ldots, p_{s}, 1, \ldots, 1\right)}$ by a point

$$
\tilde{z}^{o}=\left(\tilde{z}_{1}^{o}, \tilde{z}_{2}^{o}, \ldots, \tilde{z}_{I}^{o}\right) \in \partial \mathscr{E} \text { with }\left|\tilde{z}_{1}^{o}\right| \cdots\left|\tilde{z}_{s}^{o}\right|\left\|\tilde{z}_{s+1}^{o}\right\| \cdots\left\|\tilde{z}_{I}^{o}\right\| \neq 0
$$

and the principal branch $\Pi_{\left(p_{1}, \ldots, p_{s}, 1, \ldots, 1\right)}: W\left(\tilde{z}^{o}\right) \rightarrow \mathbf{C}^{|\epsilon|}$. Then, by a small change of the proof in Case (b), one can see that f is a holomorphic automorphism of \mathscr{E}.

If $\ell_{1} \geq 2$, then we consider a holomorphic automorphism $\varphi(z)=u$ of $\mathbf{C}^{|\epsilon|}$ induced by the change of coordinates

$$
u=\left(u_{1}, \ldots, u_{s-1}, u_{s}, u_{s+1}, \ldots, u_{I}\right)=\left(z_{2}, \ldots, z_{s}, z_{1}, z_{s+1}, \ldots, z_{I}\right) .
$$

Then the image domain $\mathscr{E}^{*}=\varphi(\mathscr{E})$ is given by

$$
\mathscr{E}^{*}=\left\{u \in \mathbf{C}^{|\ell|} ;\left|u_{1}\right|^{2 p_{2}}+\cdots+\left|u_{s-1}\right|^{2 p_{s}}+\left\|u_{s}\right\|^{2 p_{1}}+\left\|u_{s+1}\right\|^{2 p_{s+1}}+\cdots+\left\|u_{I}\right\|^{2 p_{I}}<1\right\} .
$$

Thus, the proof of showing $f \in \operatorname{Aut}(\mathscr{E})$ in the case $s=2$ (resp. $s \geq 3$) can be reduced to that in the Case (c), $\ell_{1}=1$ (resp. Case (d), $\ell_{1}=1$, above).

Case (e). $p_{1}>1, \ell_{1} \geq 2$ and $\ell_{i}=1(2 \leq i \leq I)$: In this case, after the change of coordinates

$$
u=\left(u_{1}, \ldots, u_{I-1}, u_{I}\right)=\left(z_{2}, \ldots, z_{I}, z_{1}\right),
$$

our \mathscr{E} can be represented as

$$
\mathscr{E}=\left\{u \in \mathbf{C}^{|\ell|} ;\left|u_{1}\right|^{2 p_{2}}+\cdots+\left|u_{I-1}\right|^{2 p_{I}}+\left\|u_{I}\right\|^{2 p_{1}}<1\right\}
$$

in the new coordinates $\left(u_{1}, \ldots, u_{I}\right)$. Thus, in the case $I=2$ (resp. $I \geq 3$), by the same argument as in the Case (c), $\ell_{1}=1$ (resp. Case (d)), we can check that f is a holomorphic automorphism of \mathscr{E}; proving the theorem in Case (e).

Eventually, we have proved that f is necessarily a holomorphic automorphism of \mathscr{E} in any cases; thereby, completing the proof of Theorem 1.
4.2. Proof of Theorem 2. It is obvious that the mapping Φ written in the form as in Theorem 2 is a holomorphic automorphism (and hence, proper
holomorphic self-mapping) of \mathscr{H}. Conversly, take an arbitrary proper holomorphic self-mapping Φ of \mathscr{H}. Once it is shown that Φ is a holomorphic automorphism of \mathscr{H}, then Theorem 2 is an immediate consequence of our previous result [16; Theorem 2]. Therefore we have only to prove that Φ is a holomorphic automorphism of \mathscr{H}. To this end, write $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ with respect to the coordinate system $\zeta=\left(\zeta_{1}, \ldots, \zeta_{N}\right)$ in \mathbf{C}^{N}. Since $|m| \geq 2$, we see that the Reinhardt domain \mathscr{H} satisfies the condition that $\mathscr{H} \cap\left\{\zeta \in \mathbf{C}^{N} ; \zeta_{i}=0\right\}$ $\neq \emptyset$ for each $1 \leq i \leq N$. Hence every component function Φ_{i} extends to a unique holomorphic function $\hat{\Phi}_{i}$ defined on $\mathscr{E}_{\ell}^{p} \times \mathscr{E}_{m}^{q}$ (cf. [21; p. 15]). Accordingly, we obtain a holomorphic extension $\hat{\Phi}:=\left(\hat{\Phi}_{1}, \ldots, \hat{\Phi}_{N}\right): \mathscr{E}_{\ell}^{p} \times \mathscr{E}_{m}^{q} \rightarrow \mathbf{C}^{N}$ of Φ. Let us now represent again $\Phi=(f, g)$ and $f=\left(f_{1}, \ldots, f_{I}\right), g=\left(g_{1}, \ldots, g_{J}\right)$ by coordinates $(z, w)=\left(z_{1}, \ldots, z_{I}, w_{1}, \ldots, w_{J}\right)$ in $\mathbf{C}^{|f|} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}$ and denote by \hat{f}, \hat{g} the holomorphic extensions of f, g to $\mathscr{E}_{t}^{p} \times \mathscr{E}_{m}^{q}$, respectively. Since $g(z, w)$ does not depend on the variables z by Lemma 5, \hat{g} has the form $\hat{g}(z, w)=\hat{g}(w)$. Moreover, $\hat{g}\left(\overline{\mathscr{E}}_{m}^{q}\right) \subset \overline{\mathscr{E}}_{m}^{q}, \hat{g}\left(\partial \mathscr{E}_{m}^{q}\right) \subset \partial \mathscr{E}_{m}^{q}$ by Lemma 4 and $\hat{g}(0) \notin \partial \mathscr{E}_{m}^{q}$ by the maximum principle for the continuous plurisubharmonic function $\rho^{q}(\hat{g}(w))$ on \mathscr{E}_{m}^{q}. Thus $\hat{g}\left(\mathscr{E}_{m}^{q}\right) \subset \mathscr{E}_{m}^{q}$ and $\hat{g}: \mathscr{E}_{m}^{q} \rightarrow \mathscr{E}_{m}^{q}$ is a proper holomorphic mapping. Hence, by Theorem $1 \hat{g}$ is a holomorphic automorphism of \mathscr{E}_{m}^{q} with $\hat{g}(0)=0$; and by Theorem A it can be written in the form

$$
\begin{equation*}
\hat{g}(w)=\left(B_{1} w_{\tau(1)}, \ldots, B_{J} w_{\tau(J)}\right), \quad w=\left(w_{1}, \ldots, w_{J}\right) \in \mathscr{E}_{m}^{q}, \tag{4.6}
\end{equation*}
$$

where $B_{j} \in U\left(m_{j}\right)$ and τ is a permutation of $\{1, \ldots, J\}$ such that $\tau(j)=t$ if and only if $\left(m_{j}, q_{j}\right)=\left(m_{t}, q_{t}\right)$.

Now we wish to prove that Φ is, in fact, a holomorphic automorphism of \mathscr{H}. To this end, let us introduce a holomorphic automorphism Ψ of \mathscr{H} defined by $\Psi(z, w):=\left(z, \hat{g}^{-1}(w)\right)$. Then, replacing Φ by $\Psi \circ \Phi$ if necessary, we may assume that Φ has the form $\Phi(z, w)=(f(z, w), w)$ on \mathscr{H}. Therefore, if we set

$$
\mathscr{E}_{w}=\left\{z \in \mathbf{C}^{|\ell|} ; \rho^{p}(z)<\rho^{q}(w)\right\} \quad \text { and } \quad f_{w}(z)=f(z, w), z \in \mathscr{E}_{w},
$$

for an arbitrarily given point $w \in \mathscr{E}_{m}^{q} \backslash\{0\}$, then it is obvious that f_{w} induces a proper holomorphic self-mapping of \mathscr{E}_{w}. On the other hand, putting

$$
r_{i}=1 /\left(\rho^{q}(w)\right)^{1 /\left(2 p_{i}\right)} \quad(1 \leq i \leq I),
$$

we have a biholomorphic mapping $\Lambda: \mathscr{E}_{w} \rightarrow \mathscr{E}_{\ell}^{p}$ defined by

$$
\Lambda(z)=\left(r_{1} z_{1}, \ldots, r_{I} z_{I}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathscr{E}_{w} .
$$

Recall that \mathscr{E}_{ℓ}^{p} is the unit ball $B^{|\epsilon|}$ or a generalized complex ellipsoid in $\mathbf{C}^{|6|}$ with $|\ell| \geq 2, \mathbf{R} \ni p_{i} \geq 1(1 \leq i \leq I)$ according to $I=1$ or $I \geq 2$. Then, being a proper holomorphic self-mapping of \mathscr{E}_{ℓ}^{p}, the composite mapping $\Lambda \circ f_{w} \circ \Lambda^{-1}$: $\mathscr{E}_{f}^{p} \rightarrow \mathscr{E}_{\ell}^{p}$ must be a holomorphic automorphism of \mathscr{E}_{ℓ}^{p} by Alexander [1] or Theorem 1. In particular, we see that $f_{w}: \mathscr{E}_{w} \rightarrow \mathscr{E}_{w}$ is injective for any $w \in$ $\mathscr{E}_{m}^{q} \backslash\{0\}$; accordingly, $\Phi(z, w)=\left(f_{w}(z), w\right)$ itself is injective on \mathscr{H}. Therefore we conclude that Φ is actually a holomorphic automorphism of \mathscr{H}, as desired.
4.3. Proof of Theorem 3. Clearly, the mapping Φ having the form as in Theorem 3 is a holomorphic automorphism (and hence, proper holomorphic self-mapping) of \mathscr{H}. Therefore, taking an arbitrary proper holomorphic selfmapping Φ of \mathscr{H}, we would like to prove that Φ can be written in the form as in Theorem 3. For this purpose, we begin with noting the following: Since $|m| \geq 2$, by the same reasoning as in the proof of Theorem 2, every holomorphic function $h(\zeta)$ on \mathscr{H} extends uniquely to a holomorphic function $\hat{h}(\zeta)$ on $\Delta \times \mathscr{E}_{m}^{q}$, where Δ is the unit disc in C. Since $q_{j} \geq 1(1 \leq j \leq J), \Delta \times \mathscr{E}_{m}^{q}$ is a geometrically convex domain in \mathbf{C}^{N}; and hence, it is a pseudoconvex domain. Thus $\Delta \times \mathscr{E}_{m}^{q}$ is just the envelope of holomorphy of \mathscr{H}; accordingly, $|\hat{h}(\zeta)| \leq K$ on $\Delta \times \mathscr{E}_{m}^{q}$ if $|h(\zeta)| \leq K$ on $\mathscr{H}^{(c f .}$ [21; p. 93]). In particular, our proper holomorphic mapping $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)=(f, g)$ extends to a unique holomorphic mapping $\hat{\Phi}:=\left(\hat{\Phi}_{1}, \ldots, \hat{\Phi}_{N}\right)=(\hat{f}, \hat{g})$ from $\Delta \times \mathscr{E}_{m}^{q}$ to \mathbf{C}^{N} with $\left|\hat{\Phi}_{j}(\zeta)\right| \leq 1$ on $\Delta \times \mathscr{E}_{m}^{q}$ for every $j=1, \ldots, N$. Moreover, since \hat{g} has the form $\hat{g}(z, w)=\hat{g}(w)$ by Lemma 5, in exactly the same way as in the proof of Theorem 2 , one can prove that \hat{g} is a holomorphic automorphism of \mathscr{E}_{m}^{q} of the form (4.6); and so $\hat{\Phi}$ is a holomorphic self-mapping of $\Delta \times \mathscr{E}_{m}^{q}$ with $\hat{\Phi}(0,0)=(0,0)$, as seen by taking the limit $(z, w) \rightarrow(0,0)$ through \mathscr{H}. In particular, we have $\hat{f}(0,0)=0$. Anyway, in order to prove Theorem 3, we may again assume that Φ has the form $\Phi(z, w)=(f(z, w), w)$ on \mathscr{H}.

Under the situation above, the only thing which has to be proved now is that $f(z, w)$ can be written in the form $f(z, w)=A z$ on \mathscr{H}, where $A \in \mathbf{C}$ with $|A|=1$. To verify this, we need a few preparation. First of all, since our $\Phi(z, w)=(f(z, w), w)$ is holomorphic on some open neighborhood of $\overline{\mathscr{H}} \backslash\{0\}$ by Lemma 3, one can choose a small $\varepsilon>0$ in such a way that Φ is holomorphic on the Reinhardt domain Γ_{ε} defined by

$$
\Gamma_{\varepsilon}=\left\{(z, w) \in \mathbf{C} \times \mathbf{C}^{|m|} ;|z|<1+\varepsilon, 1-\varepsilon<\rho^{q}(w)<1+\varepsilon\right\} \supset \overline{\mathscr{B}}_{2} .
$$

Since $|m| \geq 2, \Gamma_{\varepsilon}$ also satisfies the condition that $\Gamma_{\varepsilon} \cap\left\{\zeta \in \mathbf{C}^{N} ; \zeta_{i}=0\right\} \neq \emptyset$ for each $1 \leq i \leq N$; and hence, Φ extends to a unique holomorphic mapping $\tilde{\Phi}: O_{\varepsilon} \rightarrow \mathbf{C}^{N}$, where O_{ε} is the bounded Reinhardt domain in $\mathbf{C} \times \mathbf{C}^{|m|}$ given by

$$
O_{\varepsilon}=\left\{(z, w) \in \mathbf{C} \times \mathbf{C}^{|m|} ;|z|<1+\varepsilon, \rho^{q}(w)<1+\varepsilon\right\} \supset \overline{\Delta \times \mathscr{E}_{m}^{q}} .
$$

Therefore we may assume that our extension $\hat{\boldsymbol{\Phi}}(z, w)=(\hat{f}(z, w), w)$ is holomorphic on O_{ε}. Then, being a holomorphic function on the Reinhardt domain O_{ε} containing the origin $0=(0,0)$ in $\mathbf{C} \times \mathbf{C}^{|m|}=\mathbf{C}^{N}, \hat{f}$ can be expanded uniquely as a power series

$$
\begin{equation*}
\hat{f}(z, w)=\hat{f}(\zeta)=\sum_{v} A_{\nu} \zeta^{\nu}, \quad A_{v}=\frac{1}{v!} \frac{\partial^{|v|} \hat{f}(0)}{\partial \zeta_{1}^{v_{1}} \cdots \partial \zeta_{N}^{\zeta_{N}}}, \tag{4.7}
\end{equation*}
$$

which converges absolutely and uniformly on compact subsets of O_{ε} (in particular, on $\left.\overline{\Delta \times \mathscr{E}_{m}^{q}}\right)$, where the summation is taken over all $v=\left(v_{1}, \ldots, v_{N}\right) \in \mathbf{Z}^{N}$ with $v_{1}, \ldots, v_{N} \geq 0$.

Now, recall that $\Phi\left(\mathscr{B}_{2}\right) \subset \overline{\mathscr{B}}_{2}$ by Lemma 4; and so $\hat{\Phi}\left(\overline{\mathscr{B}}_{2}\right) \subset \overline{\mathscr{B}}_{2}$. Accordingly

$$
|\hat{f}(z, w)|^{2 p}=\rho^{q}(w) \quad \text { whenever }|z|^{2 p}=\rho^{q}(w) \leq 1
$$

and so

$$
\begin{equation*}
\left|\hat{f}\left(\left(\rho^{q}(w)\right)^{1 / 2 p}, w_{1} \exp \left(\sqrt{-1} \theta_{1}\right), \ldots, w_{J} \exp \left(\sqrt{-1} \theta_{J}\right)\right)\right|^{2}=\left(\rho^{q}(w)\right)^{1 / p} \tag{4.8}
\end{equation*}
$$

for any $(z, w) \in \overline{\mathscr{B}}_{2}$ and $\theta_{j}=\left(\theta_{j}^{1}, \ldots, \theta_{j}^{m_{j}}\right) \in \mathbf{R}^{m_{j}}$, where we have put

$$
w_{j} \exp \left(\sqrt{-1} \theta_{j}\right)=\left(w_{j}^{1} \exp \left(\sqrt{-1} \theta_{j}^{1}\right), \ldots, w_{j}^{m_{j}} \exp \left(\sqrt{-1} \theta_{j}^{m_{j}}\right)\right)
$$

for $j=1, \ldots, J$. Notice that this equation (4.8) holds also for any point $w \in \mathbf{C}^{|m|}$ with $\rho^{q}(w) \leq 1$, because one can always find a point $z \in \mathbf{C}$ such that $(z, w) \in \overline{\mathscr{B}}_{2}$. Therefore, writting $A_{v}=A_{a \alpha}$ for $v=(a, \alpha) \in \mathbf{Z} \times \mathbf{Z}^{|m|}$ in (4.7), we obtain that

$$
\left(\rho^{q}(w)\right)^{1 / p}=\sum_{a, b, \alpha} A_{a \alpha} \bar{A}_{b \alpha}\left(\rho^{q}(w)\right)^{(a+b) / 2 p}\left|w_{1}^{\alpha_{1}}\right|^{2} \cdots\left|w_{J}^{\alpha_{J}}\right|^{2},
$$

which converges absolutely and uniformly on $\overline{\mathscr{E}_{m}^{q}}$, where

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}, \ldots, \alpha_{J}\right) \quad \text { with } \alpha_{j}=\left(\alpha_{j}^{1}, \ldots, \alpha_{j}^{m_{j}}\right), \\
& w_{j}^{\alpha_{j}}=\left(w_{j}^{1}\right)^{\alpha_{j}^{1}} \cdots\left(w_{j}^{m_{j}}\right)^{m_{j}} \quad \text { for } 1 \leq j \leq J,
\end{aligned}
$$

and the summation is taken over all $0 \leq a, b \in \mathbf{Z}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{J}\right) \in \mathbf{Z}^{|m|}$ with $\alpha_{j}^{k} \geq 0\left(1 \leq j \leq J, 1 \leq k \leq m_{j}\right)$. Hence, considering the special case where

$$
\begin{aligned}
& w=\left(w_{1}, w_{2}, \ldots, w_{J}\right)=\left(w_{1}, 0, \ldots, 0\right) \quad \text { with } w_{1}=(\xi, 0, \ldots, 0), \xi \in \mathbf{C} ; \\
& \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{J}\right)=\left(\alpha_{1}, 0, \ldots, 0\right) \quad \text { with } \alpha_{1}=(\lambda, 0, \ldots, 0), \lambda \in \mathbf{Z}
\end{aligned}
$$

and writting $A_{a \alpha}=c_{a \lambda}$, we obtain that, for any $\xi \in \mathbf{C}$ with $|\xi| \leq 1$,

$$
\begin{align*}
|\xi|^{2 q_{1} / p}= & \sum_{\lambda \geq 1}\left|c_{0 \lambda}\right|^{2}|\xi|^{2 \lambda}+\sum_{\mu \geq 1} 2 \operatorname{Re}\left(c_{1 \mu} \bar{c}_{0 \mu}\right)|\xi|^{q_{1} / p+2 \mu}+\left|c_{10}\right|^{2}|\xi|^{2 q_{1} / p} \tag{4.9}\\
& +\sum_{a+b=k \geq 3} c_{a 0} \bar{c}_{b 0}|\xi|^{k q_{1} / p}+\sum_{\lambda \geq 1, a+b=k \geq 2} c_{a \lambda} \bar{c}_{b \lambda}|\xi|^{k q_{1} / p+2 \lambda}
\end{align*}
$$

since $c_{00}=\hat{f}(0)=0$. Thus

$$
\begin{equation*}
\lim _{\xi \rightarrow 0}(\text { the right-hand side of }(4.9)) /|\xi|^{2 q_{1} / p}=1 \tag{4.10}
\end{equation*}
$$

Note that if we define the holomorphic function $h(z, \xi)$ by

$$
h(z, \xi)=\hat{f}(z, \xi, 0, \ldots, 0) \quad \text { on }\left\{(z, \xi) \in \mathbf{C}^{2} ;|z|<1+\varepsilon,|\xi|<1+\varepsilon\right\}
$$

then the Taylor expansion of $h(z, \xi)$ is given by $h(z, \xi)=\sum_{a, \lambda} c_{a \lambda} z^{a} \xi^{\lambda}$, which converges absolutely and uniformly on $\overline{\Delta^{2}}$. Moreover it should be remarked
that, since $|h(z, \xi)| \leq 1$ on $\overline{\Delta^{2}}$, Gutzmer's inequality assures us that

$$
\begin{equation*}
\sum_{a, \lambda=0}^{\infty}\left|c_{a \lambda}\right|^{2} r^{2 a} \rho^{2 \lambda} \leq 1, \quad 0 \leq r, \rho \leq 1 ; \quad \text { and so } \quad \sum_{a, \lambda=0}^{\infty}\left|c_{a \lambda}\right|^{2} \leq 1 \tag{4.11}
\end{equation*}
$$

Now we assert that

$$
\begin{align*}
& c_{a \lambda}=0 \quad \text { for all }(a, \lambda) \neq(1,0), \quad \text { and } \tag{4.12}\\
& h(z, \xi)=c_{10} z \quad \text { with }\left|c_{10}\right|=|\partial \hat{f}(0) / \partial z|=1 .
\end{align*}
$$

For the verification of this, we have two cases to consider:

1) $q_{1} / p \notin \mathbf{N}$: Notice that $2 \lambda \neq 2 q_{1} / p$ and $q_{1} / p+2 \mu \neq 2 q_{1} / p$ for any $\lambda, \mu \in \mathbf{N}$ in this case. Hence, it follows from (4.9) and (4.10) that $\left|c_{10}\right|^{2}=1$. This combined with the inequality (4.11) yields at once that $c_{a \lambda}=0$ for all $(a, \lambda) \neq$ $(1,0)$ and so $h(z, \xi)=c_{10} z$ with $\left|c_{10}\right|=1$, as asserted.
2) $q_{1} / p \in \mathbf{N}$: If $q_{1} /(2 p) \notin \mathbf{N}$, then the term of $|\xi|^{2 q_{1} / p}$ does not appear in the second summation on the right-hand side of (4.9). Hence, by (4.9) and (4.10) we obtain that $\left|c_{10}\right|^{2}+\left|c_{0 \lambda_{o}}\right|^{2}=1$ with $\lambda_{o}=q_{1} / p$; and so $c_{a \lambda}=0$ for all $(a, \lambda) \neq$ $(1,0),\left(0, \lambda_{o}\right)$ by (4.11).

If $q_{1} /(2 p) \in \mathbf{N}$, then we put $\mu_{o}=q_{1} /(2 p)$. Note that the terms of $|\xi|^{2 \lambda}$ $\left(\lambda \leq \mu_{o}\right)$ do not appear in the second summation, since $q_{1} / p+2 \mu \geq q_{1} / p+2$ for any $\mu \in \mathbf{N}$. Then $\left|c_{0 \lambda}\right|^{2}=0$ for all $\lambda \leq \mu_{o}$ by (4.9) and (4.10); consequently, $2 \operatorname{Re}\left(c_{1 \mu_{o}} \bar{c}_{0 \mu_{o}}\right)|\xi|^{2 q_{1} / p}=0$ and the second summation does not contain the term of $|\xi|^{2 q_{1} / p}$. Thus, by the same reasoning as above, we obtain that $\left|c_{10}\right|^{2}+\left|c_{0 \lambda_{o}}\right|^{2}=1$ and $c_{a \lambda}=0$ for all $(a, \lambda) \neq(1,0),\left(0, \lambda_{o}\right)$. Therefore, in any cases, h can be written in the form

$$
h(z, \xi)=c_{10} z+c_{0 \lambda_{o}} \xi^{\lambda_{o}} \quad \text { with }\left|c_{10}\right|^{2}+\left|c_{0 \lambda_{o}}\right|^{2}=1 .
$$

Recall that $\left|c_{10} z+c_{0 \lambda_{o}} \xi^{\lambda_{0}}\right|=|h(z, \xi)| \leq 1$ for any $(z, \xi) \in \overline{\Delta^{2}}$. Clearly this can only happen when $\left|c_{10}\right|+\left|c_{0 \lambda_{o}}\right| \leq 1$; and so $\left|c_{10}\right|\left|c_{0 \lambda_{o}}\right|=0$. Here assume that $c_{10}=0$. Then

$$
\hat{\Phi}\left(z, w_{1}^{1}, 0, \ldots, 0\right)=\left(c_{0 \lambda_{o}}\left(w_{1}^{1}\right)^{\lambda_{o}}, w_{1}^{1}, 0, \ldots, 0\right)
$$

does not depend on the variables z. But, this is absurd, because if we put

$$
\mathscr{H}^{[2]}=\left\{\left(z, w_{1}^{1}\right) \in \mathbf{C}^{2} ;|z|^{2 p}<\left|w_{1}^{1}\right|^{2 q_{1}}<1\right\},
$$

which is regarded as a complex submanifold of \mathscr{H} in the canonical manner, and consider the correspondence $\Phi^{[2]}:\left(z, w_{1}^{1}\right) \mapsto \hat{\Phi}\left(z, w_{1}^{1}, 0, \ldots, 0\right)$, then $\Phi^{[2]}$ induces a proper holomorphic self-mapping of $\mathscr{H}^{[2]}$. Therefore $c_{0 \lambda_{o}}=0,\left|c_{10}\right|=1$ and $h(z, \xi)=c_{10} z$. As a result, we have verified our assertion (4.12) in any cases.

Finally, we shall complete the proof by showing that $f(z, w)$ has the form required in the theorem. For this purpose, recall that $\hat{\Phi}$ is a holomorphic selfmapping of the bounded Reinhardt domain $\Delta \times \mathscr{E}_{m}^{q}$ with $\hat{\Phi}(0,0)=(0,0)$. In addition to this, we have

$$
\left|J_{\hat{\Phi}}(0,0)\right|=|\partial \hat{f}(0,0) / \partial z|=\left|c_{10}\right|=1
$$

by (4.12). Consequently, by well-known theorems of H. Cartan, $\hat{\Phi}$ is a holomorphic automorphism of $\Delta \times \mathscr{E}_{m}^{q}$ and it is, in fact, linear (cf. [14; pp. 268-270]). Moreover, by considering the holomorphic automorphism $\Lambda:=\Psi^{-1} \circ \hat{\Phi}$ of $\Delta \times \mathscr{E}_{m}^{q}$, where Ψ is a holomorphic automorphism of $\Delta \times \mathscr{E}_{m}^{q}$ defined by $\Psi(z, w):=\left(c_{10} z, w\right)$, it is easily seen that Λ is a linear automorphism of $\Delta \times \mathscr{E}_{m}^{q}$ having the form

$$
\Lambda(\zeta)=\left(\zeta^{\prime}+M \zeta^{\prime \prime}, \zeta^{\prime \prime}\right), \quad \zeta=\left(\zeta^{\prime}, \zeta^{\prime \prime}\right)=(z, w) \in \Delta \times \mathscr{E}_{m}^{q},
$$

(think of ζ as column vectors), where M is a certain $1 \times|m|$ matrix. Thus, denoting by Λ^{n} the n-th iteration of Λ, we have

$$
\Lambda^{n}(\zeta)=\left(\zeta^{\prime}+n M \zeta^{\prime \prime}, \zeta^{\prime \prime}\right), \quad \zeta \in \Delta \times \mathscr{E}_{m}^{q}, \quad n=1,2, \ldots
$$

Hence M has to be the zero matrix, that is, Λ is the identity transformation of $\Delta \times \mathscr{E}_{m}^{q}$, since $\left\{\Lambda^{n}\right\}_{n=1}^{\infty}$ is contained in the isotropy subgroup K_{0} of $\operatorname{Aut}\left(\Delta \times \mathscr{E}_{m}^{q}\right)$ at the origin $0=(0,0) \in \Delta \times \mathscr{E}_{m}^{q}$ and K_{0} is compact, as is well-known.

Eventually, we have shown that $\hat{\Phi}$ has the form required in Theorem 3; thereby completing the proof.
4.4. Proof of Theorem 4. By routine computations we can check that the transformation Φ appearing in Theorem 4 induces a proper holomorphic self-mapping of \mathscr{H} in any cases (cf. [13; p. 212]). Conversly, we take an arbitrary proper holomorphic mapping $\Phi: \mathscr{H} \rightarrow \mathscr{H}$ and write $\Phi=(f, g)$ with respect to the coordinate system (z, w) in $\mathbf{C}^{|/|} \times \mathbf{C}$. Then g does not depend on the variables z by Lemma 5; and so it has the form $g(z, w)=g(w)$. Since g is a holomorphic function defined on some open neighborhood of $\bar{\Delta} \backslash\{0\}$ with $g(\partial \Delta) \subset \partial \Delta$ by Lemma 4 and since g is bounded on Δ^{*}, g now extends to a holomorphic function \hat{g} defined on some open neighborhood of $\bar{\Delta}$ with $\hat{g}(\bar{\Delta}) \subset \bar{\Delta}$. Moreover, $\hat{g}(0) \notin \partial \Delta$ by the maximum principle. Accordingly, \hat{g} gives rise to a proper holomorphic self-mapping of Δ and it is a finite Blaschke product. Since $\hat{g}=g$ on Δ^{*}, it is easily checked that $\hat{g}\left(w_{o}\right)=0$ only when $w_{o}=0$. Thus \hat{g} must be of the form

$$
\hat{g}(w)=B w^{k} \quad \text { for some } k \in \mathbf{N}, B \in \mathbf{C} \text { with }|B|=1 .
$$

Therefore, taking the composite mapping $\Psi \circ \Phi$ instead of Φ if necessary, where Ψ is the automorphism of \mathscr{H} defined by $\Psi(z, w)=\left(z, B^{-1} w\right)$, we may assume that Φ has the form $\Phi(z, w)=\left(f(z, w), w^{k}\right)$ on \mathscr{H}. We have two cases to consider:

CASE I. $I=1$: In this case, putting $r=q / p$, we have

$$
\begin{aligned}
\mathscr{H}_{1,1}^{p, q} & =\left\{(z, w) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\|z\|^{2 p}<|w|^{2 q}<1\right\} \\
& =\left\{(z, w) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\|z\|^{2}<|w|^{2 r}<1\right\}=\mathscr{H}_{1,1}^{1, r} .
\end{aligned}
$$

Taking this into account, we shall divide the proof into two subcases as follows:

CASE (I.1). $\quad r \in \mathbf{N}:$ We have a biholomorphic mapping $\Lambda: \mathscr{H} \rightarrow B^{\ell_{1}} \times \Delta^{*}$ defined by

$$
\Lambda(z, w)=\left(z / w^{r}, w\right), \quad(z, w) \in \mathscr{H} .
$$

Thus the composite mapping

$$
\Psi:=\Lambda \circ \Phi \circ \Lambda^{-1}: B^{\ell_{1}} \times \Delta^{*} \rightarrow B^{\ell_{1}} \times \Delta^{*}
$$

gives a proper holomorphic self-mapping of $B^{\ell_{1}} \times \Delta^{*}$. Recall that $\ell_{1} \geq 2$. Then Ψ can be written in the form

$$
\Psi(\xi, \eta)=(H(\xi), G(\eta)), \quad(\xi, \eta) \in B^{\ell_{1}} \times \Delta^{*}
$$

by making use of some proper holomorphic mappings $H: B^{\ell_{1}} \rightarrow B^{\ell_{1}}$ and $G: \Delta^{*} \rightarrow \Delta^{*}$ (cf. [21; p. 77]). Therefore, by the main theorem of Alexander [1], H is a holomorphic automorphism of $B^{\ell_{1}}$ and Φ can be described as

$$
\Phi(z, w)=\left(w^{k r} H\left(z / w^{r}\right), w^{k}\right), \quad(z, w) \in \mathscr{H} ;
$$

which proves our assertion in (I.1) of Theorem 4.
Case (I.2). $\quad r \notin \mathbf{N}$: We set

$$
\mathscr{E}_{w}=\left\{z \in \mathbf{C}^{\ell_{1}} ;\|z\|^{2}<|w|^{2 r}\right\}, \quad f_{w}(z)=f(z, w), z \in \mathscr{E}_{w}
$$

for an arbitrarily given point $w \in \Delta^{*}$. Then f_{w} induces a proper holomorphic mapping from \mathscr{E}_{w} onto $\mathscr{E}_{w^{k}}$. On the other hand, we have a biholomorphic mapping $\Lambda_{w}: \mathscr{E}_{w} \rightarrow B^{\ell_{1}}$ defined by

$$
\Lambda_{w}(z)=z / w^{r}, \quad z \in \mathscr{E}_{w}
$$

where w^{r} stands for the branch of the power function w^{r} such that $1^{r}=1$ when we consider it as a function of w. Hence the composite mapping

$$
\Psi_{w}:=\Lambda_{w^{k}} \circ f_{w} \circ \Lambda_{w}^{-1}: B^{\ell_{1}} \rightarrow B^{\ell_{1}}
$$

is a proper holomorphic self-mapping of $B^{\ell_{1}}$ with $\ell_{1} \geq 2$; consequently, it follows again from the main theorem of Alexander [1] that Ψ_{w} is a holomorphic automorphism of $B^{\ell_{1}}$. Moreover, since Ψ_{w} depends holomorphically on w, Ψ_{w} does not depend on the choice of w by the proof of [2; Theorem 2]. Therefore f_{w} can be written in the form

$$
f_{w}(z)=w^{k r} H\left(z / w^{r}\right), \quad z \in \mathscr{E}_{w},
$$

by using some element $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$. Once it is shown that $H(0)=0, H$ must be a unitary transformation, i.e., H has the form $H(\xi)=A \xi$ on $B^{\ell_{1}}$ with some $A \in U\left(\ell_{1}\right)$. Then

$$
f(z, w)=f_{w}(z)=w^{(k-1) r} A z \quad \text { on } \mathscr{H} .
$$

Moreover, since $f(z, w)$ is a single-valued holomorphic function on \mathscr{H}, it is easily seen that $(k-1) r \in \mathbf{Z}$; proving our assertion in (I.2) of Theorem 4. Therefore
we have only to verify that $H(0)=0$. To this end, we assume that $H(0) \neq 0$. Then, since

$$
f\left(0, \exp (\sqrt{-1} \theta) w_{o}\right)=\exp (\sqrt{-1} k r \theta) w_{o}^{k r} H(0), \quad-\pi<\theta<\pi,
$$

where w_{o} is a fixed real number with $0<w_{o}<1$, and

$$
\lim _{\theta \downarrow-\pi} f\left(0, \exp (\sqrt{-1} \theta) w_{o}\right)=f\left(0,-w_{o}\right)=\lim _{\theta \uparrow \pi} f\left(0, \exp (\sqrt{-1} \theta) w_{o}\right)
$$

it follows at once that $k r \in \mathbf{N}$. Moreover, choose a point $z_{o} \in \mathscr{E}_{w}, z_{o} \neq 0$, in such a way that $H\left(z_{o} / w^{r}\right) \neq 0$ for all $1 / 2 \leq|w|<1$ and consider the function $f\left(z_{o}, \exp (\sqrt{-1} \theta) w_{o}\right)$ of $\theta \in(-\pi, \pi)$, where w_{o} is a real number such that $\left(z_{o}, w_{o}\right) \in$ $\mathscr{H}_{\ell_{1}, 1}^{1, r}$ and $1 / 2 \leq w_{o}<1$. Then, noting the facts that $k r \in \mathbf{N}$ and $H \in \operatorname{Aut}\left(B^{1_{1}}\right)$, we obtain that

$$
z_{o} /\left\{\exp (\sqrt{-1} \pi r) w_{o}^{r}\right\}=z_{o} /\left\{\exp (-\sqrt{-1} \pi r) w_{o}^{r}\right\}
$$

by taking the limit $\theta \rightarrow \pm \pi$ as above; so that $r \in \mathbf{N}$. But, this contradicts our assumption $r \notin \mathbf{N}$. Thus $H(0)=0$ and Φ has to be of the form required in (I.2) of Theorem 4.

Case II. $\quad I \geq 2$: In this case, if we set

$$
\mathscr{E}_{w}=\left\{z \in \mathbf{C}^{|t|} ; \rho^{p}(z)<|w|^{2 q}\right\}, \quad f_{w}(z)=f(z, w), z \in \mathscr{E}_{w},
$$

for an arbitrarily given point $w \in \Delta^{*}$, then f_{w} induces a proper holomorphic mapping from \mathscr{E}_{w} onto $\mathscr{E}_{w^{k}}$. On the other hand, we have a biholomorphic mapping $\Lambda_{w}: \mathscr{E}_{w} \rightarrow \mathscr{E}_{\ell}^{p}$ defined by

$$
\Lambda_{w}(z)=\left(z_{1} / w^{q / p_{1}}, \ldots, z_{I} / w^{q / p_{I}}\right), \quad z=\left(z_{1}, \ldots, z_{I}\right) \in \mathscr{E}_{w} .
$$

Thus the composite mapping

$$
\Psi_{w}:=\Lambda_{w^{k}} \circ f_{w} \circ \Lambda_{w}^{-1}: \mathscr{E}_{\ell}^{p} \rightarrow \mathscr{E}_{\ell}^{p}
$$

is a proper holomorphic self-mapping of the generalized complex ellipsoid \mathscr{E}_{ℓ}^{p} with $1 \leq p_{i} \in \mathbf{R}(1 \leq i \leq I)$; consequently, Ψ_{w} is a holomorphic automorphism of \mathscr{E}_{ℓ}^{p} by Theorem 1. Moreover, by the same reasoning as in Case (I.2), Ψ_{w} does not depend on w. Therefore, according to Theorem A, we shall consider two cases where $p_{1}=1$ and $p_{1} \neq 1$ separately.

Consider first the case where $p_{1}=1$. Then, applying Theorem A, Case I to the holomorphic automorphism $\Psi:=\Psi_{w}$ of \mathscr{E}_{ℓ}^{p}, we can see that f_{w} has the form

$$
\begin{align*}
f_{w}(z)= & \left(w^{k q} H\left(z_{1} / w^{q}\right), w^{(k-1) q / p_{2}} \gamma_{2}\left(z_{1} / w^{q}\right) A_{2} z_{\sigma(2)}, \ldots,\right. \tag{4.13}\\
& \left.w^{(k-1) q / p_{I}} \gamma_{I}\left(z_{1} / w^{q}\right) A_{I} z_{\sigma(I)}\right),
\end{align*}
$$

since $p_{\sigma(i)}=p_{i}(2 \leq i \leq I)$, where $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right), A_{i} \in U\left(\ell_{i}\right), \sigma$ is a permutation of $\{2, \ldots, I\}$ and γ_{i}^{\prime} s are nowhere vanishing holomorphic functions on $B^{\ell_{1}}$ given as in Theorem A, Case I. Hence we obtain the following:

Case (II.1). $p_{1}=1, q \in \mathbf{N}$: In this case, $w^{k q} H\left(z_{1} / w^{q}\right)$ and $\gamma_{i}\left(z_{1} / w^{q}\right)$ are single-valued holomorphic functions on \mathscr{H} as well as $f(z, w)$. Therefore we have $(k-1) q / p_{i} \in \mathbf{Z}$ for all $i=2, \ldots, I$; proving our assertion (II.1) of Theorem 4.

CaSe (II.2). $\quad p_{1}=1, q \notin \mathbf{N}$: In this case, we put

$$
\mathscr{H}^{[2]}=\left\{\left(z_{1}, w\right) \in \mathbf{C}^{\ell_{1}} \times \mathbf{C} ;\left\|z_{1}\right\|^{2}<|w|^{2 q}<1\right\}
$$

and regard this as a complex submanifold of \mathscr{H} in the canonical manner. Then $\Phi\left(\mathscr{H}^{[2]}\right)=\mathscr{H}^{[2]}$ by (4.13) and the restriction $\Phi \mid \mathscr{H}^{[2]}: \mathscr{H}^{[2]} \rightarrow \mathscr{H}^{[2]}$ gives a proper holomorphic mapping. Consequently, by the proof of (I.2) above, $H \in \operatorname{Aut}\left(B^{\ell_{1}}\right)$ appearing in (4.13) has to satisfy the condition $H(0)=0$ and it reduces to a unitary transformation $H(\xi)=A \xi$ on $B^{\ell_{1}}$ given by some $A \in U\left(\ell_{1}\right)$. Notice that every function $\gamma_{i}(\xi)=1$ on $B^{\ell_{1}}$ in this case. Thus we conclude that f_{w} has the form

$$
f_{w}(z)=\left(w^{(k-1) q} A z_{1}, w^{(k-1) q / p_{2}} A_{2} z_{\sigma(2)}, \ldots, w^{(k-1) q / p_{I}} A_{I} z_{\sigma(I)}\right)
$$

with $(k-1) q / p_{i} \in \mathbf{Z}$ for all $i=1, \ldots, I$; thereby, Φ has the form required in (II.2) of Theorem 4.

Consider next the case where $p_{1} \neq 1$. Then, applying Theorem A, Case II to the holomorphic automorphism Ψ, we can see that f_{w} has the form

$$
f_{w}(z)=\left(w^{(k-1) q / p_{1}} A_{1} z_{\sigma(1)}, \ldots, w^{(k-1) q / p_{I}} A_{I} z_{\sigma(I)}\right),
$$

since $p_{\sigma(i)}=p_{i}$ for every $i=1, \ldots, I$, where $A_{i} \in U\left(\ell_{i}\right)$ and σ is a permutation of $\{1, \ldots, I\}$ as in Theorem A, Case II. Moreover, since $f(z, w)$ is a single-valued holomorphic function on \mathscr{H}, it is obvious that $(k-1) q / p_{i} \in \mathbf{Z}$ for all $i=1, \ldots, I$; which proves our assersion (II.3) of Theorem 4.

Finally, by recalling our previous results [16], [17] on the structure of holomorphic automorphism groups of generalized Hartogs triangles, it is easy to see that the proper holomorphic self-mapping Φ of \mathscr{H} appearing in Theorem 4 is a holomorphic automorphism of \mathscr{H} if and only if $k=1$ in any cases.

Therefore the proof of Theorem 4 is now completed.

References

[1] H. Alexander, Proper holomorphic mappings in \mathbf{C}^{n}, Indiana Univ. Math. J. 26 (1977), 137-146.
[2] A. Andreotti and E. Vesentini, On deformations of discontinuous groups, Acta Math. 112 (1964), 249-298.
[3] D. E. Barrett, Holomorphic equivalence and proper mapping of bounded Reinhardt domains not containing the origin, Comment. Math. Helvetici 59 (1984), 550-564.
[4] E. Bedford, Proper holomorphic mappings from strongly pseudoconvex domains, Duke Math. J. 49 (1982), 477-484.
[5] E. Bedford, Proper holomorphic mappings, Bull. Amer. Math. Soc. 10 (1984), 157-175.
[6] E. Bedford and S. Bell, Proper self maps of weakly pseudoconvex domains, Math. Ann. 261 (1982), 47-49.
[7] S. Bell, Analytic hypoellipticity of the $\bar{\partial}$-Neumann problem and extendability of holomorphic mappings, Acta Math. 147 (1981), 109-116.
[8] S. Bell, The Bergman kernel function and proper holomorphic mappings, Trans. Amer. Math. Soc. 270 (1982), 685-691.
[9] Z. H. Chen and D. K. Xu, Proper holomorphic mappings between some nonsmooth domains, Chin. Ann. of Math. Ser. B. 22 (2001), 177-182.
[10] Z. H. Chen and D. K. Xu, Rigidity of proper self-mapping on some kinds of generalized Hartogs triangle, Acta Math. Sin. (Engl. Ser.) 18 (2002), 357-362.
[11] G. Dini and A. Selvaggi Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. 158 (1991), 219-229.
[12] A. Hayashimoto, Bundle decomposition and infinitesimal CR automorphism approaches to CR automorphism group of generalized ellipsoids, Kodai Math. J. 35 (2012), 532-559.
[13] M. Jarnicki and P. Pflug, First steps in several complex variables: Reinhardt domains, EMS textbooks in math., Euro. Math. Soc., Zürich, 2008.
[14] S. Kobayashi, Hyperbolic complex spaces, Springer-Verlag, Berlin Heidelberg New York, 1998.
[15] A. Kodama, On the holomorphic automorphism group of a generalized complex ellipsoid, Complex Var. Elliptic Equ. 59 (2014), 1342-1349.
[16] A. Kodama, On the holomorphic automorphism group of a generalized Hartogs triangle, Tohoku Math. J. 68 (2016), 29-45.
[17] A. Kodama, Correction: On the holomorphic automorphism group of a generalized Hartogs triangle (Tohoku Math. J. 68 (2016), 29-45), Tohoku Math. J. 68 (2016), 47-48.
[18] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Amer. Math. Soc. 282 (1984), 807-811.
[19] M. Landucci, Proper holomorphic mappings between some nonsmooth domains, Ann. Mat. Pura Appl. 155 (1989), 193-203.
[20] R. Monti and D. Morbidelli, Pseudohermitian invariants and classification of CR mappings in generalized ellipsoids, J. Math. Soc. Japan 64 (2012), 153-179.
[21] R. Narasimhan, Several complex variables, Univ. Chicago Press, Chicago and London, 1971.
[22] P. Zapalowski, Proper holomorphic mappings between generalized Hartogs triangles, arXiv:1601.01806v1.

Akio Kodama
Faculty of Mathematics and Physics
Institute of Science and Engineering
Kanazawa University
Kanazawa 920-1192
Japan
E-mail: kodama@staff.kanazawa-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 32A07; Secondary 32M05.
 Key words and phrases. Generalized complex ellipsoids, Generalized Hartogs triangles, Proper holomorphic mappings, Holomorphic automorphisms.

 Received June 13, 2016; revised November 21, 2016.

