J. T. CHO AND S. H. CHUN KODAI MATH. J. 40 (2017), 102–116

UNIT TANGENT SPHERE BUNDLES WITH THE REEB FLOW INVARIANT RICCI OPERATOR

JONG TAEK CHO AND SUN HYANG CHUN*

Abstract

In this paper, we study unit tangent sphere bundles T_1M whose Ricci operator \overline{S} is Reeb flow invariant, that is, $L_{\xi}\overline{S} = 0$. We prove that for a 3-dimensional Riemannian manifold M, T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M is of constant curvature 1. Also, we prove that for a 4-dimensional Riemannian manifold M, T_1M satisfies $L_{\xi}\overline{S} = 0$ and $\ell \overline{S}_{\xi}^{z} = 0$ if and only if M is of constant curvature 1 or 2, where $\ell = \overline{R}(\cdot,\xi)\xi$ is the characteristic Jacobi operator.

1. Introduction

In a contact manifold (\overline{M}, η) , we have a fundamental property that the Reeb vector field ξ generates a contact diffeomorphism, that is, $L_{\xi}\eta = 0$. For an associated Riemannian metric \overline{g} , if ξ generates an isometric flow, that is, \overline{M} satisfies $L_{\xi}\overline{g} = 0$, then \overline{M} is said to be K-contact. Recently, Perrone ([11]) introduced the so-called *H*-contact manifolds, which include K-contact manifolds. It means that the Reeb vector field ξ is a harmonic vector field. In the same paper, it was shown that the Reeb vector field of an H-contact manifold is the eigenvector of the Ricci operator \overline{S} .

It is very intriguing to study the interplay between Riemannian manifolds (M, g) and their unit tangent sphere bundles T_1M with the standard contact metric structure $(\eta, \bar{g}, \phi, \xi)$. In particular, the geodesic flow generated by the Reeb vector field ξ has a crucial role on the geometry of Riemannian manifold (M, g). As a classical result, Y. Tashiro ([14]) proved that (T_1M, η, \bar{g}) is a K-contact manifold if and only if (M, g) has constant sectional curvature 1.

In this paper, we study unit tangent sphere bundles T_1M whose Ricci operator \overline{S} is Reeb flow invariant, that is, $L_{\xi}\overline{S} = 0$. In Section 3, we prove that

²⁰¹⁰ Mathematics Subject Classification. 53C25, 53D10.

Key words and phrases. Unit tangent sphere bundle, contact metric structure.

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014R1A1A2053665).

^{*}Corresponding author.

Received February 2, 2016; revised June 13, 2016.

for a 3-dimensional Riemannian manifold M, T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M is of constant curvature 1 (Theorem 2). In Section 4, we investigate the relationship between the condition $L_{\xi}\overline{S} = 0$ and H-contact condition. Then we prove that a contact metric manifold \overline{M} satisfying $L_{\xi}\overline{S} = 0$ is H-contact if and only if \overline{M} satisfies $\ell \overline{S}\xi = 0$, where ℓ is the characteristic Jacobi operator (Theorem 4). Moreover, for a 2-dimensional Riemannian manifold M, T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M is of constant curvature 0 or 1 (Proposition 7). For a 4-dimensional Riemannian manifold M, we prove that T_1M satisfies $L_{\xi}\overline{S} = 0$ and $\ell \overline{S}\xi = 0$ if and only if M is of constant curvature 1 or 2 (Theorem 9).

2. The unit tangent sphere bundle

First, we review some fundamental facts on contact metric manifolds. We refer to [1] for more details. All manifolds are assumed to be connected and of class C^{∞} . A (2n-1)-dimensional manifold \overline{M} is said to be an *almost contact manifold* if its structure group of the linear frame bundle is reducible to $U(n-1) \times \{1\}$. This is equivalent to the existence of a (1,1)-tensor field ϕ , a vector field ξ and a 1-form η satisfying

(2.1)
$$\eta(\xi) = 1 \quad \text{and} \quad \phi^2 = -\mathrm{id} + \eta \otimes \xi.$$

Here (ϕ, ξ, η) is called an *almost contact structure*. Then one can always find a compatible Riemannian metric \overline{g} :

(2.2)
$$\overline{g}(\phi \overline{X}, \phi \overline{Y}) = \overline{g}(\overline{X}, \overline{Y}) - \eta(\overline{X})\eta(\overline{Y})$$

for any vector fields \overline{X} and \overline{Y} on \overline{M} . Such a metric is called an *associated metric* and $(\overline{M}, \phi, \xi, \eta, \overline{g})$ is said to be an *almost contact metric manifold*. The *fundamental* 2-form Φ is defined by $\Phi(\overline{X}, \overline{Y}) = \overline{g}(\overline{X}, \phi \overline{Y})$. If \overline{M} satisfies in addition $d\eta = \Phi$, then \overline{M} is called a *contact metric manifold*, where *d* is the exterior differential operator. We call the structure vector field ξ the *Reeb vector field* or the *characteristic vector field*. From (2.1) and (2.2) it follows that

$$\phi\xi = 0, \quad \eta \circ \phi = 0, \quad \eta(\overline{X}) = \overline{g}(\overline{X}, \xi).$$

Given a contact metric manifold \overline{M} , we define the *structural operator* h by $h = \frac{1}{2}L_{\xi}\phi$, where L_{ξ} denotes Lie differentiation for ξ . Then we may observe that h is self-adjoint and satisfies

(2.3)
$$h\xi = 0$$
 and $h\phi = -\phi h$,

(2.4)
$$\overline{\nabla}_{\overline{X}}\xi = -\phi\overline{X} - \phi h\overline{X},$$

where $\overline{\nabla}$ is the Levi-Civita connection on \overline{M} . From (2.3) and (2.4) we see that each trajectory of ξ is a geodesic. We denote by \overline{R} the Riemannian curvature tensor defined by

$$\overline{R}(\overline{X}, \overline{Y})\overline{Z} = \overline{\nabla}_{\overline{X}}(\overline{\nabla}_{\overline{Y}}\overline{Z}) - \overline{\nabla}_{\overline{Y}}(\overline{\nabla}_{\overline{X}}\overline{Z}) - \overline{\nabla}_{[\overline{X}, \overline{Y}]}\overline{Z}$$

for all vector fields \overline{X} , \overline{Y} and \overline{Z} . Along a trajectory of ξ , the Jacobi operator $\ell = \overline{R}(\cdot,\xi)\xi$ is a symmetric (1,1)-tensor field. We call it *the characteristic Jacobi operator*. We have

(2.5)
$$\ell = \phi \ell \phi - 2(h^2 + \phi^2),$$

(2.6)
$$\overline{\nabla}_{\xi}h = \phi - \phi\ell - \phi h^2.$$

A contact metric manifold for which ξ is Killing is called a K-contact manifold. It is easy to see that a contact metric manifold is K-contact if and only if h = 0or, equivalently, $\ell = I - \eta \otimes \xi$. It is well-known that a unit vector field V on a Riemannian manifold M determines a map between M and T_1M . Then V is said to be harmonic if it is a critical point of the energy functional restricted to $\mathfrak{X}_1(M)$, the set of all sections of T_1M . In particular, a contact metric manifold \overline{M} is said to be an *H*-contact manifold if its Reeb vector field is harmonic in above sense. In [11] it was proved that a contact metric manifold \overline{M} is *H*-contact if and only if ξ is an eigenvector field of the Ricci operator \overline{S} on \overline{M} . From this, it follows that any K-contact manifold is an H-contact manifold.

Let (M,g) be an *n*-dimensional Riemannian manifold and ∇ the associated Levi-Civita connection. Its Riemann curvature tensor *R* is defined by $R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$ for all vector fields *X*, *Y* and *Z* on *M*. The tangent bundle over (M,g) is denoted by *TM* and consists of pairs (p,u), where *p* is a point in *M* and *u* a tangent vector to *M* at *p*. The mapping $\pi: TM \to M$, $\pi(p,u) = p$, is the natural projection from *TM* onto *M*. For a vector field *X* on *M*, its vertical lift X^v on *TM* is the vector field defined by $X^v \omega = \omega(X) \circ \pi$, where ω is a 1-form on *M*. For the Levi-Civita connection ∇ on *M*, the horizontal lift X^h of *X* is defined by $X^h \omega = \nabla_X \omega$. The tangent bundle *TM* can be endowed in a natural way with a Riemannian metric \tilde{g} , the so-called Sasaki metric, depending only on the Riemannian metric *g* on *M*. It is determined by

$$\tilde{g}(X^h, Y^h) = \tilde{g}(X^v, Y^v) = g(X, Y) \circ \pi, \quad \tilde{g}(X^h, Y^v) = 0$$

for all vector fields X and Y on M. Also, TM admits an almost complex structure tensor J defined by $JX^h = X^v$ and $JX^v = -X^h$. Then \tilde{g} is a Hermitian metric for the almost complex structure J.

The unit tangent sphere bundle $\bar{\pi}: T_1M \to M$ is a hypersurface of TM given by $g_p(u,u) = 1$. Note that $\bar{\pi} = \pi \circ i$, where *i* is the immersion of T_1M into TM. A unit normal vector field $N = u^v$ to T_1M is given by the vertical lift of *u* for (p, u). The horizontal lift of a vector is tangent to T_1M , but the vertical lift of a vector is not tangent to T_1M in general. So, we define the *tangential lift* of X to $(p, u) \in T_1M$ by

$$X_{(p,u)}^t = (X - g(X,u)u)^v.$$

Clearly, the tangent space $T_{(p,u)}T_1M$ is spanned by vectors of the form X^h and X^t , where $X \in T_pM$.

We now define the standard contact metric structure of the unit tangent sphere bundle T_1M over a Riemannian manifold (M,g). The metric g' on T_1M is induced from the Sasaki metric \tilde{g} on TM. Using the almost complex structure J on TM, we define a unit vector field ξ' , a 1-form η' and a (1,1)-tensor field ϕ' on T_1M by

$$\xi' = -JN, \quad \phi' = J - \eta' \otimes N.$$

Since $g'(\overline{X}, \phi' \overline{Y}) = 2 d\eta'(\overline{X}, \overline{Y})$, (η', g', ϕ', ξ') is not a contact metric structure. If we rescale this structure by

$$\xi = 2\xi', \quad \eta = \frac{1}{2}\eta', \quad \phi = \phi', \quad \bar{g} = \frac{1}{4}g',$$

we get the standard contact metric structure $(\eta, \overline{g}, \phi, \xi)$. Here the tensor ϕ is explicitly given by

(2.7)
$$\phi X^{t} = -X^{h} + \frac{1}{2}g(X, u)\xi, \quad \phi X^{h} = X^{t},$$

where X and Y are vector fields on M. From now on, we consider $T_1M = (T_1M, \eta, \bar{g})$ with the standard contact metric structure.

The Levi-Civita connection $\overline{\nabla}$ of T_1M is described by

(2.8)

$$\overline{\nabla}_{X^{t}}Y^{t} = -g(Y,u)X^{t},$$

$$\overline{\nabla}_{X^{t}}Y^{h} = \frac{1}{2}(R(u,X)Y)^{h},$$

$$\overline{\nabla}_{X^{h}}Y^{t} = (\nabla_{X}Y)^{t} + \frac{1}{2}(R(u,Y)X)^{h},$$

$$\overline{\nabla}_{X^{h}}Y^{h} = (\nabla_{X}Y)^{h} - \frac{1}{2}(R(X,Y)u)^{t}$$

for all vector fields X and Y on M.

Also the Riemann curvature tensor \overline{R} of T_1M is given by

$$\overline{R}(X^{t}, Y^{t})Z^{t} = -(g(X, Z) - g(X, u)g(Z, u))Y^{t}
+ (g(Y, Z) - g(Y, u)g(Z, u))X^{t},
\overline{R}(X^{t}, Y^{t})Z^{h} = \{R(X - g(X, u)u, Y - g(Y, u)u)Z\}^{h}
+ \frac{1}{4}\{[R(u, X), R(u, Y)]Z\}^{h},
\overline{R}(X^{h}, Y^{t})Z^{t} = -\frac{1}{2}\{R(Y - g(Y, u)u, Z - g(Z, u)u)X\}^{h}
- \frac{1}{4}\{R(u, Y)R(u, Z)X\}^{h},$$

JONG TAEK CHO AND SUN HYANG CHUN

$$\overline{R}(X^{h}, Y^{t})Z^{h} = \frac{1}{2} \{R(X, Z)(Y - g(Y, u)u)\}^{t} - \frac{1}{4} \{R(X, R(u, Y)Z)u\}^{t} \\
+ \frac{1}{2} \{(\nabla_{X}R)(u, Y)Z\}^{h}, \\
\overline{R}(X^{h}, Y^{h})Z^{t} = \{R(X, Y)(Z - g(Z, u)u)\}^{t} \\
+ \frac{1}{4} \{R(Y, R(u, Z)X)u - R(X, R(u, Z)Y)u\}^{t} \\
+ \frac{1}{2} \{(\nabla_{X}R)(u, Z)Y - (\nabla_{Y}R)(u, Z)X\}^{h}, \\
\overline{R}(X^{h}, Y^{h})Z^{h} = (R(X, Y)Z)^{h} + \frac{1}{2} \{R(u, R(X, Y)u)Z\}^{h} \\
- \frac{1}{4} \{R(u, R(Y, Z)u)X - R(u, R(X, Z)u)Y\}^{h} \\
+ \frac{1}{2} \{(\nabla_{Z}R)(X, Y)u\}^{t}$$

for all vector fields X, Y and Z on M.

Next, to calculate the Ricci curvature tensor $\overline{\rho}$ of T_1M at the point $(p, u) \in T_1M$, let $e_1, \ldots, e_n = u$ be an orthonormal basis of T_pM . Then $\overline{\rho}$ is given by

$$\bar{\rho}(X^{t}, Y^{t}) = (n-2)(g(X, Y) - g(X, u)g(Y, u)) + \frac{1}{4}\sum_{i=1}^{n} g(R(u, X)e_{i}, R(u, Y)e_{i}),$$
$$\bar{\rho}(X^{t}, Y^{h}) = \frac{1}{2}((\nabla_{u}\rho)(X, Y) - (\nabla_{X}\rho)(u, Y)),$$

(2.10)

$$\bar{\rho}(X^{h}, Y^{h}) = \rho(X, Y) - \frac{1}{2} \sum_{i=1}^{n} g(R(u, e_{i})X, R(u, e_{i})Y),$$

where ρ denotes the Ricci curvature tensor of *M*. We can refer to [4, 9] for formulas (2.8)–(2.10).

From $\xi = 2u^h$ and (2.8), it follows

(2.11)
$$\overline{\nabla}_{X^t}\xi = -2\phi X^t - (R_u X)^h, \quad \overline{\nabla}_{X^h}\xi = -(R_u X)^t$$

where $R_u = R(\cdot, u)u$ is the Jacobi operator associated with the unit vector u. From (2.4) and (2.11), it follows that

(2.12)
$$hX^{t} = X^{t} - (R_{u}X)^{t},$$
$$hX^{h} = -X^{h} + \frac{1}{2}g(X, u)\xi + (R_{u}X)^{h}.$$

The above formulae are also found in [2, 3, 8].

3. Reeb flow invariant Ricci operators

Suppose that the contact metric manifold \overline{M} satisfies the condition $L_{\xi}\overline{S} = 0$ for the Ricci operator \overline{S} and the Reeb vector field ξ on \overline{M} . Then from the definition of Lie differentiation and (2.4) we have

$$(3.1) 0 = (L_{\xi}\overline{S})\overline{X} \\ = L_{\xi}\overline{S}\overline{X} - \overline{S}(L_{\xi}\overline{X}) \\ = (\overline{\nabla}_{\xi}\overline{S})\overline{X} - \overline{\nabla}_{\overline{S}\overline{X}}\xi + \overline{S}(\overline{\nabla}_{\overline{X}}\xi) \\ = (\overline{\nabla}_{\xi}\overline{S})\overline{X} + \phi\overline{S}\overline{X} - \overline{S}\phi\overline{X} + \phi\overline{h}\overline{S}\overline{X} - \overline{S}\phi\overline{h}\overline{X}$$

for any vector field \overline{X} on \overline{M} . In (3.1), since $\overline{\nabla}_{\xi}\overline{S} + \phi\overline{S} - \overline{S}\phi$ is a symmetric operator and $\phi h\overline{S} - \overline{S}\phi h$ is a skew-symmetric operator, \overline{M} satisfies the condition $L_{\xi}\overline{S} = 0$ if and only if it satisfies

(3.2)
$$\overline{\nabla}_{\xi}\overline{S} = \overline{S}\phi - \phi\overline{S}$$

and

$$(3.3) \qquad \qquad \phi hS = S\phi h.$$

Now, we consider the unit tangent sphere bundle T_1M over an *n*-dimensional Riemannian manifold M satisfying the condition $L_{\xi}\overline{S} = 0$. From (2.7), (2.10) and (2.12), we can calculate

$$\begin{array}{ll} (3.4) & 0 = \bar{g}((\overline{\nabla}_{\xi}\bar{S})X^{t} - \bar{S}\phi X^{t} + \phi\bar{S}X^{t}, Y^{t}) \\ & = (\overline{\nabla}_{\xi}\bar{\rho})(X^{t}, Y^{t}) - \bar{\rho}(\phi X^{t}, Y^{t}) - \bar{\rho}(X^{t}, \phi Y^{t}) \\ & = \frac{1}{2}\sum_{i=1}^{n} \{g((\nabla_{u}R)(u,X)e_{i}, R(u,Y)e_{i}) + g(R(u,X)e_{i}, (\nabla_{u}R)(u,Y)e_{i})\} \\ & + \frac{1}{2}\{(\nabla_{u}\rho)(R_{u}X,Y) + (\nabla_{u}\rho)(X,R_{u}Y) \\ & - (\nabla_{X}\rho)(u,R_{u}Y) - (\nabla_{Y}\rho)(u,R_{u}X)\} \\ & + \frac{1}{2}\{2(\nabla_{u}\rho)(X,Y) - (\nabla_{X}\rho)(u,Y) - (\nabla_{Y}\rho)(u,X)\} \\ & - \frac{1}{2}\{g(X,u)((\nabla_{u}\rho)(u,Y) - (\nabla_{Y}\rho)(u,u)) \\ & + g(Y,u)((\nabla_{u}\rho)(u,X) - (\nabla_{X}\rho)(u,u))\}, \end{array}$$

$$= (\nabla^{2}_{uu}\rho)(X, Y) - (\nabla^{2}_{uX}\rho)(u, Y) - (n-2)g(X, R_{u}Y) + \rho(R_{u}X, Y)$$

$$\begin{aligned} -\frac{1}{2}\sum_{i=1}^{n}g(R(u,e_{i})R_{u}X,R(u,e_{i})Y) - \frac{1}{4}\sum_{i=1}^{n}g(R(u,X)e_{i},R(u,R_{u}Y)e_{i}) \\ +\rho(X,Y) - \frac{1}{2}\sum_{i=1}^{n}g(R(u,e_{i})X,R(u,e_{i})Y) \\ -g(X,u)\left\{\rho(Y,u) - \frac{1}{2}\sum_{i=1}^{n}g(R(u,e_{i})u,R(u,e_{i})Y)\right\} \\ -(n-2)(g(X,Y) - g(X,u)g(Y,u)) - \frac{1}{4}\sum_{i=1}^{n}g(R(u,X)e_{i},R(u,Y)e_{i}), \\ (3.6) \quad 0 = \overline{g}((\overline{\nabla}_{\xi}\overline{S})X^{h} - \overline{S}\phi X^{h} + \phi \overline{S}X^{h}, Y^{h}) \\ = (\overline{\nabla}_{\xi}\overline{\rho})(X^{h},Y^{h}) - \overline{\rho}(\phi X^{h},Y^{h}) - \overline{\rho}(X^{h},\phi Y^{h}) \\ = -\sum_{i=1}^{n}\{g((\nabla_{u}R)(u,e_{i})X,R(u,e_{i})Y) + g(R(u,e_{i})X,(\nabla_{u}R)(u,e_{i})Y)\} \\ -\frac{1}{2}\{(\nabla_{u}\rho)(R_{u}X,Y) + (\nabla_{u}\rho)(X,R_{u}Y) \\ -(\nabla_{X}\rho)(u,R_{u}Y) - (\nabla_{Y}\rho)(u,Y) + (\nabla_{Y}\rho)(u,X)\}, \\ (3.7) \quad 0 = \overline{g}(\overline{S}\phi hX^{i} - \phi h\overline{S}X^{i},Y^{i}) \\ = \overline{p}(\phi hX^{i},Y^{i}) + \overline{\rho}(X^{i},h\phi Y^{i}) \\ = \frac{1}{2}\{(\nabla_{x}\rho)(u,X) - (\nabla_{X}\rho)(u,Y) - (\nabla_{u}\rho)(X,R_{u}Y) \\ + (\nabla_{u}\rho)(R_{u}X,Y) + (\nabla_{X}\rho)(u,R_{u}Y) - (\nabla_{Y}\rho)(u,R_{u}X) \\ + g(X,u)((\nabla_{u}\rho)(u,Y) - (\nabla_{Y}\rho)(u,u)) \\ - g(Y,u)((\nabla_{u}\rho)(u,X) - (\nabla_{Y}\rho)(u,u))\}, \end{aligned}$$

$$(3.8) 0 = \overline{g}(\overline{S}\phi hX^{t} - \phi h\overline{S}X^{t}, Y^{h})
= \overline{\rho}(\phi hX^{t}, Y^{h}) + \overline{\rho}(X^{t}, h\phi Y^{h})
= (n-2)(g(X, Y) - g(X, u)g(Y, u)) + \frac{1}{4}\sum_{i=1}^{n}g(R(u, X)e_{i}, R(u, Y)e_{i})
- (n-2)g(X, R_{u}Y) - \frac{1}{4}\sum_{i=1}^{n}g(R(u, X)e_{i}, R(u, R_{u}Y)e_{i})$$

UNIT TANGENT SPHERE BUNDLES WITH THE RICCI OPERATOR

$$-\rho(X, Y) + \frac{1}{2} \sum_{i=1}^{n} g(R(u, e_i)X, R(u, e_i)Y) + g(X, u) \left\{ \rho(Y, u) - \frac{1}{2} \sum_{i=1}^{n} g(R(u, e_i)u, R(u, e_i)Y) \right\} + \rho(R_u X, Y) - \frac{1}{2} \sum_{i=1}^{n} g(R(u, e_i)R_u X, R(u, e_i)Y), (3.9) \qquad 0 = \bar{g}(\bar{S}\phi h X^h - \phi h \bar{S} X^h, Y^h) = \bar{\rho}(\phi h X^h, Y^h) + \bar{\rho}(X^h, h\phi Y^h) = \frac{1}{2} \{ (\nabla_X \rho)(u, Y) - (\nabla_Y \rho)(u, X) + (\nabla_u \rho)(R_u X, Y) \}$$

$$- (\nabla_u \rho)(X, R_u Y) - (\nabla_{R_u X} \rho)(u, Y) + (\nabla_{R_u Y} \rho)(u, X) \}.$$

Therefore T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M satisfies (3.4)–(3.9).

THEOREM 1. Let M = (M, g) be an n-dimensional Riemannian manifold of constant curvature c and let T_1M be the unit tangent sphere bundle with the standard contact metric structure $(\eta, \overline{g}, \phi, \xi)$ over M. Then T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M is of constant curvature 1 or n - 2.

Proof. Suppose that M is a space of constant curvature c and T_1M satisfies $L_{\xi}\overline{S} = 0$. Then from (3.5) and (3.8), we obtain two equations;

(3.10)
$$c^{3} - (n-2)c^{2} - c + (n-2) = 0,$$

(3.11)
$$c^3 - nc^2 + (2n-3)c - (n-2) = 0.$$

Therefore we see that T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if c = 1 or c = n - 2.

Now, we study the case of 3-dimensional base manifold. Then we have

THEOREM 2. Let M = (M, g) be a 3-dimensional Riemannian manifold and let T_1M be the unit tangent sphere bundle with the standard contact metric structure $(\eta, \overline{g}, \phi, \xi)$ over M. Then T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M is of constant curvature 1.

Proof. Suppose that M is a 3-dimensional Riemannian manifold and let $\{e_i\}_{i=1}^3$ be an orthonormal basis of eigenvectors of the Ricci operator S_p at point $p \in M$, that is,

$$Se_i = \alpha_i e_i, \quad i = 1, 2, 3.$$

It is well-known that the curvature tensor R of 3-dimensional Riemannian manifold (M,g) is of the following form

(3.12)
$$R(X, Y)Z = \rho(Y, Z)X - \rho(X, Z)Y + g(Y, Z)SX - g(X, Z)SY - \frac{\tau}{2} \{g(Y, Z)X - g(X, Z)Y\},$$

where τ denotes the scalar curvature on M. If we put $u = e_1$, $X = Y = e_2$ in (3.8), then using (3.12), we have

(3.13)
$$\left(1-\alpha_1-\alpha_2+\frac{\tau}{2}\right)\left(\alpha_1^2+\alpha_2^2+2\alpha_1\alpha_2-\tau\alpha_1-\tau\alpha_2-\alpha_2+1+\frac{\tau^2}{4}\right)=0.$$

Similarly, putting $u = e_2$, $X = Y = e_1$ in (3.8), we have

(3.14)
$$\left(1-\alpha_1-\alpha_2+\frac{\tau}{2}\right)\left(\alpha_1^2+\alpha_2^2+2\alpha_1\alpha_2-\tau\alpha_1-\tau\alpha_2-\alpha_1+1+\frac{\tau^2}{4}\right)=0.$$

This time, we put $u = e_1$, $X = Y = e_3$ in (3.8), then we have

(3.15)
$$\left(1-\alpha_1-\alpha_3+\frac{\tau}{2}\right)\left(\alpha_1^2+\alpha_3^2+2\alpha_1\alpha_3-\tau\alpha_1-\tau\alpha_3-\alpha_3+1+\frac{\tau^2}{4}\right)=0.$$

Similarly, putting $u = e_3$, $X = Y = e_1$ in (3.8), we have

(3.16)
$$\left(1-\alpha_1-\alpha_3+\frac{\tau}{2}\right)\left(\alpha_1^2+\alpha_3^2+2\alpha_1\alpha_3-\tau\alpha_1-\tau\alpha_3-\alpha_1+1+\frac{\tau^2}{4}\right)=0.$$

In addition, put $u = e_2$, $X = Y = e_3$ in (3.8) to have

(3.17)
$$\left(1-\alpha_2-\alpha_3+\frac{\tau}{2}\right)\left(\alpha_2^2+\alpha_3^2+2\alpha_2\alpha_3-\tau\alpha_2-\tau\alpha_3-\alpha_3+1+\frac{\tau^2}{4}\right)=0.$$

Similarly, put $u = e_3$, $X = Y = e_2$ in (3.8) to obtain

(3.18)
$$\left(1-\alpha_2-\alpha_3+\frac{\tau}{2}\right)\left(\alpha_2^2+\alpha_3^2+2\alpha_2\alpha_3-\tau\alpha_2-\tau\alpha_3-\alpha_2+1+\frac{\tau^2}{4}\right)=0.$$

From (3.13) and (3.14), we obtain either $1 - \alpha_1 - \alpha_2 + \frac{\tau}{2} = 0$ or $\alpha_1 = \alpha_2$. Also, from (3.15) and (3.16), we obtain either $1 - \alpha_1 - \alpha_3 + \frac{\tau}{2} = 0$ or $\alpha_1 = \alpha_3$. We deduce from (3.17) and (3.18) that either $1 - \alpha_2 - \alpha_3 + \frac{\tau}{2} = 0$ or $\alpha_2 = \alpha_3$ holds. Therefore we may consider the following eight cases.

(I)
$$1 - \alpha_1 - \alpha_2 + \frac{\tau}{2} = 0$$
 and $1 - \alpha_1 - \alpha_3 + \frac{\tau}{2} = 0$ and $1 - \alpha_2 - \alpha_3 + \frac{\tau}{2} = 0$,
(II) $1 - \alpha_1 - \alpha_2 + \frac{\tau}{2} = 0$ and $1 - \alpha_1 - \alpha_3 + \frac{\tau}{2} = 0$ and $\alpha_2 = \alpha_3$,

(III)
$$1 - \alpha_1 - \alpha_2 + \frac{\tau}{2} = 0$$
 and $\alpha_1 = \alpha_3$ and $1 - \alpha_2 - \alpha_3 + \frac{\tau}{2} = 0$,

(IV)
$$\alpha_1 = \alpha_2$$
 and $1 - \alpha_1 - \alpha_3 + \frac{1}{2} = 0$ and $1 - \alpha_2 - \alpha_3 + \frac{1}{2} = 0$,

- (V) $1 \alpha_1 \alpha_2 + \frac{\tau}{2} = 0$ and $\alpha_1 = \alpha_3$ and $\alpha_2 = \alpha_3$, (VI) $\alpha_1 = \alpha_2$ and $1 \alpha_1 \alpha_3 + \frac{\tau}{2} = 0$ and $\alpha_2 = \alpha_3$,

(VII)
$$\alpha_1 = \alpha_2$$
 and $\alpha_1 = \alpha_3$ and $1 - \alpha_2 - \alpha_3 + \frac{1}{2} = 0$,
(VIII) $\alpha_1 = \alpha_2$ and $\alpha_1 = \alpha_3$ and $\alpha_2 = \alpha_3$.

For cases (I), (V), (VI), (VII), we immediately see that each case gives a contradiction. In case (II), since $\tau = \alpha_1 + \alpha_2 + \alpha_3$ and $\alpha_2 = \alpha_3$, we have $\alpha_1 = 2$. Also, from (3.17) we obtain

$$\alpha_2^2 - 3\alpha_2 + 2 = 0,$$

that is, $\alpha_2 = 1$ or $\alpha_2 = 2$. Thus, since $\alpha_1 \neq \alpha_2$, we have $\alpha_1 = 2$ and $\alpha_2 = \alpha_3 = 1$.

On the other hand, if we set $u = \frac{1}{\sqrt{2}}(e_1 + e_2)$ and $X = Y = e_3$ in (3.8), then by the direct calculation we have

(3.19)
$$\begin{cases} 1 - \alpha_3 + \frac{1}{2} \left(\alpha_1 + \alpha_3 - \frac{\tau}{2} \right)^2 + \frac{1}{2} \left(\alpha_2 + \alpha_3 - \frac{\tau}{2} \right)^2 \\ \times \left\{ 1 - \frac{1}{2} \left(\alpha_1 + \alpha_3 - \frac{\tau}{2} \right) - \frac{1}{2} \left(\alpha_2 + \alpha_3 - \frac{\tau}{2} \right) \right\} = 0 \end{cases}$$

But, for $\alpha_1 = 2$ and $\alpha_2 = \alpha_3 = 1$, (3.19) does not hold. By similar arguments to those for case (II), we see that the cases (III) and (IV) cannot occur. Lastly, in case (VIII), we immediately see that M is Einstein and hence M is of constant curvature. Due to Theorem 1, M is of constant curvature 1 and the converse is evident. \square

Together with Y. Tashiro's result, we have

COROLLARY 3. Let (M,g) be a 3-dimensional Riemannian manifold. Then the unit tangent sphere bundle T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if ξ is a Killing vector field.

4. The case of 4-dimensional base manifolds

First, we investigate the relationship between the condition $L_{\xi}\overline{S} = 0$ and H-contact condition on contact metric manifold. Let \overline{M} be a contact metric manifold whose Ricci operator \overline{S} is Reeb flow invariant. Then from (3.3), we have

Differentiating (4.1) with respect to ξ and using (3.2), we have

(4.2)
$$0 = (\overline{\nabla}_{\xi} h) \overline{S} \xi + h (\overline{S} \phi - \phi \overline{S}) \xi.$$

From (2.3), (4.1) and (4.2), we see that \overline{M} satisfies $(\overline{\nabla}_{\xi}h)\overline{S}\xi = 0$. We obtain from (2.6) that

(4.3)
$$0 = (\overline{\nabla}_{\xi}h)\overline{S}\xi$$
$$= (\phi - \phi h^2 - \phi \ell)\overline{S}\xi$$
$$= \phi \overline{S}\xi - \phi \ell \overline{S}\xi.$$

Applying ϕ to (4.3), we obtain

(4.4) $-\overline{S}\xi + \eta(\overline{S}\xi)\xi + \ell\overline{S}\xi = 0,$

and hence from (4.4), we have

THEOREM 4. Let \overline{M} be a contact metric manifold and assume that \overline{M} satisfies $L_{\xi}\overline{S} = 0$. Then \overline{M} is H-contact if and only if \overline{M} satisfies $\ell \overline{S}\xi = 0$.

Also, from the above theorem we can easily obtain

COROLLARY 5. If a contact metric manifold \overline{M} satisfies $L_{\xi}\overline{S} = 0$ and $\ell \overline{S} = \overline{S}\ell$, then \overline{M} is H-contact.

In [7] the first named author classified \overline{M} satisfying $L_{\xi}\overline{S} = 0$ for the dimension 3. Indeed, in the proof of Main Theorem in [7], we have

PROPOSITION 6. Let \overline{M} be a 3-dimensional contact metric manifold. If \overline{M} satisfies $L_{\xi}\overline{S} = 0$, then \overline{M} is H-contact.

Boeckx and Vanhecke ([5]) proved that the unit tangent sphere bundle of a 2- or 3-dimensional Riemannian manifold is H-contact if and only if the base manifold is of constant curvature. Calvaruso and Perrone ([6]) obtained the same result in the case of an $n \ge 4$ -dimensional conformally flat manifold. Thus, from the result of Boeckx and Vanhecke, Proposition 6 and Theorem 1, we have

PROPOSITION 7. Let M = (M, g) be a 2-dimensional Riemannian manifold and let T_1M be the unit tangent sphere bundle with the standard contact metric structure $(\eta, \overline{g}, \phi, \xi)$ over M. Then T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M is of constant curvature 0 or 1.

Also, we have

PROPOSITION 8. Let M = (M, g) be an $n \geq 4$ -dimensional conformally flat manifold and let T_1M be the unit tangent sphere bundle with the standard contact metric structure $(\eta, \overline{g}, \phi, \xi)$ over M. If T_1M satisfies $L_{\xi}\overline{S} = 0$ and $\ell \overline{S}\xi = 0$, then M is of constant curvature 1 or n - 2.

Now we concentrate on the case of dim M = 4. Then, we have

THEOREM 9. Let M = (M, g) be a 4-dimensional Riemannian manifold and let T_1M be the unit tangent sphere bundle with the standard contact metric structure $(\eta, \overline{g}, \phi, \xi)$ over M. Then T_1M satisfies $L_{\xi}\overline{S} = 0$ and $\ell \overline{S}\xi = 0$ if and only if M is of constant curvature 1 or 2.

Proof. Suppose that the unit tangent sphere bundle T_1M over an *n*-dimensional Riemannian manifold M satisfies the condition $L_{\xi}\overline{S} = 0$ for the Ricci operator \overline{S} on T_1M . Then T_1M satisfies $L_{\xi}\overline{S} = 0$ if and only if M satisfies (3.4)-(3.9). In (3.8) we put $X = e_a$, $Y = e_b$, $u = e_c$. Then we have

$$(4.5) \quad (n-2)(\delta_{ab} - \delta_{ac}\delta_{bc}) + \frac{1}{4}\sum_{i,j=1}^{n} R_{caij}R_{cbij} - (n-2)R_{accb} - \frac{1}{4}\sum_{i,j,k=1}^{n} R_{caij}R_{bcck}R_{ckij} - \rho_{ab} + \frac{1}{2}\sum_{i,j=1}^{n} R_{ciaj}R_{cibj} + \delta_{ac}\left(\rho_{bc} - \frac{1}{2}\sum_{i,j=1}^{n} R_{cicj}R_{cibj}\right) + \sum_{k=1}^{n} R_{acck}\rho_{kb} - \frac{1}{2}\sum_{i,j,k=1}^{n} R_{acck}R_{cikj}R_{cibj} = 0,$$

where δ_{ab} denotes the Kronecker's delta, $R_{abcd} = g(R(e_a, e_b)e_c, e_d)$ and $\rho_{ab} = \rho(e_a, e_b)$. For $a = b \neq c$ in (4.5), we get

$$(4.6) \qquad 4(n-2) + \sum_{i,j=1}^{n} R_{caij}^{2} - 4(n-2)R_{acca} - \sum_{i,j,k=1}^{n} R_{caij}R_{acck}R_{ckij} - 4\rho_{aa} + 2\sum_{i,j=1}^{n} R_{ciaj}^{2} + 4\sum_{k=1}^{n} R_{acck}\rho_{ka} - 2\sum_{i,j,k=1}^{n} R_{acck}R_{cikj}R_{ciaj} = 0.$$

From Theorem 4, we see that T_1M satisfying $L_{\xi}\overline{S} = 0$ and $\ell\overline{S}\xi = 0$ has an H-contact structure. We suppose that n = 4. Then, owing to a result in [10], M is 2-stein, that is, an Einstein manifold satisfying $\sum_{i,j}^{n} (R_{uiuj})^2 = \mu(p)|u|^2$ for all $u \in T_pM$, $p \in M$, where $R_{uiuj} = g(R(u, e_i)u, e_j)$, $|u|^2 = g(u, u)$ and μ is a real-valued function on M. Now, since M is Einstein i.e., $\rho = \gamma g$ (γ is a constant on M), we may choose an orthonormal basis $\{e_i\}_{i=1}^{4}$ (known as the Singer-Thorpe basis) at each point $p \in M$ such that

(4.7)
$$\begin{cases} R_{1212} = R_{3434} = \lambda_1, \quad R_{1313} = R_{2424} = \lambda_2, \quad R_{1414} = R_{2323} = \lambda_3, \\ R_{1234} = \mu_1, \quad R_{1342} = \mu_2, \quad R_{1423} = \mu_3, \\ R_{ijkl} = 0 \quad \text{whenever just three of the indices } i, j, k, l \\ \text{are distinct (cf. [13]).} \end{cases}$$

Note that

(4.8)
$$\mu_1 + \mu_2 + \mu_3 = 0$$

by the first Bianchi identity and

(4.9)
$$\lambda_1 + \lambda_2 + \lambda_3 = -\frac{\tau}{4}$$

where τ is the scalar curvature of M.

It is also known that a 4-dimensional Einstein manifold M is 2-stein if and only if

(4.10)
$$\mu_1 = \lambda_1 + \frac{\tau}{12}, \quad \mu_2 = \lambda_2 + \frac{\tau}{12}, \quad \mu_3 = \lambda_3 + \frac{\tau}{12}$$

or

$$-\mu_1 = \lambda_1 + \frac{\tau}{12}, \quad -\mu_2 = \lambda_2 + \frac{\tau}{12}, \quad -\mu_3 = \lambda_3 + \frac{\tau}{12}$$

holds for any Singer-Thorpe basis $\{e_i\}_{i=1}^4$ at each point $p \in M$ (cf. [12]). On the other hand, if we put a = b = 1, c = 2 and a = b = 3, c = 4 in (4.6),

On the other hand, if we put a = b = 1, c = 2 and a = b = 3, c = 4 in (4.6), then, using (4.7), we have

(4.11)
$$(1+\lambda_1)(2\gamma-4-2\lambda_1^2-\mu_1^2-\mu_2^2-\mu_3^2)=0.$$

Similarly, put a = b = 1, c = 3 and a = b = 2, c = 4 in (4.6) to have

(4.12)
$$(1+\lambda_2)(2\gamma-4-2\lambda_2^2-\mu_1^2-\mu_2^2-\mu_3^2)=0.$$

For a = b = 1, c = 4 and a = b = 2, c = 3 in (4.6), we have

(4.13)
$$(1+\lambda_3)(2\gamma-4-2\lambda_3^2-\mu_1^2-\mu_2^2-\mu_3^2)=0.$$

From (4.11)-(4.13), we get the following cases.

(i) $\lambda_1 = \lambda_2 = \lambda_3 = -1$, (ii) $\lambda_1 = \lambda_2 = -1$ and $2\gamma = 4 + 2\lambda_3^2 + \mu_1^2 + \mu_2^2 + \mu_3^2$, (iii) $\lambda_1 = \lambda_3 = -1$ and $2\gamma = 4 + 2\lambda_2^2 + \mu_1^2 + \mu_2^2 + \mu_3^2$, (iv) $\lambda_2 = \lambda_3 = -1$ and $2\gamma = 4 + 2\lambda_1^2 + \mu_1^2 + \mu_2^2 + \mu_3^2$, (v) $\lambda_1 = -1$ and $\lambda_2^2 = \lambda_3^2$, (vi) $\lambda_2 = -1$ and $\lambda_1^2 = \lambda_3^2$, (vii) $\lambda_3 = -1$ and $\lambda_1^2 = \lambda_2^2$, (viii) $\lambda_1^2 = \lambda_2^2 = \lambda_3^2$. rom case (i) we see that *M* is of constant curvature 1. In

From case (i), we see that M is of constant curvature 1. In case (ii), we get from (4.9) and (4.10)

(4.14)
$$\lambda_3 = 2 - \frac{\tau}{4}, \quad \mu_1 = \mu_2 = -1 + \frac{\tau}{12}, \quad \mu_3 = 2 - \frac{\tau}{6}.$$

Applying (4.14) in case (ii), we have

(4.15)
$$(\tau - 12)(\tau - 9) = 0.$$

115

Similarly, in cases (iii) and (iv), we get (4.15). But, the case $\tau = 12$ yields again that M is of constant curvature 1. For the case $\tau = 9$, from (4.14) we get $\lambda_1 = \lambda_2 = -1$, $\lambda_3 = -\frac{1}{4}$, $\mu_1 = \mu_2 = -\frac{1}{4}$ and $\mu_3 = \frac{1}{2}$. Use (4.7) to check (3.5), a necessary equation for T_1M to satisfy $L_{\xi}\overline{S} = 0$. Indeed, the right hand side of (3.5) for $u = e_1$, $X = Y = e_2$, for example, becomes $-4 + \frac{\tau}{2} - 2\lambda_1^2 - \mu_1^2 - \mu_2^2 - \mu_3^2$. It gives a contradiction. In case (v), we consider two cases $\lambda_2 = \lambda_3$ or $\lambda_2 = -\lambda_3$. If $\lambda_2 = \lambda_3$, from (4.9) and (4.10) we get

(4.16)
$$\lambda_2 = \lambda_3 = \frac{1}{2} - \frac{\tau}{8}, \quad \mu_1 = -1 + \frac{\tau}{12}, \quad \mu_2 = \mu_3 = \frac{1}{2} - \frac{\tau}{24}$$

From (4.12) and (4.16), we obtain

$$(\tau - 12)^2 = 0$$

that is, $\lambda_2 = \lambda_3 = -1$, which yields that this is a contradiction. If $\lambda_2 = -\lambda_3$, from (4.9) and (4.10) we get

From (4.12) and (4.17), we obtain

$$3\lambda_2^2 + 2 = 0,$$

which can not occur. Similarly, the cases (vi) and (vii) can not hold.

Lastly, we consider the case (viii);

$$\lambda_1^2 = \lambda_2^2 = \lambda_3^2.$$

Then, from (4.8), (4.9), (4.10) and (4.18) we obtain the following four cases.

(a)
$$\lambda_1 = \lambda_2 = \lambda_3 = -\frac{\tau}{12}$$
 and $\mu_1 = \mu_2 = \mu_3 = 0$,
(b) $\lambda_1 = \lambda_2 = -\frac{\tau}{4}$, $\lambda_3 = \frac{\tau}{4}$ and $\mu_1 = \mu_2 = -\frac{\tau}{6}$, $\mu_3 = \frac{\tau}{3}$,
(c) $\lambda_1 = \lambda_3 = -\frac{\tau}{4}$, $\lambda_2 = \frac{\tau}{4}$ and $\mu_1 = \mu_3 = -\frac{\tau}{6}$, $\mu_2 = \frac{\tau}{3}$,
(d) $\lambda_2 = \lambda_3 = -\frac{\tau}{4}$, $\lambda_1 = \frac{\tau}{4}$ and $\mu_2 = \mu_3 = -\frac{\tau}{6}$, $\mu_1 = \frac{\tau}{3}$.
cases (b)–(d), we get from (4.12)

(b)-(d), we get from In

$$7\tau^2 - 12\tau + 96 = 0,$$

which can not occur. In case (a), we get from (4.12)

$$(\tau - 12)(\tau - 24) = 0.$$

Therefore M is of constant sectional curvature 1 or 2. Since the unit tangent sphere bundle of a space of constant curvature is H-contact ([5]), the converse follows from Theorem 1.

References

- D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, 2nd. ed., Progress in math. 203, Birkhäuser, Boston, Basel, Berlin, 2010.
- [2] E. BOECKX, J. T. CHO AND S. H. CHUN, Flow-invariant structures on unit tangent bundles, Publ. Math. Debrecen 70 (2007), 167–178.
- [3] E. BOECKX, D. PERRONE AND L. VANHECKE, Unit tangent sphere bundles and two-point homogeneous spaces, Periodica Math. Hungarica 36 (1998), 79–95.
- [4] E. BOECKX AND L. VANHECKE, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), 427–448.
- [5] E. BOECKX AND L. VANHECKE, Harmonic and minimal vector fields in tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), 77–93.
- [6] G. CALVARUSO AND D. PERRONE, H-contact unit tangent sphere bundles, Rockey Mountain J. Math. 37 (2007), 1435–1458.
- [7] J. T. CHO, Contact 3-manifolds with the Reeb-flow symmetry, Tôhoku Math. J. 66 (2014), 491–500.
- [8] J. T. CHO AND S. H. CHUN, On the classification of contact Riemannian manifolds satisfying the condition (C), Glasgow Math. J. 45 (2003), 99–113.
- [9] J. T. CHO AND S. H. CHUN, Symmetries on unit tangent sphere bundles, Proceedings of the eleven international workshop on differential geometry, Kyungpook Nat. Univ., Taegu, 2007, 153–170.
- [10] S. H. CHUN, J. H. PARK AND K. SEKIGAWA, H-contact unit tangent sphere bundles of fourdimensional Riemannian manifolds, J. Aust. Math. Soc. 91 (2011), 243–256.
- [11] D. PERRONE, Contact metric manifolds whose characteristic vector field is a harmonic vector field, Differential Geom. Appl. 20 (2004), 367–315.
- [12] K. SEKIGAWA AND L. VANHECKE, Volume-preserving geodesic symmetries on four dimensional 2-stein spaces, Kodai Math. J. 9 (1986), 215–224.
- [13] I. M. SINGER AND J. A. THORPE, The curvature of 4-dimensional Einstein spaces, Global analysis: papers in honor of K. Kodaira, Univ. Tokyo Press, Tokyo, 1969, 355–365.
- [14] Y. TASHIRO, On contact structures of tangent sphere bundles, Tôhoku Math. J. 21 (1969), 117–143.

Jong Taek Cho DEPARTMENT OF MATHEMATICS CHONNAM NATIONAL UNIVERSITY GWANGJU 61186 KOREA E-mail: jtcho@chonnam.ac.kr

Sun Hyang Chun Department of Mathematics Chosun University Gwangju 61452 Korea E-mail: shchun@chosun.ac.kr