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UNIT TANGENT SPHERE BUNDLES WITH THE REEB FLOW

INVARIANT RICCI OPERATOR

Jong Taek Cho and Sun Hyang Chun*

Abstract

In this paper, we study unit tangent sphere bundles T1M whose Ricci operator S is

Reeb flow invariant, that is, LxS ¼ 0. We prove that for a 3-dimensional Riemannian

manifold M, T1M satisfies LxS ¼ 0 if and only if M is of constant curvature 1. Also,

we prove that for a 4-dimensional Riemannian manifold M, T1M satisfies LxS ¼ 0

and lSx ¼ 0 if and only if M is of constant curvature 1 or 2, where l ¼ Rð�; xÞx is

the characteristic Jacobi operator.

1. Introduction

In a contact manifold ðM; hÞ, we have a fundamental property that the
Reeb vector field x generates a contact di¤eomorphism, that is, Lxh ¼ 0. For
an associated Riemannian metric g, if x generates an isometric flow, that is,
M satisfies Lxg ¼ 0, then M is said to be K-contact. Recently, Perrone ([11])
introduced the so-called H-contact manifolds, which include K-contact manifolds.
It means that the Reeb vector field x is a harmonic vector field. In the same
paper, it was shown that the Reeb vector field of an H-contact manifold is the
eigenvector of the Ricci operator S.

It is very intriguing to study the interplay between Riemannian manifolds
ðM; gÞ and their unit tangent sphere bundles T1M with the standard contact
metric structure ðh; g; f; xÞ. In particular, the geodesic flow generated by the
Reeb vector field x has a crucial role on the geometry of Riemannian mani-
fold ðM; gÞ. As a classical result, Y. Tashiro ([14]) proved that ðT1M; h; gÞ is a
K-contact manifold if and only if ðM; gÞ has constant sectional curvature 1.

In this paper, we study unit tangent sphere bundles T1M whose Ricci
operator S is Reeb flow invariant, that is, LxS ¼ 0. In Section 3, we prove that
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for a 3-dimensional Riemannian manifold M, T1M satisfies LxS ¼ 0 if and only
if M is of constant curvature 1 (Theorem 2). In Section 4, we investigate the
relationship between the condition LxS ¼ 0 and H-contact condition. Then we
prove that a contact metric manifold M satisfying LxS ¼ 0 is H-contact if
and only if M satisfies lSx ¼ 0, where l is the characteristic Jacobi operator
(Theorem 4). Moreover, for a 2-dimensional Riemannian manifold M, T1M

satisfies LxS ¼ 0 if and only if M is of constant curvature 0 or 1 (Proposition 7).
For a 4-dimensional Riemannian manifold M, we prove that T1M satisfies
LxS ¼ 0 and lSx ¼ 0 if and only if M is of constant curvature 1 or 2
(Theorem 9).

2. The unit tangent sphere bundle

First, we review some fundamental facts on contact metric manifolds. We
refer to [1] for more details. All manifolds are assumed to be connected and of
class Cy. A ð2n� 1Þ-dimensional manifold M is said to be an almost contact
manifold if its structure group of the linear frame bundle is reducible to
Uðn� 1Þ � f1g. This is equivalent to the existence of a ð1; 1Þ-tensor field f,
a vector field x and a 1-form h satisfying

hðxÞ ¼ 1 and f2 ¼ �idþ hn x:ð2:1Þ

Here ðf; x; hÞ is called an almost contact structure. Then one can always find a
compatible Riemannian metric g:

gðfX ; fY Þ ¼ gðX ;Y Þ � hðX ÞhðY Þð2:2Þ

for any vector fields X and Y on M. Such a metric is called an associated
metric and ðM; f; x; h; gÞ is said to be an almost contact metric manifold. The
fundamental 2-form F is defined by FðX ;YÞ ¼ gðX ; fYÞ. If M satisfies in
addition dh ¼ F, then M is called a contact metric manifold, where d is the
exterior di¤erential operator. We call the structure vector field x the Reeb
vector field or the characteristic vector field. From (2.1) and (2.2) it follows that

fx ¼ 0; h � f ¼ 0; hðX Þ ¼ gðX ; xÞ:

Given a contact metric manifold M, we define the structural operator h by
h ¼ 1

2Lxf, where Lx denotes Lie di¤erentiation for x. Then we may observe
that h is self-adjoint and satisfies

hx ¼ 0 and hf ¼ �fh;ð2:3Þ

‘Xx ¼ �fX � fhX ;ð2:4Þ

where ‘ is the Levi-Civita connection on M. From (2.3) and (2.4) we see that
each trajectory of x is a geodesic. We denote by R the Riemannian curvature
tensor defined by

RðX ;Y ÞZ ¼ ‘X ð‘YZÞ � ‘Y ð‘XZÞ � ‘½X ;Y �Z
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for all vector fields X , Y and Z. Along a trajectory of x, the Jacobi operator
l ¼ Rð�; xÞx is a symmetric ð1; 1Þ-tensor field. We call it the characteristic Jacobi
operator. We have

l ¼ flf� 2ðh2 þ f2Þ;ð2:5Þ

‘xh ¼ f� fl� fh2:ð2:6Þ

A contact metric manifold for which x is Killing is called a K-contact manifold.
It is easy to see that a contact metric manifold is K-contact if and only if h ¼ 0
or, equivalently, l ¼ I � hn x. It is well-known that a unit vector field V on a
Riemannian manifold M determines a map between M and T1M. Then V is
said to be harmonic if it is a critical point of the energy functional restricted to
X1ðMÞ, the set of all sections of T1M. In particular, a contact metric manifold
M is said to be an H-contact manifold if its Reeb vector field is harmonic
in above sense. In [11] it was proved that a contact metric manifold M is
H-contact if and only if x is an eigenvector field of the Ricci operator S on
M. From this, it follows that any K-contact manifold is an H-contact manifold.

Let ðM; gÞ be an n-dimensional Riemannian manifold and ‘ the associated
Levi-Civita connection. Its Riemann curvature tensor R is defined by RðX ;Y ÞZ
¼ ‘X‘YZ � ‘Y‘XZ � ‘½X ;Y �Z for all vector fields X , Y and Z on M. The
tangent bundle over ðM; gÞ is denoted by TM and consists of pairs ðp; uÞ,
where p is a point in M and u a tangent vector to M at p. The mapping
p : TM ! M; pðp; uÞ ¼ p, is the natural projection from TM onto M. For a
vector field X on M, its vertical lift X v on TM is the vector field defined by
X vo ¼ oðX Þ � p, where o is a 1-form on M. For the Levi-Civita connection
‘ on M, the horizontal lift X h of X is defined by X ho ¼ ‘Xo. The tangent
bundle TM can be endowed in a natural way with a Riemannian metric ~gg, the
so-called Sasaki metric, depending only on the Riemannian metric g on M. It is
determined by

~ggðX h;Y hÞ ¼ ~ggðX v;Y vÞ ¼ gðX ;YÞ � p; ~ggðX h;Y vÞ ¼ 0

for all vector fields X and Y on M. Also, TM admits an almost complex
structure tensor J defined by JX h ¼ X v and JX v ¼ �X h. Then ~gg is a Hermitian
metric for the almost complex structure J.

The unit tangent sphere bundle p : T1M ! M is a hypersurface of TM given
by gpðu; uÞ ¼ 1. Note that p ¼ p � i, where i is the immersion of T1M into
TM. A unit normal vector field N ¼ uv to T1M is given by the vertical lift of
u for ðp; uÞ. The horizontal lift of a vector is tangent to T1M, but the vertical
lift of a vector is not tangent to T1M in general. So, we define the tangential lift
of X to ðp; uÞ A T1M by

X t
ð p;uÞ ¼ ðX � gðX ; uÞuÞv:

Clearly, the tangent space Tðp;uÞT1M is spanned by vectors of the form X h and
X t, where X A TpM.

104 jong taek cho and sun hyang chun



We now define the standard contact metric structure of the unit tangent
sphere bundle T1M over a Riemannian manifold ðM; gÞ. The metric g 0 on T1M
is induced from the Sasaki metric ~gg on TM. Using the almost complex structure
J on TM, we define a unit vector field x 0, a 1-form h 0 and a (1,1)-tensor field f 0

on T1M by

x 0 ¼ �JN; f 0 ¼ J � h 0 nN:

Since g 0ðX ; f 0Y Þ ¼ 2 dh 0ðX ;Y Þ, ðh 0; g 0; f 0; x 0Þ is not a contact metric structure.
If we rescale this structure by

x ¼ 2x 0; h ¼ 1

2
h 0; f ¼ f 0; g ¼ 1

4
g 0;

we get the standard contact metric structure ðh; g; f; xÞ. Here the tensor f is
explicitly given by

fX t ¼ �X h þ 1

2
gðX ; uÞx; fX h ¼ X t;ð2:7Þ

where X and Y are vector fields on M. From now on, we consider T1M ¼
ðT1M; h; gÞ with the standard contact metric structure.

The Levi-Civita connection ‘ of T1M is described by

‘X tY t ¼ �gðY ; uÞX t;

‘X tY h ¼ 1

2
ðRðu;X ÞY Þh;

‘X hY t ¼ ð‘XY Þ t þ 1

2
ðRðu;YÞXÞh;

‘X hY h ¼ ð‘XY Þh � 1

2
ðRðX ;YÞuÞ t

ð2:8Þ

for all vector fields X and Y on M.
Also the Riemann curvature tensor R of T1M is given by

RðX t;Y tÞZt ¼ �ðgðX ;ZÞ � gðX ; uÞgðZ; uÞÞY t

þ ðgðY ;ZÞ � gðY ; uÞgðZ; uÞÞX t;

RðX t;Y tÞZh ¼ fRðX � gðX ; uÞu;Y � gðY ; uÞuÞZgh

þ 1

4
f½Rðu;X Þ;Rðu;YÞ�Zgh;

RðX h;Y tÞZt ¼ � 1

2
fRðY � gðY ; uÞu;Z � gðZ; uÞuÞXgh

� 1

4
fRðu;YÞRðu;ZÞXgh;

ð2:9Þ
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RðX h;Y tÞZh ¼ 1

2
fRðX ;ZÞðY � gðY ; uÞuÞg t � 1

4
fRðX ;Rðu;Y ÞZÞug t

þ 1

2
fð‘XRÞðu;YÞZgh;

RðX h;Y hÞZt ¼ fRðX ;YÞðZ � gðZ; uÞuÞg t

þ 1

4
fRðY ;Rðu;ZÞX Þu� RðX ;Rðu;ZÞYÞug t

þ 1

2
fð‘XRÞðu;ZÞY � ð‘YRÞðu;ZÞXgh;

RðX h;Y hÞZh ¼ ðRðX ;YÞZÞh þ 1

2
fRðu;RðX ;YÞuÞZgh

� 1

4
fRðu;RðY ;ZÞuÞX � Rðu;RðX ;ZÞuÞYgh

þ 1

2
fð‘ZRÞðX ;Y Þug t

ð2:9Þ

for all vector fields X , Y and Z on M.
Next, to calculate the Ricci curvature tensor r of T1M at the point ðp; uÞ A

T1M, let e1; . . . ; en ¼ u be an orthonormal basis of TpM. Then r is given by

rðX t;Y tÞ ¼ ðn� 2ÞðgðX ;YÞ � gðX ; uÞgðY ; uÞÞ

þ 1

4

Xn
i¼1

gðRðu;X Þei;Rðu;YÞeiÞ;

rðX t;Y hÞ ¼ 1

2
ðð‘urÞðX ;Y Þ � ð‘XrÞðu;YÞÞ;

rðX h;Y hÞ ¼ rðX ;Y Þ � 1

2

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞYÞ;

ð2:10Þ

where r denotes the Ricci curvature tensor of M. We can refer to [4, 9] for
formulas (2.8)–(2.10).

From x ¼ 2uh and (2.8), it follows

‘X tx ¼ �2fX t � ðRuXÞh; ‘X hx ¼ �ðRuXÞ tð2:11Þ

where Ru ¼ Rð�; uÞu is the Jacobi operator associated with the unit vector u.
From (2.4) and (2.11), it follows that

hX t ¼ X t � ðRuX Þ t;

hX h ¼ �X h þ 1

2
gðX ; uÞxþ ðRuX Þh:

ð2:12Þ

The above formulae are also found in [2, 3, 8].
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3. Reeb flow invariant Ricci operators

Suppose that the contact metric manifold M satisfies the condition LxS ¼ 0
for the Ricci operator S and the Reeb vector field x on M. Then from the
definition of Lie di¤erentiation and (2.4) we have

0 ¼ ðLxSÞXð3:1Þ

¼ LxSX � SðLxXÞ

¼ ð‘xSÞX � ‘
SX

xþ Sð‘XxÞ

¼ ð‘xSÞX þ fSX � SfX þ fhSX � SfhX

for any vector field X on M. In (3.1), since ‘xS þ fS � Sf is a symmetric
operator and fhS � Sfh is a skew-symmetric operator, M satisfies the condition
LxS ¼ 0 if and only if it satisfies

‘xS ¼ Sf� fSð3:2Þ

and

fhS ¼ Sfh:ð3:3Þ

Now, we consider the unit tangent sphere bundle T1M over an n-dimensional
Riemannian manifold M satisfying the condition LxS ¼ 0. From (2.7), (2.10)
and (2.12), we can calculate

0 ¼ gðð‘xSÞX t � SfX t þ fSX t;Y tÞð3:4Þ

¼ ð‘xrÞðX t;Y tÞ � rðfX t;Y tÞ � rðX t; fY tÞ

¼ 1

2

Xn
i¼1

fgðð‘uRÞðu;XÞei;Rðu;YÞeiÞ þ gðRðu;XÞei; ð‘uRÞðu;YÞeiÞg

þ 1

2
fð‘urÞðRuX ;YÞ þ ð‘urÞðX ;RuYÞ

� ð‘XrÞðu;RuYÞ � ð‘YrÞðu;RuXÞg

þ 1

2
f2ð‘urÞðX ;YÞ � ð‘XrÞðu;Y Þ � ð‘YrÞðu;XÞg

� 1

2
fgðX ; uÞðð‘urÞðu;Y Þ � ð‘YrÞðu; uÞÞ

þ gðY ; uÞðð‘urÞðu;XÞ � ð‘XrÞðu; uÞÞg;

0 ¼ gðð‘xSÞX t � SfX t þ fSX t;Y hÞð3:5Þ

¼ ð‘xrÞðX t;Y hÞ � rðfX t;Y hÞ � rðX t; fY hÞ

¼ ð‘2
uurÞðX ;Y Þ � ð‘2

uXrÞðu;Y Þ � ðn� 2ÞgðX ;RuYÞ þ rðRuX ;Y Þ
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� 1

2

Xn
i¼1

gðRðu; eiÞRuX ;Rðu; eiÞYÞ � 1

4

Xn
i¼1

gðRðu;X Þei;Rðu;RuYÞeiÞ

þ rðX ;YÞ � 1

2

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞY Þ

� gðX ; uÞ rðY ; uÞ � 1

2

Xn
i¼1

gðRðu; eiÞu;Rðu; eiÞYÞ
( )

� ðn� 2ÞðgðX ;Y Þ � gðX ; uÞgðY ; uÞÞ � 1

4

Xn
i¼1

gðRðu;XÞei;Rðu;Y ÞeiÞ;

0 ¼ gðð‘xSÞX h � SfX h þ fSX h;Y hÞð3:6Þ

¼ ð‘xrÞðX h;Y hÞ � rðfX h;Y hÞ � rðX h; fY hÞ

¼ �
Xn
i¼1

fgðð‘uRÞðu; eiÞX ;Rðu; eiÞYÞ þ gðRðu; eiÞX ; ð‘uRÞðu; eiÞYÞg

� 1

2
fð‘urÞðRuX ;YÞ þ ð‘urÞðX ;RuY Þ

� ð‘XrÞðu;RuY Þ � ð‘YrÞðu;RuXÞg

þ 1

2
f2ð‘urÞðX ;YÞ þ ð‘XrÞðu;YÞ þ ð‘YrÞðu;X Þg;

0 ¼ gðSfhX t � fhSX t;Y tÞð3:7Þ

¼ rðfhX t;Y tÞ þ rðX t; hfY tÞ

¼ 1

2
fð‘YrÞðu;XÞ � ð‘XrÞðu;Y Þ � ð‘urÞðX ;RuYÞ

þ ð‘urÞðRuX ;Y Þ þ ð‘XrÞðu;RuYÞ � ð‘YrÞðu;RuXÞ

þ gðX ; uÞðð‘urÞðu;YÞ � ð‘YrÞðu; uÞÞ

� gðY ; uÞðð‘urÞðu;XÞ � ð‘XrÞðu; uÞÞg;

0 ¼ gðSfhX t � fhSX t;Y hÞð3:8Þ

¼ rðfhX t;Y hÞ þ rðX t; hfY hÞ

¼ ðn� 2ÞðgðX ;Y Þ � gðX ; uÞgðY ; uÞÞ þ 1

4

Xn
i¼1

gðRðu;XÞei;Rðu;Y ÞeiÞ

� ðn� 2ÞgðX ;RuY Þ � 1

4

Xn
i¼1

gðRðu;XÞei;Rðu;RuY ÞeiÞ
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� rðX ;Y Þ þ 1

2

Xn
i¼1

gðRðu; eiÞX ;Rðu; eiÞYÞ

þ gðX ; uÞ rðY ; uÞ � 1

2

Xn
i¼1

gðRðu; eiÞu;Rðu; eiÞY Þ
( )

þ rðRuX ;Y Þ � 1

2

Xn
i¼1

gðRðu; eiÞRuX ;Rðu; eiÞYÞ;

0 ¼ gðSfhX h � fhSX h;Y hÞð3:9Þ

¼ rðfhX h;Y hÞ þ rðX h; hfY hÞ

¼ 1

2
fð‘XrÞðu;YÞ � ð‘YrÞðu;XÞ þ ð‘urÞðRuX ;YÞ

� ð‘urÞðX ;RuYÞ � ð‘RuXrÞðu;YÞ þ ð‘RuYrÞðu;X Þg:

Therefore T1M satisfies LxS ¼ 0 if and only if M satisfies (3.4)–(3.9).

Theorem 1. Let M ¼ ðM; gÞ be an n-dimensional Riemannian manifold of
constant curvature c and let T1M be the unit tangent sphere bundle with the
standard contact metric structure ðh; g; f; xÞ over M. Then T1M satisfies LxS ¼ 0
if and only if M is of constant curvature 1 or n� 2.

Proof. Suppose that M is a space of constant curvature c and T1M satisfies
LxS ¼ 0. Then from (3.5) and (3.8), we obtain two equations;

c3 � ðn� 2Þc2 � cþ ðn� 2Þ ¼ 0;ð3:10Þ
c3 � nc2 þ ð2n� 3Þc� ðn� 2Þ ¼ 0:ð3:11Þ

Therefore we see that T1M satisfies LxS ¼ 0 if and only if c ¼ 1 or c ¼ n� 2.
r

Now, we study the case of 3-dimensional base manifold. Then we have

Theorem 2. Let M ¼ ðM; gÞ be a 3-dimensional Riemannian manifold and
let T1M be the unit tangent sphere bundle with the standard contact metric
structure ðh; g; f; xÞ over M. Then T1M satisfies LxS ¼ 0 if and only if M is of
constant curvature 1.

Proof. Suppose that M is a 3-dimensional Riemannian manifold and let
feig3i¼1 be an orthonormal basis of eigenvectors of the Ricci operator Sp at point
p A M, that is,

Sei ¼ aiei; i ¼ 1; 2; 3:
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It is well-known that the curvature tensor R of 3-dimensional Riemannian
manifold ðM; gÞ is of the following form

RðX ;Y ÞZ ¼ rðY ;ZÞX � rðX ;ZÞY þ gðY ;ZÞSX � gðX ;ZÞSYð3:12Þ

� t

2
fgðY ;ZÞX � gðX ;ZÞYg;

where t denotes the scalar curvature on M. If we put u ¼ e1, X ¼ Y ¼ e2 in
(3.8), then using (3.12), we have

1� a1 � a2 þ
t

2

� �
a21 þ a22 þ 2a1a2 � ta1 � ta2 � a2 þ 1þ t2

4

� �
¼ 0:ð3:13Þ

Similarly, putting u ¼ e2, X ¼ Y ¼ e1 in (3.8), we have

1� a1 � a2 þ
t

2

� �
a21 þ a22 þ 2a1a2 � ta1 � ta2 � a1 þ 1þ t2

4

� �
¼ 0:ð3:14Þ

This time, we put u ¼ e1, X ¼ Y ¼ e3 in (3.8), then we have

1� a1 � a3 þ
t

2

� �
a21 þ a23 þ 2a1a3 � ta1 � ta3 � a3 þ 1þ t2

4

� �
¼ 0:ð3:15Þ

Similarly, putting u ¼ e3, X ¼ Y ¼ e1 in (3.8), we have

1� a1 � a3 þ
t

2

� �
a21 þ a23 þ 2a1a3 � ta1 � ta3 � a1 þ 1þ t2

4

� �
¼ 0:ð3:16Þ

In addition, put u ¼ e2, X ¼ Y ¼ e3 in (3.8) to have

1� a2 � a3 þ
t

2

� �
a22 þ a23 þ 2a2a3 � ta2 � ta3 � a3 þ 1þ t2

4

� �
¼ 0:ð3:17Þ

Similarly, put u ¼ e3, X ¼ Y ¼ e2 in (3.8) to obtain

1� a2 � a3 þ
t

2

� �
a22 þ a23 þ 2a2a3 � ta2 � ta3 � a2 þ 1þ t2

4

� �
¼ 0:ð3:18Þ

From (3.13) and (3.14), we obtain either 1� a1 � a2 þ
t

2
¼ 0 or a1 ¼ a2. Also,

from (3.15) and (3.16), we obtain either 1� a1 � a3 þ
t

2
¼ 0 or a1 ¼ a3. We

deduce from (3.17) and (3.18) that either 1� a2 � a3 þ
t

2
¼ 0 or a2 ¼ a3 holds.

Therefore we may consider the following eight cases.

(I) 1� a1 � a2 þ
t

2
¼ 0 and 1� a1 � a3 þ

t

2
¼ 0 and 1� a2 � a3 þ

t

2
¼ 0,

(II) 1� a1 � a2 þ
t

2
¼ 0 and 1� a1 � a3 þ

t

2
¼ 0 and a2 ¼ a3,
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(III) 1� a1 � a2 þ
t

2
¼ 0 and a1 ¼ a3 and 1� a2 � a3 þ

t

2
¼ 0,

(IV) a1 ¼ a2 and 1� a1 � a3 þ
t

2
¼ 0 and 1� a2 � a3 þ

t

2
¼ 0,

(V) 1� a1 � a2 þ
t

2
¼ 0 and a1 ¼ a3 and a2 ¼ a3,

(VI) a1 ¼ a2 and 1� a1 � a3 þ
t

2
¼ 0 and a2 ¼ a3,

(VII) a1 ¼ a2 and a1 ¼ a3 and 1� a2 � a3 þ
t

2
¼ 0,

(VIII) a1 ¼ a2 and a1 ¼ a3 and a2 ¼ a3.
For cases (I), (V), (VI), (VII), we immediately see that each case gives a
contradiction. In case (II), since t ¼ a1 þ a2 þ a3 and a2 ¼ a3, we have a1 ¼ 2.
Also, from (3.17) we obtain

a22 � 3a2 þ 2 ¼ 0;

that is, a2 ¼ 1 or a2 ¼ 2. Thus, since a1 0 a2, we have a1 ¼ 2 and a2 ¼ a3 ¼ 1.

On the other hand, if we set u ¼ 1ffiffiffi
2

p ðe1 þ e2Þ and X ¼ Y ¼ e3 in (3.8), then
by the direct calculation we have

1� a3 þ
1

2
a1 þ a3 �

t

2

� �2
þ 1

2
a2 þ a3 �

t

2

� �2( )
ð3:19Þ

� 1� 1

2
a1 þ a3 �

t

2

� �
� 1

2
a2 þ a3 �

t

2

� �� �
¼ 0:

But, for a1 ¼ 2 and a2 ¼ a3 ¼ 1, (3.19) does not hold. By similar arguments to
those for case (II), we see that the cases (III) and (IV) cannot occur. Lastly,
in case (VIII), we immediately see that M is Einstein and hence M is of
constant curvature. Due to Theorem 1, M is of constant curvature 1 and the
converse is evident. r

Together with Y. Tashiro’s result, we have

Corollary 3. Let ðM; gÞ be a 3-dimensional Riemannian manifold. Then
the unit tangent sphere bundle T1M satisfies LxS ¼ 0 if and only if x is a Killing
vector field.

4. The case of 4-dimensional base manifolds

First, we investigate the relationship between the condition LxS ¼ 0 and
H-contact condition on contact metric manifold. Let M be a contact metric
manifold whose Ricci operator S is Reeb flow invariant. Then from (3.3), we
have

hSx ¼ 0:ð4:1Þ
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Di¤erentiating (4.1) with respect to x and using (3.2), we have

0 ¼ ð‘xhÞSxþ hðSf� fSÞx:ð4:2Þ
From (2.3), (4.1) and (4.2), we see that M satisfies ð‘xhÞSx ¼ 0. We obtain
from (2.6) that

0 ¼ ð‘xhÞSxð4:3Þ

¼ ðf� fh2 � flÞSx

¼ fSx� flSx:

Applying f to (4.3), we obtain

�Sxþ hðSxÞxþ lSx ¼ 0;ð4:4Þ
and hence from (4.4), we have

Theorem 4. Let M be a contact metric manifold and assume that M satisfies
LxS ¼ 0. Then M is H-contact if and only if M satisfies lSx ¼ 0.

Also, from the above theorem we can easily obtain

Corollary 5. If a contact metric manifold M satisfies LxS ¼ 0 and lS ¼
Sl, then M is H-contact.

In [7] the first named author classified M satisfying LxS ¼ 0 for the dimension 3.
Indeed, in the proof of Main Theorem in [7], we have

Proposition 6. Let M be a 3-dimensional contact metric manifold. If M
satisfies LxS ¼ 0, then M is H-contact.

Boeckx and Vanhecke ([5]) proved that the unit tangent sphere bundle of a
2- or 3-dimensional Riemannian manifold is H-contact if and only if the base
manifold is of constant curvature. Calvaruso and Perrone ([6]) obtained the same
result in the case of an nðb 4Þ-dimensional conformally flat manifold. Thus,
from the result of Boeckx and Vanhecke, Proposition 6 and Theorem 1, we have

Proposition 7. Let M ¼ ðM; gÞ be a 2-dimensional Riemannian manifold
and let T1M be the unit tangent sphere bundle with the standard contact metric
structure ðh; g; f; xÞ over M. Then T1M satisfies LxS ¼ 0 if and only if M is of
constant curvature 0 or 1.

Also, we have

Proposition 8. Let M ¼ ðM; gÞ be an nðb 4Þ-dimensional conformally flat
manifold and let T1M be the unit tangent sphere bundle with the standard contact
metric structure ðh; g; f; xÞ over M. If T1M satisfies LxS ¼ 0 and lSx ¼ 0, then
M is of constant curvature 1 or n� 2.
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Now we concentrate on the case of dim M ¼ 4. Then, we have

Theorem 9. Let M ¼ ðM; gÞ be a 4-dimensional Riemannian manifold and
let T1M be the unit tangent sphere bundle with the standard contact metric
structure ðh; g; f; xÞ over M. Then T1M satisfies LxS ¼ 0 and lSx ¼ 0 if and
only if M is of constant curvature 1 or 2.

Proof. Suppose that the unit tangent sphere bundle T1M over an n-
dimensional Riemannian manifold M satisfies the condition LxS ¼ 0 for the
Ricci operator S on T1M. Then T1M satisfies LxS ¼ 0 if and only if M satisfies
(3.4)–(3.9). In (3.8) we put X ¼ ea, Y ¼ eb, u ¼ ec. Then we have

ðn� 2Þðdab � dacdbcÞ þ
1

4

Xn
i; j¼1

RcaijRcbij � ðn� 2ÞRaccb �
1

4

Xn
i; j;k¼1

RcaijRbcckRckijð4:5Þ

� rab þ
1

2

Xn
i; j¼1

RciajRcibj þ dac rbc �
1

2

Xn
i; j¼1

RcicjRcibj

 !

þ
Xn
k¼1

Racckrkb �
1

2

Xn
i; j;k¼1

RacckRcikjRcibj ¼ 0;

where dab denotes the Kronecker’s delta, Rabcd ¼ gðRðea; ebÞec; edÞ and rab ¼
rðea; ebÞ. For a ¼ b0 c in (4.5), we get

4ðn� 2Þ þ
Xn
i; j¼1

R2
caij � 4ðn� 2ÞRacca �

Xn
i; j;k¼1

RcaijRacckRckijð4:6Þ

� 4raa þ 2
Xn
i; j¼1

R2
ciaj þ 4

Xn
k¼1

Racckrka � 2
Xn

i; j;k¼1

RacckRcikjRciaj ¼ 0:

From Theorem 4, we see that T1M satisfying LxS ¼ 0 and lSx ¼ 0 has an
H-contact structure. We suppose that n ¼ 4. Then, owing to a result in [10],
M is 2-stein, that is, an Einstein manifold satisfying

Pn
i; jðRuiujÞ2 ¼ mðpÞjuj2 for

all u A TpM, p A M, where Ruiuj ¼ gðRðu; eiÞu; ejÞ, juj2 ¼ gðu; uÞ and m is a real-
valued function on M. Now, since M is Einstein i.e., r ¼ gg (g is a constant on
M), we may choose an orthonormal basis feig4i¼1 (known as the Singer-Thorpe
basis) at each point p A M such that

R1212 ¼ R3434 ¼ l1; R1313 ¼ R2424 ¼ l2; R1414 ¼ R2323 ¼ l3;

R1234 ¼ m1; R1342 ¼ m2; R1423 ¼ m3;

Rijkl ¼ 0 whenever just three of the indices i; j; k; l

are distinct ðcf : ½13�Þ:

8>>><
>>>:

ð4:7Þ

Note that

m1 þ m2 þ m3 ¼ 0ð4:8Þ
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by the first Bianchi identity and

l1 þ l2 þ l3 ¼ � t

4
;ð4:9Þ

where t is the scalar curvature of M.

It is also known that a 4-dimensional Einstein manifold M is 2-stein if and
only if

m1 ¼ l1 þ
t

12
; m2 ¼ l2 þ

t

12
; m3 ¼ l3 þ

t

12
ð4:10Þ

or

�m1 ¼ l1 þ
t

12
; �m2 ¼ l2 þ

t

12
; �m3 ¼ l3 þ

t

12

holds for any Singer-Thorpe basis feig4i¼1 at each point p A M (cf. [12]).
On the other hand, if we put a ¼ b ¼ 1, c ¼ 2 and a ¼ b ¼ 3, c ¼ 4 in (4.6),

then, using (4.7), we have

ð1þ l1Þð2g� 4� 2l21 � m2
1 � m2

2 � m2
3Þ ¼ 0:ð4:11Þ

Similarly, put a ¼ b ¼ 1, c ¼ 3 and a ¼ b ¼ 2, c ¼ 4 in (4.6) to have

ð1þ l2Þð2g� 4� 2l22 � m2
1 � m2

2 � m2
3Þ ¼ 0:ð4:12Þ

For a ¼ b ¼ 1, c ¼ 4 and a ¼ b ¼ 2, c ¼ 3 in (4.6), we have

ð1þ l3Þð2g� 4� 2l23 � m2
1 � m2

2 � m2
3Þ ¼ 0:ð4:13Þ

From (4.11)–(4.13), we get the following cases.
(i) l1 ¼ l2 ¼ l3 ¼ �1,
(ii) l1 ¼ l2 ¼ �1 and 2g ¼ 4þ 2l23 þ m2

1 þ m2
2 þ m2

3 ,

(iii) l1 ¼ l3 ¼ �1 and 2g ¼ 4þ 2l22 þ m2
1 þ m2

2 þ m2
3 ,

(iv) l2 ¼ l3 ¼ �1 and 2g ¼ 4þ 2l21 þ m2
1 þ m2

2 þ m2
3 ,

(v) l1 ¼ �1 and l22 ¼ l23 ,

(vi) l2 ¼ �1 and l21 ¼ l23 ,

(vii) l3 ¼ �1 and l21 ¼ l22 ,

(viii) l21 ¼ l22 ¼ l23 .

From case (i), we see that M is of constant curvature 1. In case (ii), we get from
(4.9) and (4.10)

l3 ¼ 2� t

4
; m1 ¼ m2 ¼ �1þ t

12
; m3 ¼ 2� t

6
:ð4:14Þ

Applying (4.14) in case (ii), we have

ðt� 12Þðt� 9Þ ¼ 0:ð4:15Þ
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Similarly, in cases (iii) and (iv), we get (4.15). But, the case t ¼ 12 yields again
that M is of constant curvature 1. For the case t ¼ 9, from (4.14) we get
l1 ¼ l2 ¼ �1, l3 ¼ � 1

4 , m1 ¼ m2 ¼ � 1
4 and m3 ¼ 1

2 . Use (4.7) to check (3.5), a
necessary equation for T1M to satisfy LxS ¼ 0. Indeed, the right hand side of

(3.5) for u ¼ e1, X ¼ Y ¼ e2, for example, becomes �4þ t

2
� 2l21 � m2

1 � m2
2 � m2

3 .

It gives a contradiction. In case (v), we consider two cases l2 ¼ l3 or l2 ¼ �l3.
If l2 ¼ l3, from (4.9) and (4.10) we get

l2 ¼ l3 ¼
1

2
� t

8
; m1 ¼ �1þ t

12
; m2 ¼ m3 ¼

1

2
� t

24
:ð4:16Þ

From (4.12) and (4.16), we obtain

ðt� 12Þ2 ¼ 0;

that is, l2 ¼ l3 ¼ �1, which yields that this is a contradiction. If l2 ¼ �l3, from
(4.9) and (4.10) we get

t ¼ 4; m1 ¼ � 2

3
; m2 ¼ l2 þ

1

3
; m3 ¼ l3 þ

1

3
:ð4:17Þ

From (4.12) and (4.17), we obtain

3l22 þ 2 ¼ 0;

which can not occur. Similarly, the cases (vi) and (vii) can not hold.
Lastly, we consider the case (viii);

l21 ¼ l22 ¼ l23 :ð4:18Þ

Then, from (4.8), (4.9), (4.10) and (4.18) we obtain the following four cases.

(a) l1 ¼ l2 ¼ l3 ¼ � t

12
and m1 ¼ m2 ¼ m3 ¼ 0,

(b) l1 ¼ l2 ¼ � t

4
, l3 ¼

t

4
and m1 ¼ m2 ¼ � t

6
, m3 ¼

t

3
,

(c) l1 ¼ l3 ¼ � t

4
, l2 ¼

t

4
and m1 ¼ m3 ¼ � t

6
, m2 ¼

t

3
,

(d) l2 ¼ l3 ¼ � t

4
, l1 ¼

t

4
and m2 ¼ m3 ¼ � t

6
, m1 ¼

t

3
.

In cases (b)–(d), we get from (4.12)

7t2 � 12tþ 96 ¼ 0;

which can not occur. In case (a), we get from (4.12)

ðt� 12Þðt� 24Þ ¼ 0:

Therefore M is of constant sectional curvature 1 or 2. Since the unit tangent
sphere bundle of a space of constant curvature is H-contact ([5]), the converse
follows from Theorem 1. r
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