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SUBLINEAR TRACKING IN THURSTON’S METRIC FOR

RANDOM WALKS

Huiping Pan

Abstract

In this paper, we prove the sublinear tracking property in Thurston’s metric for

sample paths of random walks on mapping class group.

1. Introduction

Let S be a closed surface of genus gb 2. A marked Riemann surface of
genus g is a pair ðX ; f Þ consisting of a Riemann surface X of genus g and
an orientation-preserving homeomorphism f : S ! X . Two marked Riemann
surfaces ðX1; f1Þ and ðX2; f2Þ are equivalent if there exists a conformal map
h : X1 ! X2 in the homotopy class of f2 � f �1

1 . The Teichmüller space of S,
denoted by Tg, is the set of equivalence classes of marked Riemann surfaces of
genus g.

The Teichmüller distance between two equivalence classes ½X1; f1� and ½X2; f2�
is defined as

dT ð½X1; f1�; ½X2; f2�Þ ¼
1

2
log inf

f
Kð f Þ

where the infimum is taken over all quasiconformal mapping f : X1 ! X2 in the
homotopy class of f2 � f �1

1 and Kð f Þ is the quasiconformal dilation of f . It
is well-known that the Teichmüller distance induces a complete Finsler metric
on Tg. Moreover, any two points in Tg are connected by a unique Teichmüller
geodesic.

The mapping class group ModðSÞ of S is the group of isotopy classes of
orientation-preserving homeomorphisms of S. It acts isometrically on Tg with
respect to the Teichmüller metric. There are some other natural (weak) metrics
on Tg, e.g. the Thurston metric (see §2 for definition). Unlike the Teichmüller
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metric, the Thurston metric is asymmetric. Furthermore, geodesics connecting
two points in Tg under the Thurston metric are not unique.

The aim of this paper is to extend a theorem of Tiozzo [18] on sublinear
tracking in Teichmüller distance for random walks on ModðSÞ to the setting of
the Thurston metric. Recently Walsh [20] showed that the Thurston compacti-
fication of Teichmüller space is homeomorphic to the horofunction compactifi-
cation of the Thurston metric, which is useful to understanding random walks
on mapping class groups [10, 6]. This is one motivation behind our research.

1.1. Random walks on ModðSÞ. Let m be a probability distribution on
ModðSÞ, which induces a product probability distribution P :¼ mN on the sample
space ModðSÞN (an infinite product space of ModðSÞ). The random walk on
ModðSÞ is defined by drawing an element gn each time independently with
probability m from ModðSÞ and considering the product on ¼ g1g2 � � � gn. If we
fix a point x in Tg, then fonxg is a sequence of points in Tg.

We recall a few concepts that will be used later. In the following, dð� ; �Þ
would be a metric on the Teichmüller space such that ModðSÞ acts isometrically:

� The probability distribution m has finite first moment if the average step is
finite, that is, ð

ModðSÞ
dðx; gxÞ dmðgÞ < y:

� A sample path fonxg has linear drift with respect to the metric d if there
exists a constant Ab 0 such that

lim
n!y

dðx;onxÞ
n

¼ A:

� The random walks has sublinear tracking property if almost every sample
path fonxg can be approximated by some geodesic ray g : ½0;yÞ ! Tg with
sublinear error, i.e.

lim
n!y

dðonx; gÞ
n

¼ 0:

If the distribution m has finite first moment, it is an immediate conse-
quence of Kingman’s subadditive ergodic theorem that P-a.e. sample path fonxg
has linear drift (for more details about linear drift, we refer to [9]). In [7],
Kaimanovich and Masur proved that if the subgroup generated by the support of
m is non-elementary, then P-a.e. sample path fonxg converges to some point to
the Thurston boundary of Tg. Recently, Tiozzo [18] solved an open question
of Kaimanovich [8] by showing that random walks on ModðSÞ has sublinear
tracking property with respect to the Teichmüller metric:

Theorem 1.1 ([18, Theorem 18]). Let m be a probability distribution on
ModðSÞ with finite first moment with respect to the Teichmüller metric whose
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support generates a non-elementary group. Then there exists A > 0 such that for
any x A Tg and for P-a.e. sample path fonxg there exists a Teichmüller geodesic
ray g : ½0;yÞ ! Tg with gð0Þ ¼ x and such that

lim
n!y

dTðonx; gðAnÞÞ
n

¼ 0:

1.2. Statement of main results. In this paper, we prove that random walks
on ModðSÞ has sublinear tracking property with respect to the Thurston metric.
Since the Thurston metric is asymmetric, we revise the finite first moment condi-
tion by requiring that the probability measure m satisfies the following symmetric
finite first moment property:

ð
ModðSÞ

maxfdðx; gxÞ; dðgx; xÞg dmðgÞ < y:

Theorem 1.2. Let m be a distribution on ModðSÞ with symmetric finite first
moment with respect to the Thurston metric and whose support generates a non-
elementary group. Then there exists A > 0 such that for any x A Tg and for P-a.e.
sample path fonxg there exists a stretch ray or anti-stretch ray g : ½0;yÞ ! Tg

such that

lim
n!y

Kðonx; gÞ
n

¼ 0 and lim
n!y

Kðg;onxÞ
n

¼ 0;

where K represents the Thurston metric.

Remark 1.3. 1) A stretch ray g : ½0;yÞ ! Tg is a geodesic ray of the
Thurston metric, a.e.

Kðgðt1Þ; gðt2ÞÞ ¼ t2 � t1; E0a t1 a t2:

We can extend g to a stretch line g : ð�y;yÞ ! Tg and the anti-stretch ray
g� : ½0;yÞ ! Tg is defined by going backward, that is,

g�ðtÞ ¼ gð�tÞ; tb 0:

Since the asymmetry of the Thurston metric, an anti-stretch ray may not be a
geodesic ray.

2) The Teichmüller metric is an upper bound for the Thurston metric.
However, they are not quasi-isometric [12]. There exist sequences fxng, fyng in
Teichmüller space such that dTðxn; ynÞ ! y while Kðxn; ynÞ ! 0 as n ! y, see
From [4, 13].
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for many useful discussions and corrections during the preparation of this paper.
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2. Preliminaries

2.1. Thurston metric. By the Uniformization Theorem, every complex
structure on S is corresponding to a hyperbolic structure (a complete Rieman-
nian metric of constant curvature �1) on S. As a result, we can define the
Teichmüller space Tg as the set of equivalence classes of marked hyperbolic
structures on S. For simplicity, we shall always denote the equivalence class of
a marked hyperbolic structure (Riemann surface) in Tg by x, without explicit
reference to the marking or to the equivalence relation.

Let S be the set of isotopy classes of simple closed curves on S. Endow S
with a hyperbolic structure, each a A S has a unique geodesic representation.
For any x A Tg, we choose a marked hyperbolic structure ðX ; f Þ as a represen-
tation of x and define lxðaÞ as the length of the geodesic representation of f ðaÞ
on X . The definition of lxðaÞ is independent on the choice of ðX ; f Þ in the
Teichmüller equivalence class and it defines a function on Tg �S.

The Thurston metric is defined as

Kðx; yÞ ¼ log sup
a AS

lyðaÞ
lxðaÞ

for any x; y A Tg. It satisfies the following properties [19]:
� Kðx; yÞb 0 and Kðx; yÞ ¼ 0 , g ¼ h;
� Kðx; yÞaKðx; zÞ þ Kðz; yÞ;
� There exist x; y A Tg such that Kðx; yÞ0Kðy; xÞ.
Thus, the Thurston metric is asymmetric. Thurston [19] prove that it is

Finsler and any two points in Tg can be joined by a geodesic which is a finite
concatenation of stretch line segments (but in general such a geodesic is not
unique). We shall recall the construction of stretch lines in §3.

Since the Thurston metric is asymmetric, we can define a new metric K � as

K �ðx; yÞ ¼ Kðy; xÞ
for any x; y A Tg: Generally, K � is not comparable to K . Choi and Rafi [4]
proved that they are comparable on the thick part of Tg. In this paper, we will
use the following lemma.

Lemma 2.1. Fix x A Tg, there exists a positive constant C depending on x
and the topology of S such that

Kðx; yÞa 3K �ðx; yÞ þ Cð1Þ
for any y A Tg.

Proof. The proof is similar to that of Proposition 4.1 in [4]. Let lðxÞx
infflxðaÞ j a A Sg. Choose a constant e which is less than lðxÞ and the Margulis
constant. Let Thicke x fz A Tg j lzðaÞb e for any a A Sg: From Theorem B in
[4], there is a constant C1 depending on e and the topology of S such that

jKðy; zÞ � K �ðy; zÞjaC1ð2Þ
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for any y; z A Thicke. Denote by Gy the set of homotopy classes of simple
closed curves whose length on y is less than e. It is clear that any two elements
of Gy are disjoint. Extend Gy to a pants decomposition ~GGy and parameterize
Tg by the Fenchel-Nielsen coordinates ðlða1Þ; tða1Þ; . . . ; lða3g�3Þ; tða3g�3ÞÞ, where
a1; . . . ; a3g�3 A ~GGy (see [2] for more details about Fenchel-Nielsen coordinates).
The twists parameters tða1Þ; . . . ; tða3g�3Þ are normalized such that tðaiÞ ¼ 1
corresponds to the positive Dehn-twist along ai. To each y A Tg we associate
a point y A Thicke as follows. If y A Thicke, then y ¼ y. If y A TgnThicke, the
Fenchel-Nielsen coordinates of y is obtained from that of y by changing lðaÞ to
e for any a A Gy and keeping the others unchanged. It follows from [4, Lemma
3.3 and Theorem 3.4] that there is a constant C2 depending on e and the topology
of S, such that

maxfKðy; yÞ;K �ðy; yÞg � sup
a AGy

log
lyðaÞ
lyðaÞ

� ������
�����aC2:ð3Þ

It follows that

Kðy; yÞa sup
a AGy

log
lyðaÞ
lyðaÞ

� �
þ C2 aK �ðy; yÞ þ C2:ð4Þ

On the other hand, since lðxÞ > e,

sup
a AGy

log
lyðaÞ
lyðaÞ

� �
¼ sup

a AGy

log
e

lyðaÞ

� �
aK �ðx; yÞ;

hence

K �ðy; yÞaK �ðx; yÞ þ C2:ð5Þ

Combining the inequalities above, we get

Kðx; yÞaKðx; yÞ þ Kðy; yÞ
aK �ðx; yÞ þ K �ðy; yÞ þ C1 þ C2 ðby ð2Þ and ð4ÞÞ
a ðK �ðx; yÞ þ K �ðy; yÞÞ þ K �ðy; yÞ þ C1 þ C2 ðby ð4Þ and ð5ÞÞ
a 3K �ðx; yÞ þ C1 þ 3C2:

Since e depends on x, therefore the constants C1, C2 depend on x and the
topology of S. r

We need the following property of the Thurston metric due to Papadopoulos
and Théret.

Proposition 2.2 ([15], Proposition 5). For any o A Tg and for any R > 0, the
closed balls B0ðRÞx fy A Tg jKðo; yÞaRg and B�

o ðRÞx fy A Tg jKðy; oÞaRg,
centered at o A Tg and of radius R, are compact for the usual topology.
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2.2. Measured foliations and Thurston compactification. We briefly recall
the Thurston theory of measured foliations. For details we refer to [5].

A measured foliation ðF ; mÞ on the surface S is a foliation F equipped with
a transverse invariant measure m. More precisely, ðF ; mÞ is determined by a
finite set fQig, called the singularities of F , and an atlas of coordinate charts
ðxj; yjÞ : Uj ! R2 on the complement of fQig such that the transition functions
satisfy:

xj ¼ fkjðxk; ykÞ; yj ¼Gyk þ Constant

where Uj \Uk 0j. Besides, every singularity Qi has pi-prongs with pi b 3.
The leaves of the foliation are given by the lines yi ¼ Constant and the trans-
verse measure m is given by jdyj.

The intersection number of ðF ; mÞ with a (isotopy class of ) simple closed
curve a is defined by

iðF ; m; aÞ ¼ inf
a 0

ð
a 0
jdyj;

where a 0 is taken over all simple closed curves isotopic to a. For simplicity,
sometimes we write F and iðF ; aÞ instead of ðF ; mÞ and iðF ; m; aÞ if there is no
ambiguity about the transverse measure m.

Two measured foliations F1 and F2 are equivalent if iðF1; aÞ ¼ iðF2; aÞ for
every a A S. Equivalently, F1 can be deformed into F2 through a homeo-
morphism isotopic to the identity and through Whitehead moves. We denote by
MFðSÞ the space of equivalence classes of measured foliations on S. It was
shown by Thurston that MFðSÞ is homeomorphic to the Euclidean space of
dimension 6g� g.

Let RS
þ be the space of non-negative functionals on S. We endow S with

the discrete topology and RS
þ with the corresponding product topology. The

projective space of RS
þ will be denoted by PRS

þ . There is a natural embedding
of MFðSÞ into RS

þ defined by

MFðSÞ ! RS
þ

F 7! iðF ; aÞð Þa AS:

This induces an embedding from the space of projective classes of measured
foliations, denoted by PMFðSÞ, into PRS

þ . The image of PMFðSÞ in PRS
þ is

the so called Thurston boundary, which is homeomorphic to a sphere of dimen-
sion 6g� 7.

There is another natural embedding, from Tg to RS
þ , given by

Tg ! RS
þ

x 7! lxðaÞð Þa AS:

It was observed by Thurston that the projection of the above map to PRS
þ is also

an embedding. Moreover, the closure of the image of Tg in PRS
þ is a compact
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set, called the Thurston compactification of Tg. The boundary of the Thurston
compactification is the Thurston boundary, which, as we mentioned above, can
be identified with the space of projective measured foliations PMFðSÞ.

A measured foliation ðF ; mÞ is minimal if iðF ; m; aÞ > 0 for every simple
closed curve a. ðF ; mÞ is uniquely ergodic if the transverse measure m admitted on
the underlying foliation F is unique up to a positive scalar.

2.3. Measured laminations. Let us endow S with a hyperbolic structure
m0. A geodesic lamination on S is a closed subset of S consisting of disjoint
union of complete simple geodesics (called the leaves) on S. Each leaf is either
a simple closed geodesic or a bi-infinite geodesic. Denote by Lm0

ðSÞ the space
of all geodesic laminations on S. Since geodesic laminations are closed subsets
of S, we use the Hausdor¤ distance to define the topology on LðSÞ.

Proposition 2.3 (see [1]). The space Lm0
ðSÞ with the Hausdor¤ distance is

compact.

It turns out that the notion of geodesic lamination is independent on the
choice of hyperbolic structure on S. For two di¤erent choice of hyperbolic
metrics m0 and m1, there is a natural homeomorphism between Lm0

ðSÞ and
Lm1

ðSÞ. We can use LðSÞ to represent the space of geodesic laminations on
S without reference to any particular hyperbolic metric on S.

A measured geodesic lamination is a geodesic lamination L equipped with a
full support transverse invariant measure m, which means that if a and b are
arcs transverse to L and are homotopic through transverse arcs with endpoints
not contained in L then mðaÞ ¼ mðbÞ. The intersection number iðm; aÞ of m with
a simple closed curve a is defined in the same way as that of a measured
foliation. As a consequence, every measured geodesic lamination can be viewed
as a functional on the space of isotopy classes of simple closed curves. So
the space of measured geodesic laminations MLðSÞ can also be embedded into
RS

þ . In fact, there is one-to-one correspondence between MFðSÞ and MLðSÞ
as described by Levitt in [11].

Theorem 2.4 ([11], Theorem 1, 2). Let X be a closed orientable hyperbolic
surface.

A foliation F on X is canonically associated with a geodesic lamination gðF Þ
and a family eðF Þ of leaves of this lamination; this family is at most countably
infinite and contains all isolated leaves of gðFÞ. If F and F 0 are topologically
equivalent foliations, then gðF Þ ¼ gðF 0Þ and eðFÞ ¼ eðF 0Þ.

Given a lamination g and a family e of leaves of g as above, there exists a
foliation F such that gðF Þ ¼ g and eðF Þ ¼ e. This foliation is unique up to topo-
logical equivalence.

Given a transverse measure m of F , there exists a unique transverse measure
m 0 of gðFÞ satisfying iðF ; m; aÞ ¼ iðgðF Þ; m 0; aÞ for every simple closed curve a on
S.
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Hence, the space of projective measured geodesic laminations PMLðSÞ can
also be viewed as the Thurston’s boundary of Tg.

Remark 2.5. There are geodesic laminations which do not admit a full
support transverse invariant measure. In fact, a geodesic lamination admits a
full support transverse invariant measure if and only if it contains no isolated
leaves. Here an isolated leaf a of a lamination L means that for each x A a
there exists a neighbourhood O of x such that O \ L has only one connected
component.

Definition (Measure topology on MLðSÞ and MFðSÞ). Let fmkg
y
k¼0 be a

sequence in MLðSÞ (resp. MFðSÞ, we say mk converges to m in the measure
topology if for any simple closed curve a, iðmk; aÞ converges to iðm; aÞ as k tends
to infinity.

3. Some properties of Teichmüller space with the Thurston metric

3.1. Stretch lines. We sketch the construction of a ‘‘stretch line’’ which is
a special kind of geodesic line under the Thurston metric. Let h be a hyperbolic
structure on S and m a complete geodesic lamination on S (a complete geodesic
lamination is a lamination whose complement on S consists of ideal triangles).
We define a L-Lipschitz homeomorphism for every ideal triangle. Each corner
of an ideal triangle can be foliated by horocycles. Extending these foliations
until they fill all but region in the center bounded by three horocycles (see Figure
1(a)). The L-Lipschitz homeomorphism can be constructed by fixing the central

Figure 1. Horocyclic foliation on an ideal triangle. In figure (a) the horocycles foliate the ideal

triangle except the center region; in figure (b), the center region has been squeezed to a ‘‘Y’’ piece and

the desired foliation is obtained.
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region, and mapping a horocycle which has distance t from the central region to
the horocycle with distance Lt. These L-Lipschitz homeomorphisms defines a
L-Lipschitz homeomorphism f ðh; m;LÞ of S to itself, and hence a new hyperbolic
structure h 0 which is the push-forward of g by f ðh; m;LÞ. Sometimes, the new
hyperbolic structure h 0 may be equivalent to h. For example, a L-Lipschitz
homeomorphism on an ideal triangle does not change the hyperbolic structure
on it because all the hyperbolic structures on an ideal triangle are isometric. But
if S is a closed surface with genus gb 2, which is the case we considered here, h 0

is di¤erent from h. Furthermore, the Thurston distance is Kðh; h 0Þ ¼ log L. Let
L vary among positive numbers, we get a line stretchðh; m;LÞ in the Teichmüller
space Tg. It is a geodesic line under the Thurston metric and we call it a
‘‘stretch line’’.

3.2. Cataclysm coordinate system. In [19], Thurston introduced a cata-
clysm coordinate system for Teichmüller space.

Fix a hyperbolic structure m on the surface S. For any complete geodesic
lamination m, we denote by MFðmÞ the set of measured foliation (class) that are
transverse to m. Here a measured foliation F is transverse to m means that no
disk can be bounded by two arcs such that one is from a leaf of F and the other
is from a leaf of m. As we describe in Section 3.1, the complement of the center
region of an ideal triangle can be foliated by horocycles. If we squeeze the
horocycles with the endpoints in m unmoved such that the center region becomes
a ‘‘Y’’ piece (see Figure 1(b)), then we get a foliation on each ideal triangle
and hence a foliation FmðmÞ on the surface S. Furthermore, we can associate
a transverse measure to FmðmÞ by identifying iðFmðmÞ; gÞ with the length of g
under the hyperbolic metric m for any arc g contained in a leaf of m. So we
get a measured foliation (still denoted as FmðmÞ) on S, which we call horocyclic
measured foliation associated to m. If h is a hyperbolic metric which is equivalent
to m, then the horocyclic measured foliation FmðhÞ is isotopic to FmðmÞ. This
enables us to associate to each m in Tg a well-defined element in MFðmÞ. We
denote by fm : Tg ! MFðmÞ the resulting map.

Theorem 3.1 ([19], §9). For any complete geodesic lamination m on S, the
map fm : Tg ! MFðmÞ is a homeomorphism.

The global coordinates for Teichmüller space that are provided by this map
fm are called by Thurston cataclysm coordinates.

Now we consider a special kind of complete geodesic lamination, that is,
chain recurrent lamination. A lamination m is called chain recurrent if for any e
and for any x A m there is a closed e-trajectory of m through x, that is, a closed
unit speed path in the surface such that for any interval of length 1 on the path
there is an interval of length 1 on some leaf of m such that the two paths remain
within e of each other in the C1 sense. Any measured lamination is chain
recurrent ([19], [16]). Denote by CLðSÞ the set of complete, chain recurrent
geodesic laminations on S. We have the following Theorem.
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Theorem 3.2 (Cataclysm coordinate system [19], §10). Let U � CLðSÞ�
MFðSÞ be a set consisting of pairs ðm;F Þ where F is a measured foliation
transverse to m. If we equip U with the product topology of the Hausdor¤
topology on CLðSÞ and the weak topology on MFðSÞ. Then there exists a
continuous map c : U ! Tg.

So for a given pair ðm;FÞ A U , we have a stretch line gm;F ,

gm;F ðtÞx stretchðcðm;FÞ; m; expðtÞÞ
directed by m and starting at cðm;FÞ. Moreover, the stretch line gm; sF is the
same as gm;F after reparametrization (for more details about cataclysm coordinate
system and stretch lines we refer to [19]).

3.3. Two auxiliary functions. Fix a point o A Tg, we define a function D
on U as

D: U ! Rþ

ðm;FÞ 7! Kðgm;F ; oÞ ¼ inf
t AR

Kðgm;F ðtÞ; oÞ

where Kð ; Þ is the Thurston metric.

Proposition 3.3. D is continuous.

Proof. Fix a point m A Tg, we have a hyperbolic structure on S, then CLðSÞ
has a Hausdor¤ metric (This is the only situation we need m). Let ðmn;FnÞ A U
with ðmn;FnÞ ! ðm0;F0Þ, as n ! y. We need to show limn!y Dðmn;FnÞ ¼
Dðm0;F0Þ.

Pick the point x0 ¼ rm0;F0
ðt0Þ A rm0;F0

which realizes Dðm0;F0Þ. So x0 cor-
responds to cðm; expðt0ÞFÞ in the cataclysm coordinates. Choose the points xn ¼
cðmn; expðt0ÞFnÞ A rmn;Fn

. We get

lim
n!y

xn ¼ x0;

lim sup
n!y

Dðmn;FnÞa lim
n!y

Kðxn; oÞ ¼ Kðx0; oÞ ¼ Dðm0;F0Þ:

To prove the opposite direction, we choose a subsequence ykn ¼ cðmkn ; expðtknÞFknÞ
A rmkn ;Fkn

realizing Dðmkn ;FknÞ, so that

lim
n!y

Kðykn ; oÞ ¼ lim inf
n!y

Dðmn;FnÞ:

It follows from Proposition 2.2 that fykng stays in a compact subset of Tg. Then
there is a subsequence of ftkng converging to some positive number tk0 . For
simplicity we still denote the subsequence as ftkng. Hence

lim
n!y

ykn ¼ cðm0; expðtk0ÞF0Þx y0 A gm0;F0
;

where we use the fact limn!yðmn;FnÞ ¼ ðm0;F0Þ:
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Then, we get the opposite inequality

Dðm0;F0ÞaKðy0; oÞ ¼ lim
n!y

Kðykn ; oÞ ¼ lim inf
n!y

Dðmn;FnÞ: r

By the one-to-one correspondence between MFðSÞ and MLðSÞ, we can
replace the domain U of the map D by U 0ð� CLðSÞ �MLðSÞÞ consisting
of transverse pairs ðm; lÞ where the corresponding measured foliation F ðlÞ of
l defined by Theorem 2.4 is transverse to m. For simplicity, we still denote the
function from U 0 to Rþ as D.

Next, we need to modify D a little bit. For a measured lamination x, let
WðxÞ be the set of complete, chain recurrent geodesic laminations containing
x. By Theorem 1.3.6 in [16], we know that WðxÞ is not empty for any mea-
sured foliation x. Since the completion only relates to the underlying lami-
nation, WðxÞ ¼ WðsxÞ for any positive number s. For convenience, denote by
Wð½x�ÞxWðxÞ, where ½x� represents the projective class of x.

Recall that a measured geodesic lamination m is called uniquely ergodic if
the transverse measure admitted on the underlying geodesic lamination L is
unique up to multiplication by a positive constant. m is said to fill up the sur-
face S if iðm; aÞ > 0 for any simple closed curve a on S, or equivalently, the
complementary of the underlying geodesic lamination L of m on S consists of
several simply connected regions. Let MLNðSÞ � PMLðSÞ consist of mea-
sured geodesic laminations which is uniquely ergodic and fills up the surface S.
For any x A MLNðSÞ, we can easily get that if F is a measured foliation
transverse to x and m is an element of Wð½x�Þ, then F is also transverse to m. Let
V � MLNðSÞ �MLNðSÞ consist of transverse pairs ð½x�; ½h�Þ. We can define
a map P from V to a set PðGTgÞ consisting of collections of stretch lines as
below:

P: V ! PðTgÞ
ð½x�; ½h�Þ 7! fgm;h : m A Uð½x�Þg:

The mapping class group ModðSÞ acts naturally on PMLðSÞ and the inter-
section number is ModðSÞ-invariant, i.e.,

iðgx1; gx2Þ ¼ iðx1; x2Þ Eg A ModðSÞ; x1; x2 A PMLðSÞ:

Besides, the mapping class group ModðSÞ acts isometrically on Teichmüller space
Tg with respect to the Thurston metric, so the map P is ModðSÞ-equivariant, i.e.,

Pð½gx�; ½gh�Þ ¼ gPð½x�; ½h�Þx fgðgm;hÞ : m A Wð½x�Þg;

where g A ModðSÞ and ð½x�; ½h�Þ A V .
Next we define a function D0 on V by:

D0: V ! Rþ

ð½x�; ½h�Þ 7! inf
g APð½x�; ½h�Þ

Kðg; oÞ ¼ inf
m Awð½x�Þ

Dðm; hÞ:
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Lemma 3.4. There is a stretch line g A Pð½x�; ½h�Þ such that D0ð½x�; ½h�Þ ¼
Kðo; gÞ:

Proof. There is a sequence mn A Wð½x�Þ such that

D0ð½x�; ½h�Þ ¼ lim
n!y

Kðo; gmn;hÞ ¼ lim
n!y

Dðmn; hÞ:

By Proposition 2.3, the space Lm0
ðSÞ of geodesic laminations is compact in the

Hausdor¤ topology. There is subsequence fmnkg
y
k¼1 of fmng

y
n¼1 such that mnk

converges to some geodesic lamination m in the Hausdor¤ topology. It is clear
that m is also a complete geodesic lamination containing the underlying geodesic
lamination of x, therefore x A Wð½x�Þ. From Proposition 3.3, it follows

lim
k!y

Dðmnk ; hÞ ¼ Dðm; hÞ ¼ Kðgm;h; oÞ: r

Proposition 3.5. D0 is lower semi-continuous and Borel measurable.

Before we prove Proposition 3.5, we need some preparations. For a
measured lamination l, there is a canonically associated set CðlÞ of geodesic
laminations, consisting of the intersection of the closures in the Hausdor¤
topology of its neighbourhoods in the measure topology. CðlÞ consists of
only l itself if and only if l is complete. In [19], Thurston proved the following
propositions.

Proposition 3.6 (Chain recurrence is closed, [19] Proposition 6.2). Any
compactly-supported lamination which is a Hausdor¤ limit of a chain recurrent
laminations is chain recurrent.

Proposition 3.7 (Hausdor¤ closure of neighbourhoods, [19] Proposition 6.3).
CðlÞ consists of all chain recurrent laminations which contains l.

Lemma 3.8. Assume hn A MLðSÞ, n ¼ 1; 2 . . . and hn converges to h0 in the
measure topology as n tends to infinity. Let mn A Wð½hn�Þ, then the limit points of
fmng in the Hausdor¤ topology are contained in Wð½h0�Þ.

Proof. Let m 0 be a limit point of fmng
y
n¼1 in the Hausdor¤ topology. There

exists a subsequence fmnkg converges to m 0 in the Haudor¤ topology. By
Proposition 3.6, m 0 is a complete chain recurrent geodesic lamination.

On the other hand, hnk converges to h0 in the measure topology as n tends
to infinity. From Proposition 3.7 and Theorem 2.3, we know that there exists
a subsequence of hnk , still denoted as hnk for simplicity, converges to a chain
recurrent lamination h 0 A Cðh0Þ in the Hausdor¤ topology.

Therefore, h 0 � m 0, which means that m 0 is a completion of h 0 and hence a
completion of h0. r
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After the preparations above, we prove Proposition 3.5 now.

Proof of Proposition 3.5. Let ð½hn�; ½xn�Þ A V with ð½hn�; ½xn�Þ converges to
ð½h0�; ½x0�Þ as n tends to infinity. There exists sn; rn b 0 such that

snhn ! h0; in measure topology;

rnxn ! x0; in measure topology;

as n ! y. Take a subsequence fðsnkhnk ; rnkxnk Þg such that

lim
k!y

D0ð½hnk �; ½xnk �Þ ¼ lim inf
n!y

D0ð½hn�; ½xn�Þ:ð6Þ

It follows from Lemma 3.4 that there exist xnk A Tg, tnk A R, and mnk A Wðsnkhnk Þ
¼ Wðhnk Þ such that xnk ¼ gmnk ; rnk xnk

ðtnk Þ realizes D0ð½hnk �; ½xnk �Þ, i.e. Kðxnk ; oÞ ¼
D0ð½hnk �; ½xnk �Þ: By Theorem 2.3 and Lemma 3.8, there is a subsequence of

fnkgyk¼1, which is still denoted as fnkgyk¼1 for simplicity, such that mnk ! m0 for
some m0 A Wð½h0�Þ as k ! y.

We claim that ftnkg is bounded. In fact,

tnk ¼ Kðgmnk ; rnk xnk ð0Þ; gmnk ; rnk xnk ðtnk ÞÞ

aKðgmnk ; rnk xnk ð0Þ; oÞ þ Kðo; gmnk ; rnk xnk ðtnk ÞÞ:

It follows from Theorem 3.2 that Kðgmnk ; rnk xnk ð0Þ; oÞ is bounded. On the other
hand, by (6),

lim
k!y

D0ð½hnk �; ½xnk �Þ ¼ lim
k!y

Kðgmnk ; rnk xnk ðtnk Þ; oÞ:

By Proposition 2.2, the sequence fgmnk ; rnk xnk ðtnk Þg
y
k¼1 stays in a compact subset of

Tg, which means Kðo; gmnk ; rnk xnk ðtnk ÞÞ is bounded. Hence, ftnkg is bounded.

There is a subsequence of fnkgyk¼1, which is still denoted as fnkgyk¼1 for
simplicity, such that tnk converges to some t0 A R as k ! y.

As a consequence,

lim
k!y

xnk ¼ gm0;x0ðt0Þx x0:

Hence

D0ð½h�; ½x�ÞaKðx0; oÞ ¼ lim
k!y

Kðxnk ; oÞ ¼ lim inf
k!y

D0ð½hn�; ½xn�Þ:

So D0 is lower semi-continuous and hence Borel measurable. r

Recall that the stump of a geodesic lamination m is the maximal sublami-
nation of m admitting a transverse measure. The stretch line gm;hðtÞ converges to
the projective class ½h� of h in PMLðSÞ in the positive direction ([14]). But the
convergence of gm;hðtÞ in the negative direction does not alway exist. Neverthe-
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less, if the stump of m is uniquely ergodic, gm;hðtÞ converges to the projective
class of the stump in PMLðSÞ in the negative direction ([17] §3.3 Theorem 7).

Proposition 3.9. Let ð½x�; ½h�Þ A V. Then
1. any stretch line gm;hðtÞ A Pð½x�; ½h�Þ converges to ½h� in the positive direction

and converges to ½x� in the negative direction;
2. any two stretch lines in Pð½x�; ½h�Þ are kept in bounded distance.

Proof. For the first part, recall that x is uniquely ergodic and fills up the
surface S. Then the complementary region of x on the surface S are ideal
polygons, which means that every completion m of x is the union of x with finite
isolated, infinite leaves. Since the support of a measured lamination contains
no isolated infinite leaves, the maximal measured lamination contained by m is x,
which is to say that x is the stump of m. Then the stretch line gm;hðtÞ converges
to ½x� in the negative direction ([17] §3.3 Theorem 7) and converges to ½h� in the
positive direction ([14]).

The second part of the conclusion follows from Proposition 3.10 and the first
part we just prove. r

Proposition 3.10 ([17] §3.6 Proposition 4). Given two measured geodesic
laminations l, g meeting every component of one another and such that g is
uniquely ergodic, we can find a stretch line having ½l� as positive endpoint and ½g�
as negative endpoint. This stretch line is unique if and only if ½g� is complete. In
any ways, the distance between two such stretch lines is bounded from above.

4. Proof of Theorem 1.2

In this section, we follow Tiozzo’s idea [18] to prove Theorem 1.2. First of
all, we collect some results which will be useful in our proof.

The first one is a technical lemma whose proof can be found in [18].

Lemma 4.1 ([18], Lemma 7). Let W be a measure space with a probability
measure l, and let T : W ! W be a measure-preserving, ergodic transformation.
Let f : W ! R be a non-negative, measurable function, and define the function
g : W ! R as

gðoÞ :¼ f ðToÞ � f ðoÞ; Eo A W;

If g A L1ðW; lÞ, then, for l-almost every o A W,

lim
n!y

f ðT noÞ
n

¼ 0

The second one concerns the linear drift of the random walk. The result is
a little bit di¤erent from the original one, but both of them can be obtained from
Kingman’s subadditive ergodic theorem.
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Proposition 4.2 ([18], Proposition 4). Let m be a distribution on ModðSÞ
with symmetric finite first moment, then there is A > 0 such that for each x A Tg

and for P a.e. sample path

lim
n!y

Kðonx; xÞ
n

¼ A:

Remark 4.3. The constant A is only nonnegative in the original statement
in [18] under more general settings. The positivity in this particular setting is
proved in the proof of Theorem 18 from [18].

The last one is about the convergence sample paths in Tg.

Theorem 4.4 ([7], Theorem 2.2.4). Let m be a probability measure on
ModðSÞ such that the group generated by the support of m is non-elementary. For
P-a.e. sample path o ¼ fong of the random walk and any x A Tg the sequence
onx converges in the Thurston boundary PMF to an uniquely ergodic measured
foliation F ðoÞ.

Now, we prove Theorem 1.2.

Proof of Theorem 1.2. The proof will be split into two steps. In step 1,
we will show that for P-a.e. sample path fonxgyn¼1; there is a stretch line
g : ð�y;þyÞ ! Tg such that

lim
n!y

maxfKðonx; gÞ;Kðg;onxÞg
n

¼ 0:ð7Þ

Then, in step 2, we will show the stretch line g chosen in step 1 can be replaced
by a stretch ray or anti-stretch ray.

Step 1. Set W ¼ ModðSÞZ be the product space of ModðSÞ. Let T be the
left shift of W. That is to say, if we let anðgÞx gn for g A W, then anðTgÞ ¼ gnþ1.

By Theorem 4.4, to P-a.e. sample path g ¼ fonxg we can associate two
points bndþðgÞ, bnd�ðgÞ A qX as below:

bndþðgÞx lim
n!y

onx ¼ lim
n!y

g1 � � � gnx:

bnd�ðgÞx lim
n!y

onx ¼ lim
n!y

g�1
0 g�1

�1 � � � g�1
�nx:

Then we have

bndþðTmgÞ ¼ lim
n!y

Tmonx ¼ lim
n!y

o�1
m g1 � � � gnx ¼ o�1

m bndþðgÞ;

and

bnd�ðTmgÞ ¼ o�1
m bnd�ðgÞ
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By Proposition 3.5, we know the function

f ðgÞxD0ðbnd�ðgÞ; bndþðgÞÞ ¼ inf
g APðbnd�ðgÞ;bndþðgÞÞ

Kðg; xÞ

is measurable and finite P-a.e.. Further,

f ðTmgÞ ¼ inf
g APðbnd�ðT mgÞ;bndþðT mgÞÞ

Kðg; xÞ

¼ inf
g APðo�1

m bnd�ðgÞ;o�1
m bndþðgÞÞ

Kðg; xÞ

¼ inf
omg APðbnd�ðgÞ;bndþðgÞÞ

Kðomg;omxÞ

¼ inf
g APðbnd�ðgÞ;bndþðgÞÞ

Kðg;omxÞ:

And

j f ðTgÞ � f ðgÞj ¼ inf
g APðbnd�ðgÞ;bndþðgÞÞ

Kðg;o1xÞ � inf
g APðbnd�ðgÞ;bndþðgÞÞ

Kðg; xÞ
����

����
amaxfKðg1x; xÞ;Kðx; g1xÞg:

Hence j f ðTgÞ � f ðgÞj is integrable because of the assumption that m has sym-
metric finite first moment. Then, we get, by Lemma 4.1,

lim
n!y

f ðT ngÞ
n

¼ lim
n!y

inf
g APðbnd�ðgÞ;bndþðgÞÞ

Kðg;onxÞ
n

¼ 0;

so there exists gn A Pðbnd�ðgÞ; bndþðgÞÞ for each n such that

lim
n!y

Kðgn;onxÞ
n

¼ 0:

By Proposition 3.10, any two stretch lines in Pðbnd�ðgÞ; bndþðgÞÞ are kept
in bounded distance C, hence

lim
n!y

Kðg;onxÞ
n

a lim
n!y

Kðgn;onxÞ þ C

n
¼ 0; Eg A Pðbnd�ðgÞ; bndþðgÞÞ:

Combining with Lemma 2.1, we get

lim
n!y

Kðonx; gÞ
n

¼ lim
n!y

Kðx;o�1
n gÞ

n

a lim
n!y

3Kðo�1
n g; xÞ þ Cx

n

¼ lim
n!y

3Kðg;onxÞ þ Cx

n
¼ 0:
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Step 2. It follows from Step 1 that there exists tn > 0 such that

lim
n!y

KðgðtnÞ;onxÞ
n

¼ 0:ð8Þ

From this and Lemma 2.1,

lim
n!y

Kðonx; gðtnÞÞ
n

¼ lim
n!y

Kðx;o�1
n gðtnÞÞ
n

ð9Þ

a 3 lim
n!y

Kðo�1
n gðtnÞ; xÞ
n

¼ 0:

Combining (8), (9) and Proposition 4.2, we get

lim
n!y

KðgðtnÞ; xÞ
n

a lim
n!y

KðgðtnÞ;onxÞ þ Kðonx; xÞ
n

¼ A;

and

lim
n!y

KðgðtnÞ; xÞ
n

b lim
n!y

�Kðonx; gðtnÞÞ þ Kðonx; xÞ
n

¼ A:

Hence,

lim
n!y

KðgðtnÞ; xÞ
n

¼ A:

Further,

lim
n!y

KðgðtnÞ; gð0ÞÞ
n

¼ A:

By the assumption of symmetric finite first moment, for P-a.e. sample path
fonxgyn¼1,

lim
n!y

Kðonx;onþ1xÞ
n

¼ 0; lim
n!y

Kðonþ1x;onxÞ
n

¼ 0:

Hence

lim
n!y

KðgðtnÞ; gðtnþ1ÞÞ
n

¼ 0; lim
n!y

Kðgðtnþ1ÞÞ; gðtnÞÞ
n

¼ 0:ð10Þ

To finish the proof, it su‰ces to show that there exists N > 0 such that either
tn > 0 for all n > N or tn < 0 for all n > N. Suppose this is not true. Then
there are infinitely many nk such that tnk < 0 and tnkþ1 > 0. As a consequence,

Kðgðtnk Þ; gðtnkþ1ÞÞ ¼ Kðgðtnk Þ; gð0ÞÞ þ Kðgð0Þ; gðtnkþ1ÞÞ > Kðgðtnk Þ; gð0ÞÞ:
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Further

lim
k!y

Kðgðtnk Þ; gðtnkþ1ÞÞ
nk

b lim
k!y

Kðgðtnk Þ; gð0ÞÞ
nk

¼ A;

which contradicts (10). r
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