ON THE ISOMETRIES FROM THE UNIT DISK TO INFINITE DIMENSIONAL TEICHMÜLLER SPACES

HIROMI OHTAKE

Abstract

We generalize Earle-Li's polydisk theorem and embedding theorem, and study isometries from the unit disk to infinite dimensional Teichmüller spaces. We also give a simple proof that for any non-Strebel point τ , there exist infinitely many real analytic geodesic disks through τ and the basepoint in infinitely dimensional Teichmüller spaces.

1. Introduction

Troughout this paper, Δ will be the open unit disk with the hyperbolic metric $(1 - |z|^2)^{-1}|dz|$, and *R* will be a Riemann surface whose universal covering is the unit disk.

For a non-empty set S, we denote by B(S) the Banach algebra of all bounded functions on S, and by D(S) the open unit ball of B(S). For a subset S_1 of S, we identify $B(S_1)$ with the subalgebra of all members f in B(S) such that $f|_{S\setminus S_1} = 0$. We note that $B(\emptyset) = D(\emptyset) = \{0\}$. It is easily verified that, for two elements f and g in D(S), their Kobayashi distance is

$$d_{D(S)}(f,g) = \sup\{d_{\Delta}(f(p),g(p)) : p \in S\},\$$

where d_{Δ} is the hyperbolic distance on Δ , that is,

$$d_{\Delta}(z,w) := \tanh^{-1} \left| \frac{z-w}{1-\overline{w}z} \right|$$
 for z, w in Δ .

Let $L_{\infty}(R)$ be the Banach space of all Beltrami differentials on R, and Q(R) be the Banach space of all integrable holomorphic quadratic differentials on R. For each μ in $L_{\infty}(R)$, the mapping

$$Q(R) \ni \phi \mapsto \langle \mu, \phi \rangle := \int_R \mu \phi$$

²⁰¹⁰ Mathematics Subject Classification. Primary, 30F60; Secondary, 30C62. *Key words and phrases.* Teichmüller metric, extremal quasiconformal mapping, isometry. Received December 15, 2015.

is a bounded linear functional on Q(R). The correspondence $L_{\infty}(R) \ni \mu \mapsto \langle \mu, \cdot \rangle \in Q(R)^*$ induces an isometric linear isomorphism *P* from the tangent space $L_{\infty}(R)/Q(R)^{\perp}$ of T(R) at the basepoint onto $Q(R)^*$.

The following two theorems are extensions of Earle-Li [3, Theorems 4.1, 6.1 and Lemma 7.1].

THEOREM 1. Let R be a Riemann surface whose Teichmüller space T(R) is infinite dimensional, and let Ψ be a holomorphic mapping from D(S) to T(R)which maps the origin 0 of D(S) to the basepoint [0] of T(R). Let S_1 be a nonempty subset of S, and $S_2 = S \setminus S_1$. Suppose that the restriction of the derivative $\Psi'(0)$ to $B(S_1)$ is an isometry to the tangent space of T(R) at [0], and that

$$|P\Psi'(0)f_1(\phi)| + |P\Psi'(0)f_2(\phi)| \le ||f_1 + f_2|| \, ||\phi||_1$$

for all f_1 in $B(S_1)$, f_2 in $B(S_2)$ and ϕ in Q(R). Then we have

$$d_{T(R)}(\Psi(f_1+f_2),\Psi(g_1+g_2)) = d_{D(S_1)}(f_1,g_1)$$

for all f_1 , g_1 in $D(S_1)$ and all f_2 , g_2 in $D(S_2)$ such that

$$d_{D(S_1)}(f_1, g_1) \ge d_{D(S_2)}(f_2, g_2)$$

In particular, if ψ is a distance non-increasing mapping from $D(S_1)$ to $D(S_2)$, then the mapping $D(S_1) \ni f \mapsto \Psi(f + \psi(f)) \in T(R)$ is isometric.

Let N be $1 \le N \le \infty$. When $N = \infty$, let Δ^N be the open unit ball of the complex Banach space ℓ^{∞} of all bounded infinite sequences, and when $N < \infty$, let Δ^N be the N-ary Cartesian power of the unit disk Δ . In both cases, the Kobayashi distance between two points $z = (z_j)_{j=1}^N$ and $w = (w_j)_{j=1}^N$ in Δ^N is

$$d_{\Delta^N}(z,w) = \sup_{1 \le j \le N} d_{\Delta}(z_j,w_j).$$

THEOREM 2. Let R be a Riemann surface whose Teichmüller space is infinite dimensional, N and N' be integers such that $N \ge 1$, $N' \ge 0$ and $N + N' \ge 2$, and $(\mu_j)_{j=1}^N$ be a sequence of extremal Beltrami differentials on R with norm one. When N' = 0, if

$$\sum_{j=1}^N |\mu_j| \le 1,$$

then the mapping

$$\Delta^N \ni \zeta = (\zeta_j)_{j=1}^N \mapsto \left[\sum_{j=1}^N \zeta_j \mu_j\right] \in T(R)$$

is isometric.

When N' > 0, let $(v_j)_{j=1}^{N'}$ be a sequence of Beltrami differentials on R such that

(1)
$$\sum_{j=1}^{N} |\mu_j| + \sum_{j=1}^{N'} |v_j| \le 1,$$

and let $(g_j)_{j=1}^{N'}$ be a sequence of distance non-increasing mappings form Δ^N to Δ , then the mapping

$$\Delta^N \ni \zeta = (\zeta_j)_{j=1}^N \mapsto \left[\sum_{j=1}^N \zeta_j \mu_j + \sum_{j=1}^{N'} g_j(\zeta) \nu_j\right] \in T(R)$$

is isometric.

Let τ be a non-Strebel point other than the basepoint [0] in T(R), and μ be its extremal representative of τ . Let *E* be a compact subset of *R*, and define Beltrami differentials μ_1 , ν_1 and a mapping *g* from Δ to itself by $\mu_1 := 0$ on *E*, $\mu_1 := \mu/||\mu||_{\infty}$ on $R \setminus E$, $\nu_1 := \mu/||\mu||_{\infty}$ on *E*, $\nu_1 := 0$ on $R \setminus E$, and $g(\zeta) := \zeta ||\mu||_{\infty}/\max\{|\zeta|, ||\mu||_{\infty}\}$. Then we can see that μ_1 is an extremal Beltrami differential with norm one, and that *g* is distance non-increasing. Hence, by the above theorem, we can give another proof that the mapping $\Gamma : \Delta \ni \zeta \mapsto [\zeta \mu_1 + g(\zeta)\nu_1] \in T(R)$ is isometric (Li [4]). By using these mappings for various *E*, he has proved that, for any non-Strebel point $\tau \neq [0]$, there exist infinitely many geodesic disks containing [0] and τ . See also Yao [9].

We can show the following.

THEOREM 3. If τ is a non-Strebel point other than the basepoint, then there exist infinitely many real analytic geodesic disks containing the basepoint and τ .

Let $(\mu_j)_{j=1}^N$ be as in Theorem 2, and $(h_j)_{j=1}^N$ be a sequence of distance nonincreasing mappings from Δ to itself. Obviously, if at least one h_j is isometric, then so is $\Psi : \Delta \ni \zeta \mapsto [\sum h_j(\zeta)\mu_j] \in T(R)$. Does the converse hold for $N \ge 2$? The next theorem provides an answer to this question.

THEOREM 4. (i) If N = 2, then the converse holds, that is, Ψ is isometric if and only if so is h_1 or h_2 .

(ii) If $N \ge 3$, then there exists (h_i) such that no h_i is isometric but so is Ψ .

2. Definitions and priliminaries

In this section, we introduce some definitions and known facts briefly which are necessary in the next section. For details on the theory of Teichmüller spaces, see Gardiner-Lakic [6], Earle-Gardiner [2].

We denote by M(R) the open unit ball in $L_{\infty}(R)$. Elements in M(R) are called Beltrami coefficients.

Every quasiconformal mapping from a Riemann surface R onto R' extends to a homeomorphism from the bordered Riemann surface $R \cup \partial R$ onto $R' \cup \partial R'$. Two quasiconformal mappings f and g with domain R are said to be *equivalent* if there exists a conformal mapping h from f(R) onto g(R) such that the extension of $g^{-1} \circ h \circ f$ to $R \cup \partial R$ is homotopic to the identity by a homotopy which fixes ∂R pointwise.

For any Beltrami coefficient μ on R, there exists a quiasiconformal mapping f^{μ} with domain R and Beltrami coefficient μ , which is uniquely determined up to conformal mappings. Two Beltrami coefficients μ and ν are said to be equivalent if two quasiconformal mappings f^{μ} and f^{ν} are equivalent. The equivalence class of μ is denoted by $[\mu]$.

The Teichmüller space T(R) of R is defined as the set of equivalence classes in M(R). It has a complex manifold structure such that the canonical projection $\Phi: M(R) \to T(R)$ is holomorphic. The Teichmüller distance between two points $[\mu_0]$ and $[\nu_0]$ in T(R) is defined by

$$d_{T(R)}([\mu_0], [\nu_0]) := \inf \left\{ \tanh^{-1} \left\| \frac{\mu - \nu}{1 - \overline{\nu} \mu} \right\|_{\infty} : \mu \in [\mu_0], \nu \in [\nu_0] \right\}.$$

It is known that this is equal to the Kobayashi distance of T(R). (Royden [8], Gardiner [5])

A point τ in T(R) is called a *Strebel point* if there exist μ in τ and a compact subset E of R such that $\|\mu\|_{R\setminus E}\|_{\infty} < k_0(\tau)$, where $k_0(\tau) := \inf\{\|\nu\|_{\infty} : \nu \in \tau\}$. A Beltrami coefficient is said to be *extremal* if it has the smallest norm in its

A Beltrami coefficient is said to be *extremal* if it has the smallest norm in its equivalence class. A sufficient and necessary condition for a Beltrami coefficient to be extremal is known.

THEOREM A (Hamilton, Krushkal, Reich-Strebel). A Beltrami coefficient μ on a Riemann surface R is extremal if and only if

(2)
$$\|\mu\|_{\infty} = \sup\left\{\left|\int_{R} \mu\phi\right| : \phi \in Q(R), \|\phi\|_{1} = 1\right\}.$$

A Beltrami differential μ which satisfies (2) is also said to be extremal. We call a sequence $(\phi_n)_{n=1}^{\infty}$ with norm one in Q(R) a Hamilton sequence for an extremal Beltrami differential μ if

$$\lim_{n\to\infty}\left|\int_R\mu\phi_n\right|=\|\mu\|_{\infty}$$

A Hamilton sequence (ϕ_n) is said to be *degenerate* if $\lim \int_K |\phi_n| = 0$ for any compact subset K of R.

3. Proofs of results

Proof of Theorem 1. We can prove this theorem by using an argument almost the same as in [3, Theorem 6.1].

Step 1 is to verify that

$$d_{T(R)}(\Psi(f_1 + f_2), \Psi(0)) = d_{\Delta}(||f_1 + f_2||, 0)$$

for all f_1 in $D(S_1)$ and f_2 in $D(S_2)$ such that $||f_1|| \ge ||f_2||$. Consider the holomorphic mapping $F : \Delta \ni \zeta \mapsto \Psi(\zeta(f_1 + f_2)/||f_1 + f_2||) \in T(R)$. It suffices to show that ||F'(0)|| = 1, that is, $||\Psi'(0)(f_1 + f_2)|| = ||f_1 + f_2||$. For $\phi \in Q(R)$ with $||\phi||_1 = 1$,

$$|f_1 + f_2|| \ge |P\Psi'(0)(f_1 + f_2)(\phi)|$$

$$\ge |P\Psi'(0)f_1(\phi)| - |P\Psi'(0)f_2(\phi)|$$

$$\ge 2|P\Psi'(0)f_1(\phi)| - ||f_1 + f_2||.$$

Since $\sup_{\phi} |P\Psi'(0)f_1(\phi)| = ||\Psi'(0)f_1|| = ||f_1|| = ||f_1 + f_2||, \quad ||\Psi'(0)(f_1 + f_2)|| = \sup_{\phi} |P\Psi'(0)(f_1 + f_2)(\phi)| = ||f_1 + f_2||.$

Step 2 to verify that, for $p \in S_1$, $f \in D(S)$ such that f(p) = 0 and for $\zeta, \zeta' \in \Delta$,

$$d_{T(R)}(\Psi(f+\zeta\chi_p),\Psi(f+\zeta'\chi_p))=d_{\Delta}(\zeta,\zeta'),$$

where χ_p is the characteristic function of the singleton $\{p\}$, and the last step to prove the assertion are the same with [3].

To prove Theorem 2, we use the following lemma.

LEMMA 1. Let μ and ν be Beltrami differentials on R such that

(3)
$$|\mu| + |\nu| \le ||\mu||_{\infty}.$$

If μ is extremal and (ϕ_n) is a Hamilton sequence for μ , then

$$\lim_{n\to\infty}\int_R|v|\,|\phi_n|=0,$$

 $\|\mu + v\|_{\infty} = \|\mu\|_{\infty}$ and (ϕ_n) is a Hamilton sequence for $\mu + v$. In particular, $\mu + v$ is extremal.

Proof. From (3), we see that $\|\mu + \nu\|_{\infty} \leq \|\mu\|_{\infty}$, and

$$\begin{split} \int_{R} |v| |\phi_{n}| &\leq \int_{R} (\|\mu\|_{\infty} - |\mu|) |\phi_{n}| \\ &\leq \|\mu\|_{\infty} - \left| \int_{R} \mu \phi_{n} \right| \xrightarrow{n \to \infty} 0, \\ \|\mu + v\|_{\infty} &\geq \left| \int_{R} (\mu + v) \phi_{n} \right| \\ &\geq \left| \int_{R} \mu \phi_{n} \right| - \int_{R} |v| |\phi_{n}| \xrightarrow{n \to \infty} \|\mu\|_{\infty}. \end{split}$$

Proof of Theorem 2. We prove only the case where $N = N' = \infty$. Proofs of the other cases are almost the same.

Let A be the bounded linear mapping

$$\ell^{\infty} \times \ell^{\infty} \ni ((\xi_j), (\eta_j)) \mapsto \sum_{j=1}^{\infty} \xi_j \mu_j + \sum_{j=1}^{\infty} \eta_j v_j \in L_{\infty}(R).$$

and $\Psi = \Phi \circ A : \Delta^{\infty} \times \Delta^{\infty} \to T(R)$, where Φ is the canonical projection from M(R) onto T(R). Let $\xi = (\xi_j)$ and $\eta = (\eta_j)$ be arbitrary points in ℓ^{∞} . To prove Theorem 2, by Theorem 1, it suffices to show that

(4)
$$\|PA(\xi,0)\|_{Q(R)^*} = \|\xi\|_{\infty},$$

(5)
$$|PA(\xi,0)(\phi)| + |PA(0,\eta)(\phi)| \le ||(\xi,\eta)||_{\infty} ||\phi||_1$$
 for all $\phi \in Q(R)$.

In an arbitrary neibourhood of ξ , there exists a point $\xi' = (\xi'_j)$ such that $|\xi'_m| = ||\xi'||_{\infty}$ for some index *m*. To show (4), we may assume that ξ itself is such a point. Write $\mu := \xi_m \mu_m$ and $\nu := A(\xi, 0) - \mu = \sum_{j \neq m} \xi_j \mu_j$. Then μ is an extremal Beltrami defferential with norm $|\xi_m|$, and

$$|\mu| + |\nu| \le \sum |\xi_j| |\mu_j| \le ||\xi||_{\infty} \sum |\mu_j| \le ||\xi||_{\infty} = |\xi_m| = ||\mu||_{\infty}.$$

Therefore, by Lemma 1, we see that $A(\xi, 0)$ is extremal, and $\|PA(\xi, 0)\|_{Q(R)^*} = \|\mu\|_{\infty} = \|\xi\|_{\infty}$. Inequality (5) easily follows from Triangle inequality.

Proof of Theorem 3. Let μ be an extremal representative of τ . By strong Strebel frame mapping criterion [3, Theorem 5.4], μ has a degenarate Hamilton sequence. Thus, by [3, Theorem 6.2], there exists an infinite sequence (μ_j) of extremal Beltrami differentials with norm one such that $\mu/||\mu||_{\infty} = \sum \mu_j$ and μ_j have disjoint supports.

For each real number t in the interval (0, 1/2], let $\varepsilon_1 \varepsilon_2 \varepsilon_3 \cdots$ be its binary digit (infinite) expansion. Note that $\varepsilon_1 = 0$. Define the sequence (h_j) of self-isometries of Δ by

$$h_j(\zeta, t) := \begin{cases} \zeta & \text{if } \varepsilon_j = 0, \\ \overline{\zeta} & \text{if } \varepsilon_j = 1. \end{cases}$$

Then, for each *t*, the mapping $H_t : \Delta \ni \zeta \mapsto [\sum h_j(\zeta, t)\mu_j] \in T(R)$ is a real analytic isometry, and $H_t(0) = [0]$, $H_t(\|\mu\|_{\infty}) = \tau$. Suppose that $H_t(\zeta) = H_{t'}(\zeta')$ for distinct *t* and *t'*. Then $h_j(\zeta, t) = h_j(\zeta', t')$ for all *j* by Theorem 2. Thus $\zeta = \zeta' = \overline{\zeta}$. Therefore $H_t(\Delta) \cap H_{t'}(\Delta) = H_{1/2}(\Delta \cap \mathbf{R})$.

To prove Theorem 4, we use the following lemma.

LEMMA 2. Let h be a distance non-increasing mapping from Δ to itself, and let r be 0 < r < 1. Put

$$E := \{ z \in \partial \Delta(r) : d_{\Delta}(h(z), h(-z)) = d_{\Delta}(z, -z) \},$$

$$F := \{ z \in \partial \Delta(r) : d_{\Delta}(h(z), h(0)) = d_{\Delta}(z, 0) \},$$

where $\Delta(r) := \{z \in \mathbf{C} : |z| < r\}$. Then

- (i) $E \subset F$, and
- (ii) if E contains more than two points, then h is isometric on the convex hull of F.

Proof. It is easily seen that, if z_1 and z_2 be points in Δ such that $d_{\Delta}(h(z_1), h(z_2)) = d_{\Delta}(z_1, z_2)$, then h is isometric on the geodesic segment whose endpoints are z_1 and z_2 . Therefore $E \subset F$.

Obviously, if $z \in E$, then $-z \in E$. Note that, for z in $\partial \Delta(r)$, $d_{\Delta}(z, -z)$ is the diameter of the closed disk $\overline{\Delta}(r)$. Suppose that E contains more than two points. By preceding and following h by self-isometries of Δ , we may assume that $h(0) = 0, r \in E$ and h(r) = r. Then we see that h(-z) = -h(z) whenever z is in E, and that $h(F) \subset \partial \Delta(r)$.

Take and fix an arbitrary point ζ_0 from $E \setminus \{\pm r\}$. Then $h(\zeta_0) = \zeta_0$ or $h(\zeta_0) = \overline{\zeta}_0$, since $d_{\Delta}(h(\zeta_0), \pm r) = d_{\Delta}(h(\zeta_0), h(\pm r)) \le d_{\Delta}(\zeta_0, \pm r)$ and $|h(\zeta_0)| = r$. When $h(\zeta_0) = \overline{\zeta}_0$, by replacing h with its complex conjugate \overline{h} , we may assume that $h(\zeta_0) = \zeta_0$.

Let ζ be an arbitrary point in F, then $d_{\Delta}(h(\zeta), \pm r) \leq d_{\Delta}(\zeta, \pm r)$, $d_{\Delta}(h(\zeta), \pm \zeta_0) \leq d_{\Delta}(\zeta, \pm \zeta_0)$ and $|h(\zeta)| = r$. Thus $h(\zeta) = \zeta$, consequently $h|_F = \mathrm{id}_F$. Therefore h is the identity mapping on the convex hull of F, in particular, it is isometric.

Remark 1. On the above lemma, the condition that E contains more than two points is necessary. For example, if we define the mapping h by

$$h(z) := \begin{cases} z, & \operatorname{Im}(z) \ge 0\\ \bar{z}, & \operatorname{Im}(z) < 0, \end{cases}$$

then $E = \{\pm r\}$ and $F = \partial \Delta(r)$, but *h* is not an isometry of the closed disk $\Delta(r)$, the convex hull of *F*.

Proof of Theorem 4 (i). Sufficency is trivial. Suppose that Ψ is isometric. Then, by Theorem 2, $h = (h_1, h_2) : \Delta \to \Delta^2$ is isometric. Since $\Delta^2 \ni (z_1, z_2) \mapsto (g_1(z_1), g_2(z_2)) \in \Delta^2$ is isometric for $g_1, g_2 \in \text{Isom}(\Delta)$, we may assume that h(0) = (0, 0).

We assume that neither h_1 nor h_2 is isometric, and seek a contradiction. Then there exist four points z_{11} , z_{12} , z_{21} , z_{22} in Δ such that

$$d_{\Delta}(h_1(z_{11}), h_1(z_{12})) < d_{\Delta}(z_{11}, z_{12}), \quad d_{\Delta}(h_2(z_{21}), h_2(z_{22})) < d_{\Delta}(z_{21}, z_{22}).$$

Choose r < 1 such that $\Delta(r)$ contains these four points. Let E_j and F_j (j = 1, 2) be E and F, respectively, in Lemma 2 for each h_j . Then $F_1 \cup F_2 \supset E_1 \cup E_2 = \partial \Delta(r)$, since h is isometric.

Neither $\partial \Delta(r) \setminus E_1$ nor $\partial \Delta(r) \setminus E_2$ is empty, since neither h_1 nor h_2 is isometric on $\overline{\Delta}(r)$. The set E_1 is closed in $\partial \Delta(r)$, and $E_2 \supset \partial \Delta(r) \setminus E_1$, thus $\#E_2 = \infty$. The same is true for E_1 . By Lemma 2, neither $\partial \Delta(r) \setminus F_1$ nor $\partial \Delta(r) \setminus F_2$ is empty.

Take and fix two points ζ_1 , ζ_2 in $\partial \Delta(r)$ such that ζ_j is not contained in F_j , respectively. Either h_1 or h_2 preserves the distance between ζ_1 and ζ_2 . We may assume that h_1 does. Let α and β be the endpoints of the connected component of $\partial \Delta(r) \setminus F_1$ to which ζ_1 belongs. Since α and β are in $F_1 \cap F_2$, four points α , β , ζ_1 and ζ_2 are all distinct. Since four points α , β , ζ_2 and 0 are in the convex hull of F_1 on which h_1 is an isometry, and we can follow h_1 by an isometry which fixes 0, we may assume that h_1 fixes the three points α , β , ζ_2 . Let l be the geodesic segment connecting ζ_1 and ζ_2 , and let l' be the geodesic segment connecting α and β . Then l and l' have an intersection point, say ζ_3 , in $\Delta(r)$. Since ζ_3 is on l', h_1 also fixes ζ_3 . Thus

$$d_{\Delta}(\zeta_{1},\zeta_{3}) \geq d_{\Delta}(h_{1}(\zeta_{1}),h_{1}(\zeta_{3})) \geq d_{\Delta}(h_{1}(\zeta_{1}),h_{1}(\zeta_{2})) - d_{\Delta}(h_{1}(\zeta_{3}),h_{1}(\zeta_{2})) = d_{\Delta}(\zeta_{1},\zeta_{2}) - d_{\Delta}(\zeta_{3},\zeta_{2}) = d_{\Delta}(\zeta_{1},\zeta_{3}).$$

Hence three points $h_1(\zeta_1)$, $h_1(\zeta_2)$ and $h_1(\zeta_3)$ are on one geodesic line, and $h_1(\zeta_1) = \zeta_1 \in \partial \Delta(r)$, which contradicts $\zeta_1 \notin F_1$.

Put $X := \{z \in \Delta : \text{Im}(z) \le 0\}$. For any point ζ in Δ , there exists the unique point in X nearest from ζ . This correspondance defines a mapping h_0 from Δ to itself. Note that if ζ is in X, then $h_0(\zeta) = \zeta$, and that if ζ is not in X, then $h_0(\zeta)$ is real and the geodesic line through ζ and $h_0(\zeta)$ is orthogonal to the real axis.

LEMMA 3. The mapping h_0 is distance non-increasing.

Proof. Let ζ and ζ' be any two points in Δ . Suppose that ζ is not in X and ζ' is in X. By conjugating a Möbius transformation from Δ onto itself, we may assume that ζ is on the imaginary axis. Then, by drawing the (hyperbolic) perpendicular bisector between $h_0(\zeta) = 0$ and ζ , we see that

(6)
$$d_{\Delta}(h_0(\zeta), h_0(\zeta')) \le d_{\Delta}(\zeta, \zeta').$$

Suppose that ζ and ζ' are not in X. We may assume again that ζ is on the imaginary axis. By drawing the curve through $h_0(\zeta')$ and equidistant from the imaginary axis, we have (6). Proof of the other case is trivial.

Proof of Theorem 4 (ii). By puting $h_j = 0$ for j > 3, it is enough to prove the case N = 3.

Let γ be the Möbius transformation from Δ onto itself such that $\gamma(1) = \overline{\omega}$, $\gamma(i) = 1$, and $\gamma(-1) = \omega$, where $\omega = \exp(\pi i/3)$. Put

$$h_1 := \gamma \circ h_0 \circ \gamma^{-1}, \quad h_2 := r \circ h_1 \circ r^{-1}, \quad h_3 := r^{-1} \circ h_1 \circ r,$$

where $r(\zeta) := \omega^2 \zeta$. Then the mapping $h := (h_1, h_2, h_3)$ from Δ to Δ^3 is what we are seeking. In fact, put $X_1 := \gamma(X)$, $X_2 := r(X_1)$, $X_3 := r^{-1}(X_1)$, then each h_j is

distance non-increasing and fixes any point in X_j . Since $\bigcup_{j=1}^3 X_j \times X_j = \Delta \times \Delta$, any pair of two points in Δ is in some $X_j \times X_j$. Thus *h* is isometric, hence so is Ψ by Theorem 2.

Acknowledgement. The author would like to thank the referee for his/her valuable comments.

References

- C. J. EARLE, I. KRA AND S. L. KRUSHKAL, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), 927–948.
- [2] C. J. EARLE AND F. P. GARDINER, Geometric isomorphisms between infinite dimensional Teichmüller spaces, Trans. Amer. Math. Soc. 348 (1996), 1163–1190.
- [3] C. J. EARLE AND Z. LI, Isometrically embedded polydisks in infinite dimensional Teichmüller spaces, J. Geom. Anal. 9 (1999), 51–71.
- [4] Z. Li, Geodesics discs in Teichmüller space, Sci. China, Ser. A. 48 (2005), 1075-1082.
- [5] F. P. GARDINER, Approximation of infinite dimensional Teichmüller spaces, Trans. Amer. Math. Soc. 282 (1984), 367–383.
- [6] F. P. GARDINER AND N. LAKIC, Quasiconformal Teichmüller theory, Math. Surveys Monogr., vol. 76, Amer. Math. Soc., Providence, RI, 2000.
- S. KRUSHKAL, Complex geomerty of the universal Teichmüller space. II, Georgian Math. J. 14 (2007), 483–498.
- [8] H. ROYDEN, Automorphisms and isometries of Teichmüller space, Advances in the theory of Riemann surfaces (L. V. Ahlfors et al., eds.), Ann. math. stud. 66, Princeton University Press, 1971, 369–384.
- [9] G. YAO, On nonuniqueness of geodesic disks in infinite-dimensional Teichmüller spaces, Monatsh. Math., DOI 10.1007/s00605-015-0834-4 (2015).

Hiromi Ohtake Kyoto UNIVERSITY OF EDUCATION 1 FUKAKUSA-FUJINOMORI-CHO, FUSHIMI-KU Kyoto 612-8522 JAPAN E-mail: ohtake@kyokyo-u.ac.jp