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FIXED POINT PROPERTY FOR A CATð0Þ SPACE WHICH

ADMITS A PROPER COCOMPACT GROUP ACTION

Tetsu Toyoda

Abstract

We prove that if a geodesically complete CATð0Þ space X admits a proper

cocompact isometric action of a group, then the Izeki-Nayatani invariant of X is

less than 1. Let G be a finite connected graph, m1ðGÞ be the linear spectral gap of

G, and l1ðG;XÞ be the nonlinear spectral gap of G with respect to such a CATð0Þ
space X . Then, the result implies that the ratio l1ðG;XÞ=m1ðGÞ is bounded from

below by a positive constant which is independent of the graph G. It follows that

any isometric action of a random group of the graph model on such X has a global

fixed point. In particular, any isometric action of a random group of the graph model

on a Bruhat-Tits building associated to a semi-simple algebraic group has a global

fixed point.

1. Introduction

1.1. Nonlinear spectral gaps. Let G ¼ ðV ;EÞ be a graph, where V and E
denote the sets of vertices and unoriented edges, respectively. Throughout this
paper, we assume that every graph is simple and connected and satisfies 2a
jV j < y. A weight function on G is a symmetric function m : V � V ! ½0;yÞ
whose support equals the set ~EE ¼ fðu; vÞ A V � V j fu; vg A Eg. A weight func-
tion m induces a weight mðuÞ of each vertex u A V by mðuÞ ¼

P
v AV mðu; vÞ. We

use the convention that mðVÞ ¼
P

v AV mðvÞ. The pair ðG;mÞ is called a weighted
graph. Unless we specify otherwise, we assume that every graph is equipped
with the uniform weight function m defined as

mðu; vÞ ¼ 1; if ðu; vÞ A ~EE;

0; otherwise:

�

The linear spectral gap m1ðGÞ of a weighted graph ðG;mÞ is the first
positive eigenvalue of the combinatorial Laplacian D which acts on functions
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f : V ! R as

Df ðvÞ ¼ f ðvÞ �
X
u AV

mðv; uÞ
mðvÞ f ðuÞ; v A V :

It can be computed variationally as

m1ðGÞ ¼ inf
1
2

P
u; v AV mðu; vÞj f ðuÞ � f ðvÞj2P

v AV mðvÞj f ðvÞ � f j2

����� f : V ! R is nonconstant

( )
;ð1:1Þ

where f ¼ f1=mðVÞg
P

v AV fmðxÞ f ðxÞg, or

m1ðGÞð1:2Þ

¼ inf

P
u; v AV mðu; vÞj f ðuÞ� f ðvÞj2

1

mðVÞ
P

u; v AV mðuÞmðvÞj f ðuÞ� f ðvÞj2

����� f : V ! R is nonconstant

8>><
>>:

9>>=
>>;:

Recently, several nonlinear analogues of m1ðGÞ with respect to a general
metric space X were defined by considering mappings f : V ! X instead of
R-valued functions. They are called nonlinear spectral gaps and played impor-
tant roles in metric geometry and geometric group theory.

By generalizing the formula (1.1), we obtain the following definition of a
nonlinear spectral gap, which was first introduced by M.-T. Wang [15] for the
case where the target metric space is an Hadamard manifold. Throughout this
paper, every metric space is assumed to contain at least two points.

Definition 1.1 (Wang invariant). Let ðG;mÞ be a weighted graph and
ðX ; dX Þ be a complete CATð0Þ space. The Wang invariant l1ðG;XÞ of G with
respect to X is defined as

l1ðG;X Þ ¼ inf
1
2

P
u; v AV mðu; vÞdX ð f ðuÞ; f ðvÞÞ2P

v AV mðvÞdX ð f ðvÞ; f Þ2

���� f : V ! X is nonconstant

( )
;

where f denotes the barycenter of the probability measure

X
v AV

mðvÞ
mðVÞ Diracf ðvÞ

on X . Here, Diracf ðvÞ denotes the Dirac measure at f ðvÞ A X .

The Wang invariant plays a crucial role in the theory of rigidity of groups
([15], [7], [10]). By generalizing the formula (1.2), we obtain the definition of
another nonlinear spectral gap which was defined by Gromov [4].

130 tetsu toyoda



Definition 1.2. Let ðG;mÞ be a weighted graph and ðX ; dX Þ be a metric
space. The Gromov nonlinear spectral gap lGro

1 ðG;XÞ is defined as

lGro
1 ðG;X Þ

¼ inf

P
u; v AV mðu; vÞdX ð f ðuÞ; f ðvÞÞ2

1

mðVÞ
P

u; v AV mðuÞmðvÞdX ð f ðuÞ; f ðvÞÞ2

����� f : V ! X is nonconstant

8>><
>>:

9>>=
>>;:

By definition, we have

l1ðG;RÞ ¼ lGro
1 ðG;RÞ ¼ m1ðGÞ

for any graph G. Moreover, we also have

l1ðG;HÞ ¼ lGro
1 ðG;HÞ ¼ m1ðGÞ:

for any graph G and Hilbert space H. For a general complete CATð0Þ space
X and a graph G, these two nonlinear spectral gaps have the following relation
(see [10]):

1

2
l1ðG;X Þa lGro

1 ðG;X Þa l1ðG;X Þ:ð1:3Þ

1.2. Comparison of nonlinear and linear spectral gaps. It is a fundamental
question to ask for what kind of complete CATð0Þ space X , does there exist a
constant CX > 0 depending only on X which satisfies

l1ðG;XÞbCXm1ðGÞð1:4Þ

for any graph G. It is known that the existence of such a constant CX > 0
implies many important conclusions including the following (A) and (B):

(A) Any isometric action of a random group of the graph model on X has a
global fixed point.

(B) A sequence of expanders does not embed coarsely into X ([4]).
The conclusion (A) was proved by Izeki, Kondo and Nayatani in [6]. For its
precise statement, see Theorem 6.2 in Section 6. Roughly, it states that if we
equip a suitable probability measure with a set G of finitely generated groups,
then, with high probability, a randomly chosen group G A G is infinite and any
isometric action of G on X has a global fixed point. This guarantees the
existence of infinite groups G whose isometric actions on X always have global
fixed points.

For the definitions of coarse embeddings and sequences of expanders, see
Section 6. In [4], Gromov proved that a sequence of expanders does not embed
coarsely into a Hilbert space. Since then, coarse embeddability of a sequence of
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expanders into a metric space has become an important obstruction of the space
to be embedded coarsely into a Hilbert space. The conclusion (B) states that X
does not have such an obstruction to embed coarsely into a Hilbert space, and is
proved easily by applying the argument of Gromov. For the detailed proof of
the conclusion (B), see Theorem 4.5 of [3].

The purpose of this paper is to specify complete CATð0Þ spaces X which
allow the existence of such constants CX > 0 as above. Consequently, it will
specify spaces which satisfy the above conclusions (A) and (B).

Throughout this paper, we denote by Bðp; rÞ the open ball of radius r
centered at p and by Bðp; rÞ the closed ball of radius r centered at p. We use
the following definition.

Definition 1.3 ([1], Chapter I.8). An isometric action of a group G on a
metric space X is called cocompact if there exists a compact subset KHX such that
X ¼ 6

g AG gK . An isometric action of G on a metric space X is called proper
if for each p A X there exists r > 0 such that the set fg A G j gBðp; rÞVBðp; rÞ0 fg
is finite.

We prove the following theorem.

Theorem 1.4. Let X ¼ fX1;X2; . . . ;Xng be a finite set of geodesically com-
plete CATð0Þ spaces such that each Xi admits a proper cocompact isometric action
of a group. Then, there exists a constant C ¼ CX > 0 which depends only on X
such that the inequality

l1ðG;XÞbCm1ðGÞð1:5Þ

holds whenever X is a ( finite or infinite) product of copies of spaces in X and G
is a graph. In particular, any Bruhat-Tits building X associated to a semi-simple
algebraic group admits the existence of a constant C ¼ CX which satisfies the
inequality (1.5) for any graph G.

We also prove an estimate of the same type when a complete CATð0Þ space
X is uniformly locally doubling in the following sense.

Definition 1.5. Fix N A ½1;yÞ. A metric space is called doubling with
doubling constant N if every closed ball can be covered by at most N closed balls
of half the radius. We say that a metric space is uniformly locally doubling with
doubling constant N if any point has a neighborhood which is doubling with
doubling constant N.

Theorem 1.6. For each N A ½1;yÞ, there exists a constant C ¼ CN > 0 such
that the inequality

l1ðG;XÞbCm1ðGÞð1:6Þ

132 tetsu toyoda



holds for every graph G and a complete CATð0Þ space X which is isometric to
a ( finite or infinite) product of uniformly locally doubling CATð0Þ spaces with a
common doubling constant N.

Theorem 1.4 and Theorem 1.6 yield that if a complete CATð0Þ space X
satisfies the hypothesis of either theorem, X satisfies the conclusions (A) and (B).
We state this explicitly as Threorem 6.3 and Theorem 6.6 in Section 6. In
particular, if X is a Bruhat-Tits building associated to a semi-simple algebraic
group, then any isometric action of a random group of the graph model on X has
a global fixed point.

1.3. Relations with other results. Naor-Silberman [9] proved that if a
metric space X has finite Nagata dimension, then for every e > 0, there exists
a constant CX ; e which satisfies

lGro
1 ðG;XÞbCX ; e m1ðGÞ1þe;ð1:7Þ

for every graph G. Moreover, Naor-Silberman [9] also proved that the weaker
inequality (1.7) su‰ces to imply the fixed point property (A) of a random group
for X whenever X is p-uniformly convex for some pb 2. Since each Bruhat-
Tits building associated to a semi-simple algebraic group has finite Nagata
dimension, and complete CATð0Þ spaces are 2-uniformly convex, for such a
building X , the fixed point property (A) also follows from their result.

However, an advantage of our result is that our estimate (1.4) is better than
their estimate (1.7). In fact, by (1.3), we obtain the following corollaries of Theo-
rem 1.4 and Theorem 1.6, respectively, which improve Naor-Silbermann’s esti-
mate (1.7) when the target metric space satisfies the hypothesis of either theorem.

Corollary 1.7. If a geodesically complete CATð0Þ space X admits a proper
cocompact isometric action of a group, then there exists a constant C 0

X > 0 such
that the inequality

lGro
1 ðG;XÞbC 0

Xm1ðGÞð1:8Þ

holds for every graph G.

Corollary 1.8. For each N A ½1;yÞ, there exists a constant C 0
N > 0 such

that the inequality

lGro
1 ðG;XÞbC 0

Nm1ðGÞð1:9Þ

holds for every uniformly locally doubling complete CATð0Þ space X with doubling
constant N and every graph G.

1.4. The Izeki-Nayatani invariant. To obtain such a stronger estimate, we
use the so-called Izeki-Nayatani invariant. Izeki and Nayatani introduced the
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Izeki-Nayatani invariant 0a dðXÞa 1 of a complete CATð0Þ space X in [7], and
proved that

l1ðG;XÞb ð1� dðXÞÞm1ðGÞð1:11Þ

for any complete CATð0Þ space X and graph G. For the definition of the Izeki-
Nayatani invariant, see Section 3.

On the other hand, a standard method to compare the linear spectral gap
and the nonlinear spectral gap with respect to X is to estimate the bi-Lipschitz
distortion of X into a Hilbert space. The bi-Lipschitz distortion c2ðXÞ of a
metric space X into a Hilbert space is the infimum of D > 0 such that there exists
a 1-Lipschitz mapping f : X ! H to a Hilbert space which satisfies

1

D
dX ðx; yÞa k f ðxÞ � f ðyÞka dX ðx; yÞ

for every x; y A X , and we have

lGro
1 ðG;XÞb 1

c2ðX Þ2
m1ðGÞ:

Although the Izeki-Natayatani invariant dðX Þ can also be estimated by using
the bi-Lipschitz distortion c2ðXÞ into a Hilbert space, the present author [13]
established another method to estimate it, which even does not require the
existence of bi-Lipschitz embeddings of X into a Hilbert space. This method
enables us to obtain our estimates. We summarize this method in Section 3.

1.5. Organization. The paper is organized as follows. In Section 2, we
briefly review some basic notions concerning CATð0Þ spaces. In Section 3, we
recall the definition of the Izeki-Nayatani invariant and discuss some basic
properties of it. We also summarize the method obtained in [13] to estimate
this invariant. In Section 4, we prove Theorem 1.4. In Section 5, we prove
Theorem 1.6. To prove Theorem 1.6, we prove that the ultralimit of a sequence
of doubling length spaces with a common doubling constant is also doubling
with the same constant. In Section 6, we see that our results imply fixed-point
theorems of random groups and non-embeddability of sequences of expanders.
In Appendix, we discuss some other facts concerning the Izeki-Nayatani invariant.

Acknowledgements. I would like to thank S. Nayatani, K. Fujiwara,
H. Izeki, and T. Kondo for helpful discussions.

2. Preliminaries

In this section, we briefly recall some basic notions in metric geometry. For
a detailed exposition, we refer the reader to [1], [2], and [11].

Let ðX ; dX Þ be a metric space. A continuous mapping g : I ! X from an
interval I HR to X is called a path in X . When I ¼ ½a; b� is a closed interval, it

134 tetsu toyoda



is called a path joining gðaÞ to gðbÞ. The length LðgÞ of a path g : ½a; b� ! X is
defined as

LðgÞ ¼ sup
Xk
i¼1

dX ðgðti�1Þ; gðtiÞÞ;

where the supremum is taken over all finite subdivisions

a ¼ t0 a t1 a � � �a tk ¼ b:

A path g : ½a; b� ! X is called arc-length parametrized if Lðgj½a; t�Þ ¼ jt� aj for all
t A ½a; b�, where gj½a; t� is the restriction of g to ½a; t�. Any path can be repar-

ametrized to an arc-length parametrized path. X is called a length space if the
distance dX ðp; qÞ between any two points p; q A X is equal to the infimum over
the lengths of paths joining p to q. We call a path g : I ! X a geodesic if it is
an isometric embedding of the interval I to X . A metric space is called a
geodesic space if every pair of points is joined by a geodesic. We call a path
g : I ! X a local geodesic if for every t A I there exists a neighborhood J of t in I
such that the restriction gjJ : J ! Y is a geodesic.

Definition 2.1. A metric space X is called geodesically complete if it is
complete and any local geodesic g : ½0; a� ! X is a restriction of some local
geodesic ~gg : ½0; b� ! X with 0 < a < b.

A geodesic triangle in X is a triples¼ ðg1; g2; g3Þ of geodesics gi : ½ai; bi� ! X
such that

g1ðb1Þ ¼ g2ða2Þ; g2ðb2Þ ¼ g3ða3Þ; g3ðb3Þ ¼ g1ða1Þ:

For a geodesic triangle s¼ ðg1; g2; g3Þ there is a geodesic triangle

s¼ ðg1; g2; g3Þ; gi : ½ai; bi� ! R2

in R2 such that LðgiÞ ¼ LðgiÞ for each i. Such a triangle s is unique up to
isometry of R2. We call it the comparison triangle of s in R2. A geodesic
triangle s is said to be thin if

dY ðgiðsÞ; gjðtÞÞa dkðgiðsÞ; gjðtÞÞ

whenever i; j A f1; 2; 3g, s A ½ai; bi�, and t A ½aj ; bj�.

Definition 2.2. A geodesic space X is called a CATð0Þ space if every
geodesic triangle in X is thin.

By definition, for any pair of points p; q A X , a geodesic g : ½0; dX ðp; qÞ� ! X
joining p to q is unique whenever X is a CATð0Þ space. It is known that every
local geodesic g : ½a; b� ! X in a geodesically complete space is a restriction of a
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local geodesic ~gg : R ! Y (see [2, Corollary 9.1.28.]), and every local geodesic in
a complete CATð0Þ space is a geodesic (see [1, Chapter II, Proposition 1.4]).
Thus, every geodesic g : ½a; b� ! X in a geodesically complete CATð0Þ space X is
a restriction of a geodesic ~gg : R ! X .

Let g : ½a; b� ! X , g 0 : ½a 0; b 0� ! X be two geodesics in a CATð0Þ space X
with gðaÞ ¼ g 0ða 0Þ ¼ p. We define the angle ffpðg; g 0Þ between g and g 0 as

ffpðg; g 0Þ ¼ lim
t!a; t 0!a 0

ff0pðgðtÞ; g 0ðt 0ÞÞ;

where ff0pðgðtÞ; g 0ðt 0ÞÞ is the corresponding angle of the triangle in R2 whose side
lengths are dX ðp; gðtÞÞ, dX ðgðtÞ; g 0ðtÞÞ and dX ðg 0ðtÞ; pÞ. The existence of the limit
is guaranteed by the definition of CATð0Þ spaces. The law of cosines on a
Euclidean space yields

cos ffpðg; g 0Þ ¼ lim
t!a; t 0!a 0

dX ðp; gðtÞÞ2 þ dX ðp; g 0ðt 0ÞÞ2 � dX ðgðtÞ; g 0ðt 0ÞÞ2

2dX ðp; gðtÞÞdX ðp; g 0ðt 0ÞÞ
:ð2:1Þ

Definition 2.3. Let ðS; dSÞ be a metric space. The cone ConeðSÞ over S
is the quotient of the product S � ½0;yÞ obtained by identifying all points in
S � f0gHS � ½0;yÞ. The point represented by ðx; 0Þ for any x A S is called the
origin of the cone and we denote this point by o. The cone distance dConeðSÞðv;wÞ
between two points v;w A ConeðSÞ represented by ðx; tÞ; ðy; sÞ A S � ½0;yÞ respec-
tively, is defined by

dConeðSÞðv;wÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ s2 � 2ts cosðminfp; dSðx; yÞgÞ

q
:

Then ðConeðSÞ; dConeðSÞÞ becomes a metric space. We call this metric space the
Euclidean cone over ðS; dSÞ.

For an element v A ConeðSÞ represented by ðx; rÞ A S � ½0;yÞ and c > 0, we
denote by cv the element represented by ðx; crÞ. We claim that

dConeðSÞðcv; cwÞ ¼ cdConeðSÞðv;wÞ
holds for any v;w A ConeðSÞ

Definition 2.4. Let ðX ; dX Þ be a CATð0Þ space, and let p A X . We de-
note by ðSpXÞ� the quotient set of all nontrivial geodesics starting from p by
the equivalence relation @ defined by g@ g 0 , ffpðg; g 0Þ ¼ 0. Then the angle
ffp induces a distance on ðSpXÞ�, which we denote by the same symbol ffp.
The space of directions SpX at p is the metric completion of the metric space
ððSpX Þ�; ffpÞ. The tangent cone TCpX of X at p is the Euclidean cone
ConeðSpXÞ over the space of directions at p. Define a map pp : X ! TCpX
by ppðqÞ ¼ ð½g�; dX ðp; qÞÞ where ½g� is the equivalence class represented by the
unique geodesic g joining p and q.

It is easily seen that the map pp defined as above is 1-Lipschitz. It is also
seen that each tangent cone TCpX is the metric completion of the Euclidean cone
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ConeððSpXÞ�Þ. If we denote the canonical inclusion of SpX into TCpX by i,
then it is straightforward from the definition of the metric on Euclidean cones
that we have

2

p
dSðx; yÞa dTðiðxÞ; iðyÞÞa dSðx; yÞð2:2Þ

for all x; y A SpX , where dS and dT represent the distance functions of SpX and
TCpX , respectively.

The CATð0Þ condition is preserved under taking (l2-)product.

Definition 2.5. Let ðX1; d1Þ; ðX2; d2Þ; . . . be metric spaces with basepoints

o1 A X1; o2 A X2; . . . , respectively. The (l2-)product X of X1;X2; . . . with respect
to the basepoints o1; o2; . . . consists of all sequences ðxnÞn with xn A Xn, satisfyingP

n dnðon; xnÞ
2 < y, and is equipped with the metric function d defined by

dðx; yÞ2 ¼
Xy
n¼1

dnðxn; ynÞ2

for any elements x ¼ ðx1; x2; . . .Þ A X and y ¼ ðy1; y2; . . .Þ A X .

To define the Wang invariant, we need to consider a finitely supported
probability measure on a complete CATð0Þ space. We often write a finitely
supported probability measure m on a metric space X in the form

m ¼
Xm
i¼1

ti Diracpi ;

where Diracpi is the Dirac measure at pi A X and each ti is the weight mðfpigÞ
at pi. We denote the support of a measure m by SuppðmÞ. When X is a
complete CATð0Þ space, there exists a unique point on X which minimizes the
function p 7!

Ð
X
dX ðp; qÞ2mðdqÞ ¼

Pm
i¼1 tidY ðp; piÞ

2 (see [12]). This point is called

a barycenter of m and denoted by barðmÞ.

3. Izeki-Nayatani invariant

In this section, we recall the definition of the Izeki-Nayatani invariant d and
its basic properties.

Definition 3.1 (Izeki-Nayatani [7]). Let X be a complete CATð0Þ space,
and PðXÞ be the space of all finitely supported probability measures m with
jSuppðmÞjb 2 on X . For m A PðXÞ, we define 0a dðmÞa 1 to be the infimum of

k
Ð
X
fðpÞmðdpÞk2Ð

X
kfðpÞk2mðdpÞ
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over all mappings f : SuppðmÞ ! H to a Hilbert space H such that

kfðpÞk ¼ dðp; barðmÞÞ;ð3:1Þ
kfðpÞ � fðqÞka dðp; qÞð3:2Þ

for all p; q A SuppðmÞ. We define the Izeki-Nayatani invariant dðXÞ of X by

dðXÞ ¼ sup
m APðXÞ

dðmÞ A ½0; 1�:

Remark 3.2. Notice that a mapping f of m A PðXÞ which satisfies (3.1)
and (3.2) always exists. To see that, fix a unit vector e A H. Define fðpÞ ¼
dðp; barðmÞÞe. Then by the triangle inequality, (3.2) is satisfied.

Izeki-Naytani invariant is designed to estimate the Wang invariant in compar-
ison with the linear spectral gap. In [7], Izeki and Nayatani proved the following.

Proposition 3.3. Let X be a complete CATð0Þ space and G be a weighted
graph. Then, we have

ð1� dðXÞÞm1ðGÞa l1ðG;XÞa m1ðGÞ:

It is known that there are complete CATð0Þ spaces X with dðXÞ ¼ 1.
Kondo [8] constructed the first examples of such spaces. On the other hand, the
present author [13] proved the following criterion for a complete CATð0Þ space X
to be dðXÞ < 1 (see Theorem 5.4 in [13]).

Theorem 3.4. Let 0 < y <
p

2
, 0 < a < 1 and e > 0. Let us say that a metric

space ðS; dSÞ has the property Pðy; a; eÞ if there exists a finite subset S 0 HS such
that

jfs A S 0 j kdSðx; sÞ � dSðy; sÞkb egjb ajS 0j
holds for every x; y A S with dSðx; yÞb y. Let X be a complete CATð0Þ space.
If each tangent cone TCpX of X is isometric to a ( finite or infinite) product of the
Euclidean cones over metric spaces each of which has the property Pðy; a; eÞ, then
there exists a constant Cðy; a; eÞ < 1 depending only on y, a and e such that

dðXÞaCðy; a; eÞ:

The following corollary is used to prove Theorem 1.4 in Section 4.

Corollary 3.5. A complete CATð0Þ space X satisfies dðX Þ < 1 if the
family fSpXgp AX consists of all spaces of directions of X is Gromov-Hausdor¤
precompact.

We recall that the Gromov-Hausdor¤ precompactness is equivalent to the
uniform total boundedness which is defined as follows.
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Definition 3.6. A family X of metric spaces is uniformly totally bounded if
the following two conditions are satisfied:

(1) There is a constant D > 0 such that diamðX ÞaD for all X A X.
(2) For any e > 0 there exists NðeÞ A N such that each X A X contains a

subset SX ; e HX with the following property: the cardinality of SX ; e is at
most NðeÞ and X is covered by the union of all open e-balls whose
centers are in SX ; e.

Proof of Corollary 3.5. It su‰ces to show that if X is a Gromov-Hausdor¤

precompact family of metric spaces, then there exist constants 0 < y <
p

2
, 0 <

a < 1 and e > 0 such that every X A X satisfies the property Pðy; a; eÞ. Since
Gromov-Hausdor¤ precompactness is equivalent to uniform total boundedness,
there exists an N > 0 such that each X A X contains a subset SX HX with the
following property: the cardinality of SX is no greater than N and X is covered

by the union of all open
p

12
-balls whose centers are in SX .

By the definition of the subset SX , for any x; y A X with dX ðx; yÞb
p

3
, there

exist s0; s1 A SX such that

dX ðs0; xÞb
p

4
; dX ðs0; yÞa

p

12
;

dX ðs1; yÞb
p

4
; dX ðs1; xÞa

p

12
:

Hence, there exist two distinct elements s0; s1 A S such that

kdX ðx; s0Þ � dX ðy; s0Þkb
p

6
;

kdX ðx; s1Þ � dX ðy; s1Þkb
p

6
;

for any x; y A X with dX ðx; yÞb
p

3
. Thus each X A X has the property

P
p

3
;
2

N
;
p

6

� �
. r

The following corollary is used to prove Theorem 1.6 in Section 5.

Corollary 3.7. Let X be a CATð0Þ space and p A X. Assume that the
tangent cone TCpX is doubling with doubling constant N A ½0;yÞ. Then there

exist 0 < y <
p

2
, 0 < a < 1 and e > 0 depending only on N such that the space

of directions SpX at p of X has the property Pðy; a; eÞ.

Proof. We assume that N is a natural number. Since TCpX is doubling
with doubling constant N, there exist closed balls B1;B2; . . . ;BN 2 with diameter
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at most 1
4 , which cover the closed ball of radius 1 centered at the origin of the

cone TCpX . Hence SpX is covered by fi�1ðBiÞg, where i : SpX ! TCpX is the
canonical inclusion. By the inequality (2.2), each i�1ðBiÞ has diameter at most
p

8
. Thus the lemma follows from the similar argument as in the proof of

corollary 3.5. r

Some of the known estimates of the Izeki-Nayatani invariant are:
� We have dðHÞ ¼ 0 for a Hilbert space H by definition.
� If X is a finite or infinite dimensional Hadamard manifold or an R-tree,
then we have dðYÞ ¼ 0 ([7]).

� Let Xp be the Euclidean building PSLð3;QpÞ=PSLð3;ZpÞ for each prime

number p. Then, we have dðXpÞb
ð ffiffiffi

p
p � 1Þ2

2ðp� ffiffiffi
p

p þ 1Þ ([7]).

� We have dðX2Þa 0:4122 . . . ([7]).
� If X is a complete CATð0Þ cube complex, then we have dðX Þa 1

2 ([3]).

4. CATð0Þ spaces which admit proper cocompact group actions

In this section, we prove the following proposition.

Proposition 4.1. A geodesically complete CATð0Þ space X satisfies dðXÞ < 1
if it admits a proper cocompact isometric action of a group.

Combining this proposition with Proposition A.1 in Appendix, we obtain the
following corollary.

Corollary 4.2. Let fX1;X2; . . . ;Xng be a finite set of geodesically com-
plete CATð0Þ spaces such that each Xi admits a proper cocompact isometric
action of a group. Then, there exists a constant 0a c < 1 such that any CATð0Þ
space X which is isometric to a ( finite or infinite) product of copies of spaces in
fX1;X2; . . . ;Xng satisfies dðXÞa c.

Theorem 1.4 follows immediately from Corollary 4.2 and Proposition 3.3.
Our proof of Proposition 4.1 consists of two lemmas.

Lemma 4.3. Let X be a geodesically complete CATð0Þ space. If there exists
a positive real number r > 0 such that the family fBðp; rÞgp AX consisting of all

open r-balls in X is Gromov-Hausdor¤ precompact, then the family fSpXgp AX
consisting of all spaces of directions is also Gromov-Hausdor¤ precompact.

Proof. Let p A X be an arbitrary point on X . We denote the canonical
inclusion of SpX into TCpX by i, and represent the distance functions of SpX
and TCpX by dS and dT respectively.
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Fix some 0 < r 0 < r. By the assumption, the family fBðp; rÞgp AX is uni-
formly totally bounded. Hence, for any e > 0, there exists a positive integer N
which is independent of p such that each Bðp; rÞ is covered by N open balls of
radius 2r 0e=p. Then the metric sphere

Sðp; r 0Þ ¼ fq A X j dX ðp; qÞ ¼ r 0gHBðp; rÞ

is also covered by N open balls of radius 2r 0e=p in X .
Let F : TCpX ! TCpX be the mapping associating each element of TCpX

represented by ðx; tÞ A SpX � ½0;yÞ to the element represented by x;
1

r 0
t

� �
A

SpX � ½0;yÞ. This mapping clearly satisfies

dT ðFðvÞ;FðwÞÞ ¼
1

r 0
dTðv;wÞð4:1Þ

for all v;w A TCpX . Then, we have F � ppðSðp; r 0ÞÞH iðSpXÞ, where pp : X !
TCpX is the 1-Lipschitz mapping defined in Definition 2.4. By (4.1),
F � ppðSðp; r 0ÞÞ can be covered by N open balls of radius 2e=p in TCpX .

Since each geodesic starting from p can be extended up to Sðp; r0Þ by
geodesic completeness of X , F � ppðSðp; r 0ÞÞ is no other than iððSpXÞ�Þ, and
F � ppðSðp; r 0ÞÞ is dense in iðSpXÞ. Hence, iðSpXÞ is covered by N open balls
of radius 2e=p in TCpY . Let us denote these balls by B1;B2; . . . ;BN . Then
fi�1ðBiÞgN

i¼1 covers SpX . By (2.2), each i�1ðBiÞ is covered by an open ball in
SpX of radius e. Hence, SpX is covered by N balls of radius e. Since e > 0 is
arbitrary, we have proved that fSpXgp AX is uniformly totally bounded. Thus, it
is Gromov-Hausdor¤ precompact. r

Lemma 4.4. Let X be a metric space. Assume that a group G acts on
X properly and cocompactly by isometries. Then there exists some positive real
number r > 0 such that the family fBðp; rÞgp AX consisting of all open r-balls in X
is a Gromov-Hausdor¤ precompact family of metric spaces.

Proof. Since G acts on X cocompactly, there exists a compact subset
KHX such that 6

g AG gK ¼ X . Since G acts on X properly, for every p A K ,
there exists rp > 0 such that the set fg A G j gBðp; 2rpÞVBðp; 2rpÞ0 fg is finite.

Let fBðpi; riÞgN
i¼1 be one of finite subcovers of the open cover fBðp; rpÞgp AK of K .

Although it is a well-known fact, we first confirm that X is locally compact
in this case. Let q A X be an arbitrary point, and let r0 ¼ minfr1; r2; . . . ; rNg.
Observe that if there are infinitely many elements g A G with Bðq; r0ÞV gK0j,
then there exists some i A f1; . . . ;Ng with infinitely many elements g 0 A G satisfying

Bðq; r0ÞV g 0Bðpi; riÞ0j:ð4:2Þ

Also, observe that if we can take g1 A G and g2 A G as g 0 in (4.2), then the element
g0 ¼ g�1

2 g1 satisfies

Bðpi; 2riÞV g0Bðpi; 2riÞ0jð4:3Þ
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since both balls Bðxi; 2riÞ and g0Bðxi; 2riÞ contain the point g�1
2 q. Thus, if there

were infinite elements g A G with Bðq; r0ÞV gK0j, there would be infinite g0 A G
with (4.3). It contradicts the definition of ri. Thus, there are only finite ele-
ments g A G with Bðq; r0ÞV gK 0j. Let g1; . . . ; gM be all such elements. Then,
we have

Bðq; r0ÞH 6
M

j¼1

gjK :

by the definition of K . Since the right-hand side is compact, any closed ball
centered at q with a radius less than r0 is compact. Hence Y is locally compact.

Therefore, there exists a precompact open ball Bp HX centered at p for
any p A K . Let fBigi be a finite subcover of the open cover fBpgp AK of K , and

define U ¼ 6
i
Bi. Then, U is a precompact open subset containing K .

For each point p A K , we define f ðpÞ > 0 to be f ðpÞ ¼ supfa > 0 jBðp; aÞH
Ug. Let q A K be an arbitrary point, and let h > 0 be an arbitrary positive
real number. Set k ¼ minf f ðqÞ; hg. Then for any q 0 A Bðq; kÞ, we have f ðq 0Þb
f ðqÞ � h. Hence, f is lower semi-continuous on K , and there exists p0 A K
on which f attains the minimum value of f . Set r ¼ f ðp0Þ. Then, we have
Bðp; rÞHU for all p A K .

Now, we show that the family fBðp; rÞgp AX of all open r-balls in X is

uniformly totally bounded. Let p A X be an arbitrary point, and let g A G be
an element which satisfies p A gK . Then, since g�1Bðp; rÞ ¼ Bðg�1p; rÞ is covered
by U , Bðp; rÞ is covered by precompact subset gU HX which is isometric to U .
Uniformly total boundedness of the family fBðp; rÞgp AX follows straightforward
from this, which proves the lemma. r

Proof of Proposition 4.1. By Lemma 4.3 and Lemma 4.4, the family
fSpXgp AX consisting of all spaces of directions of geodesically complete CATð0Þ
space X is Gromov-Hausdor¤ precompact if it admits a proper cocompact
isometric action of a group. Hence, the proposition follows from Corollary 3.5.

r

Remark 4.5. We remark that the geodesical completeness is essential in
Proposition 4.1. In [8], Kondo constructed a sequence of locally compact
CATð0Þ cones T1;T2;T3; . . . with limi!y dðTiÞ ¼ 1. For each i ¼ 1; 2; . . . , let

T 0
i HTi be a closed ball of radius

1

i
centered at the origin. Gluing T 0

1;T
0
2; . . .

by identifying the origin of every T 0
i , then the resulting space T 0 is a compact

CATð0Þ space satisfying dðT 0Þ ¼ 1 although it is not geodesically complete.

5. Ultralimits and doubling CATð0Þ spaces

In this section, we prove the following proposition.
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Proposition 5.1. If a complete CATð0Þ space X is uniformly locally doubling
with doubling constant N, then there exists a constant 0aCN < 1 depending only
on N which satisfies dðX Þ < CN.

Combining this proposition with Proposition A.1 in Appendix, we obtain the
following corollary.

Corollary 5.2. If a complete CATð0Þ space X is isometric to a ( finite
or infinite) product of uniformly locally doubling CATð0Þ spaces with a common
doubling constant N A ½1;yÞ, then there exists a constant c < 1 depending only on
N such that dðX Þa c.

Theorem 1.6 follows immediately from Corollary 4.2 and Proposition 3.3.
To prove Proposition 5.1, we show that the ultralimit of a sequence of doubling
length spaces with a common doubling constant is also doubling with the same
doubling constant. First, we recall the definitions of ultrafilters and ultralimits.
Let I be a set. A collection oH 2I of subsets of I is called a filter on I if it
satisfies the following conditions:

(a) j B o.
(b) A A o, AHB ) B A o.
(c) A;B A o ) AVB A o.

An ultrafilter is a maximal filter. The maximality condition can be rephrased as
the following condition:

(d) For any decomposition I ¼ A1 U � � �UAm of I into finitely many disjoint
subsets A1; . . . ;Am, o contains exactly one of A1; . . . ;Am.

An ultrafilter o on I is called nonprincipal if it satisfies the following condition:
(e) For any finite subset F H I , F B o.

Zorn’s lemma guarantees the existence of nonprincipal ultrafilters on any infinite
set I .

Fix a set I , and an ultrafilter o on I . For a topological space X , a point
p A X , and a mapping f : I ! X , we write

o-lim
i

f ðiÞ ¼ pð5:1Þ

if for every neighborhood U of p, the preimage f �1ðUÞ belongs to o. When-
ever X is compact and Hausdor¤, for every mapping f : I ! X , there exists a
unique p A X which satisfies (5.1).

Lemma 5.3. Fix a set I , an ultrafilter o on I , and a subset J A o. Let X be
a topological space, f : I ! X be a mapping, and p A X. Then, the set

oJ ¼ fK A o jKH Jg

becomes an ultrafilter on J. Moreover, if we have oJ -limj f jJð jÞ ¼ p for the
restriction f jJ of f to J, then we also have o-limi f ðiÞ ¼ p.
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Proof. Since it is straightforward to see that oJ is an ultrafilter on J,
we only show the ‘‘moreover’’ part. Assume that oJ-limj f jJð jÞ ¼ p holds.
Let U HX be an arbitrary neighborhood of p. Then by the assumption,
f j�1

J ðUÞ A oJ . Then f j�1
J ðUÞ A o by the definition of oJ . Hence, we have

f �1ðUÞ A o since we have f j�1
J ðUÞH f �1ðUÞ, which shows that o-limi f ðiÞ ¼ p.

r

Fix a set I and an ultrafilter o on I . Let fðXi; diÞgi A I be a sequence of
metric spaces indexed by I , and let

Q
i A I Xi be the set of all sequences fpigi A I

with pi A Xi for every i A I . We define a relation @ on
Q

i A I Xi by declaring
fpig@ fqig if and only if o-limi diðpi; qiÞ ¼ 0; which becomes an equivalence
relation. We denote the set of all equivalence classes by o-limiðXi; diÞ, or simply
o-limi Xi. We denote the equivalence class represented by a sequence fpig AQ

i A I Xi by o-limi pi. We define the distance doðp; qÞ between p ¼ o-limi pi and
q ¼ o-limi qi by

doðp; qÞ ¼ o-lim
i
diðpi; qiÞ A ½0;y�:

Then, ðo-limiðXi; diÞ; doÞ becomes a metric space whose distance function possibly
takes the value y.

Definition 5.4. Let o be an ultrafilter on a set I . Let fðXi; diÞgi A I be a
sequence of metric spaces indexed by I . We call the metric space
ðo-limiðXi; diÞ; doÞ defined above the ultralimit of fðXi; diÞgi A I with respect to o.

An ultralimit ðo-limiðXi; diÞ; doÞ decomposes into components consisting of
points of mutually finite distance. If we are given a basepoint pi of every Xi, we
can pick out the component consisting of points which have finite distance from
o-limi pi. This component is a usual metric space where the distance between
every pair of points is finite, and we denote it by o-limiðXi; di; piÞ.

For a sequence fAigi A I of subsets Ai HXi, we denote by o-limi Ai the subset
of o-limiðXi; diÞ consisting of all points which are represented by sequences inQ

i A I Ai.

Lemma 5.5. Fix a set I , an ultrafilter o on I , and a sequence fðXi; diÞgi A I
of metric spaces. Let fAð1Þ

i gi A I ; . . . ; fA
ðmÞ
i gi A I be sequences of subsets such that

A
ðkÞ
i HXi for every k ¼ 1; . . . ;m and every i A I . Then, we have

o-lim
i

6
m

k¼1

A
ðkÞ
i

 !
¼ 6

m

k¼1

o-lim
i

A
ðkÞ
i :ð5:2Þ

Proof. The right-hand side of (5.2) is contained in the left-hand side
trivially. Let p be an arbitrary point in o-limið6m

k¼1
A

ðkÞ
i Þ represented by

fpig A
Q

i A I ð6
m

k¼1
A

ðkÞ
i Þ. For every k A f1; 2; . . . ;mg, we set

Ik ¼ fi A I : k ¼ minfl : pi A A
ðlÞ
i gg:
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Then, I ¼ I1 U � � �U Im is a decomposition of I into disjoint subsets, and the
ultrafilter o contains exactly one of these subsets. Suppose that l A f1; 2; . . . ;mg
satisfies Il A o. Choose a sequence fqig A

Q
i A I A

ðlÞ
i such that qi ¼ pi whenever

i A Il . Then, we have

o-lim
i

diðpi; qiÞ ¼ oIl -lim
i

diðpi; qiÞ ¼ 0

by Lemma 5.3. Hence, such a sequence fqig A
Q

i A I A
ðlÞ
i also represents p.

Thus, we have p A o-limi A
ðlÞ
i , which proves the lemma. r

Lemma 5.6. Fix a set I , an ultrafilter o on I , and a sequence fðXi; diÞgi A I of
length spaces. Let p ¼ o-limi pi be a point on the ultralimit o-limiðXi; diÞ repre-
sented by a sequence fpig A

Q
i A I Xi. Then, we have

Bðp; rÞ ¼ o-lim
i

Bðpi; rÞð5:3Þ

for any r > 0, where Bðp; rÞ denotes the closed ball in o-limðXi; diÞ of radius r
centered at p, and Bðpi; rÞ denotes the closed ball in Xi of radius r centered at pi
for each i.

Proof. The right-hand side of (5.3) is contained in the left-hand side
trivially. Let q be an arbitrary point in the ball Bðp; rÞHo-limiðXi; diÞ and
let fqig be a sequence representing q. We define a new sequence fq 0

ig as follows.
If i A I satisfies diðpi; qiÞa r, we define q 0

i ¼ qi. If i A I satisfies diðpi; qiÞ > rþ 1,
we define q 0

i ¼ pi. If i A I satisfies

rþ 1

mþ 1
< diðpi; qiÞa rþ 1

m

for a positive integer m, we take an arc-length parametrized path g : ½0;L� ! Xi

of length La rþ 2=m joining pi to qi, and define q 0
i to be the point gðL� 2=mÞ.

In this case, we have diðpi; q 0
i Þa r and diðqi; q 0

i Þa 2=m.
To prove that q is contained in the right-hand side of (5.3), it su‰ces to

show that the sequence fq 0
ig defined above satisfies

o-lim
i

diðqi; q 0
i Þ ¼ 0:ð5:4Þ

Let U HR be an arbitrary neighborhood of 0 A R. Choose a positive integer m

large enough to satisfy B 0;
2

m

� �
HU . Define the subset Im H I by

Im ¼ i A I

���� diðpi; qiÞa rþ 1

m

� �
:
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Then, we have Im A o since o-limi diðpi; qiÞa r. On the other hand, by the

definition of q 0
i , we have diðqi; q 0

i Þ A B 0;
2

m

� �
whenever i A Im. Thus,

Im H i A I

���� diðqi; q 0
i Þ A B 0;

2

m

� �� �
H fi A I j diðqi; q 0

i Þ A Ug:

Hence, fi A I j diðqi; q 0
i Þ A Ug A o, which proves (5.4). r

We obtain the following proposition from Lemma 5.5 and Lemma 5.6.

Proposition 5.7. Fix a set I , an ultrafilter o on I. Let fðXi; diÞgi A I be a
sequence of length spaces. If every ðXi; diÞ is doubling with a common doubling
constant for every i A I , then the ultralimit o-limiðXi; diÞ is also doubling with the
same constant.

Proof. By the assumption, there exists N A N such that every ðXi; diÞ is
doubling with doubling constant N. Fix a point p ¼ o-limi pi A o-limiðXi; diÞ
and r > 0. Then, for each i A I , there exist N points p

ð1Þ
i ; . . . ; p

ðNÞ
i A Xi such that

Bðpi; rÞH 6
N

k¼1

B p
ðkÞ
i ;

r

2

� �
;

which implies that

o-lim
i

Bðpi; rÞHo-lim
i

6
N

k¼1

B p
ðkÞ
i ;

r

2

� �( )
:ð5:5Þ

The left-hand side of (5.5) equals Bðp; rÞ by Lemma 5.6, and the right-hand side

equals 6N

k¼1
Bðo-limi p

ðkÞ
i ; r=2Þ by Lemma 5.5 and 5.6. Hence, we obtain

Bðp; rÞH 6
N

k¼1

B o-lim
i

p
ðkÞ
i ;

r

2

� �
;

which proves the proposition. r

Proposition 5.8. Fix a CATð0Þ space ðX ; dX Þ, p A X and a nonprincipal
ultrafilter o on N. For every n A N, we define another metric dn on X by

dnðp; qÞ ¼ ndX ðp; qÞ; p; q A X :

Then the tangent cone TCpX isometrically embeds into o-limnðX ; dn; pÞ.

Proof. We construct an embedding f : ConeððSpX Þ�Þ ! o-limnðX ; dn; pÞ.
For the origin o A ConeððSpYÞ�Þ, we define f ðoÞ ¼ o-limn p. For v A
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ConeððSpYÞ�Þnfog, we define f ðvÞ as follows. Suppose that v is represented by
ð½g�; rÞ A ðSpY Þ� � ð0;yÞ, where ½g� denotes the direction represented by a non-
trivial geodesic g : ½0; a� ! X starting from p. We define a sequence fpng AQ

n AN Xn by

pn ¼
g

r

n

� �
; if

r

n
a a;

p; if a <
r

n
;

8>><
>>:

and define f ðvÞ A o-limnðX ; dn; pÞ by

f ðvÞ ¼ o-lim
n

pn:

Then, by (2.1) and the definition of the distance functions on Euclidean cones,
it is easily seen that the above definition of f is independent of the choices of
g, and that f becomes an isometry. Since TCpX is the metric completion of
ConeððSpXÞ�Þ and an ultralimit is always complete (see [1, Chapter I, Lemma
5.53]), f extends to the isometric embedding of TCpX , which completes the
proof. r

Combining Proposition 5.7 and Proposition 5.8, we obtain the following
proposition.

Proposition 5.9. Fix N A ½1;yÞ. Suppose that a CATð0Þ space ðX ; dX Þ
is uniformly locally doubling with doubling constant N. Then every tangent cone
TCpX of X is doubling with doubling constant N.

Proof. Choose a nonprincipal ultrafilter o on N. Fix p A X . For each
n A N, let dn be a metric on X defined by

dnðp; qÞ ¼ ndX ðp; qÞ; p; q A X :

Since ðX ; dX Þ is locally doubling with doubling constant N, there exists e > 0
such that the closed e-ball in ðX ; dX Þ centered at p is doubling with doubling
constant N. Hence, for every n, the closed ne-ball of ðX ; dnÞ centered at
p is doubling with doubling constant N. Fix an arbitrary q ¼ o-limn qn A
o-limnðX ; dn; pÞ and r > 0. Let sb 0 be the distance between q and the base-
point o-limn p. We can assume that the sequence fqng satisfies dnðp; qnÞa 2s
for every n by replacing all points qn with dðp; qnÞ > 2s by p if necessary. Then,
the closed r-ball in ðX ; dnÞ centered at qn is doubling with doubling constant N

whenever nb
rþ 2s

e
since it is contained in the closed ne-ball in ðX ; dnÞ centered

at p. Hence, by Lemma 5.6 and Proposition 5.7, the closed r-ball in the
ultralimit o-limnðX ; dn; pÞ centered at the basepoint o-limn p is also doubling
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with doubling constant N. Since TCpY embeds isometrically into o-limnðY ; dn; pÞ
by Lemma 5.8, the proposition follows. r

Proof of Proposition 5.1. By Proposition 5.7, every tangent cone TCpX of
uniformly locally doubling CATð0Þ space X with doubling constant N is doubling
with constant N. Hence, the proposition follows from Corollary 3.5. r

6. Applications

As we described in Section 1, Theorem 1.4 and 1.6 yield the fixed point
property of a random group for a space which satisfies the hypothesis of either
theorem, and coarse non-embeddability of sequences of expanders into such a
space. In this section, we recall some related definitions and state these con-
clusions precisely.

First we recall the definition of a random group of the graph model which
was introduced by Gromov [4]. A path on a graph G ¼ ðV ;EÞ is a finite
sequence

ðu1; u2Þ; ðu2; u3Þ; . . . ; ðun�1; unÞ; ðun; unþ1Þ

of successive directed edges in ~EE. If all vertices u1; . . . ; unþ1 are distinct, we
call it an embedded path. A cycle is a path which starts and ends with a same
vertex. The girth of a graph G denoted by girthðGÞ is the minimal length of a
cycle all of whose vertices are distinct except the starting and ending ones. If
there is no such a cycle in G, girthðGÞ is defined to be y. The diameter of G
denoted by diamðGÞ is the supremum of the graph distance between two vertices
in G.

Definition 6.1 (random groups of the graph model [4]). Fix a positive
integer k, and a sequence fGl ¼ ðVl;ElÞgl AL of graphs indexed by an unbounded
set L of positive integers. Let G ¼ Fk be the free group generated by S ¼
fsG1 ; . . . ; s

G
k g. An S-labelling of Gl is a mapping a : ~EEl ! S which satisfies

aððu; vÞÞ ¼ aððv; uÞÞ�1 for every ðu; vÞ A ~EEl. We denote by LðGl; kÞ the set of
all S-labellings of Gl. For every a A LðGl; kÞ and every path ~pp ¼ ð~ee1; . . . ;~eelÞ in
Gl, we denote að~ppÞ ¼ að~ee1Þ � � � að~eelÞ A G. We define Ra ¼ fað~ccÞ A G j~cc is a cycle

in Glg and Ga ¼ G=Ra, where Ra is the normal closure of Ra.
Now, for each group property P, we say that a random group associated with

fGlg has property P if we have

lim
l!y

jfa A LðGl; kÞ jGa has the property Pgj
jLðGl; kÞj

¼ 1:

In what follows, we fix a positive integer k and every random group is based
on the free group Fk of rank k. In [6], Izeki, Kondo and Nayatani proved the
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following fixed point theorem of a random group of the graph model. The
following is a slight modification of Theorem 3.5 in [6].

Theorem 6.2 (Izeki-Kondo-Nayatani [6]). Fix C > 0, d > 0 and l > 0.
There exists b > 1 which satisfies the following statement. Let X be the set of all
complete CATð0Þ spaces X which satisfies

l1ðG;XÞbCm1ðGÞ

for every graph G. Let fGl ¼ ðVl;ElÞgl AL be a sequence of graphs indexed by an
unbounded set L of positive integers which satisfies the following conditions:

(a) liml!yjVlj ¼ y,
(b) 2a degðuÞa d for all l A L and u A Vl,
(c) m1ðGlÞb l for all l A L,
(d) There exists c > 0 which satisfies girthðGlÞb l and diamðGlÞa c � l for

every l A L.
(e) There exists a constant c 0 > 0 such that the number of embedded paths in

Gl of length less than
l

2
is less than c 0 � bl=2.

Then, the random group associated with fGlg is non-elementary hyperbolic and any
of its isometric action on any X A X has a global fixed point.

Combining Theorem 1.4 and Theorem 1.6 with Theorem 6.2, we obtain the
following theorem.

Theorem 6.3. Assume that a complete CATð0Þ space X satisfies the either of
the following conditions.

(i) X is a ( finite or infinite) product of copies of a finite number of spaces
each of which is geodesically complete and admits a cocompact proper
isometric action of a group.

(ii) X is a ( finite or infinite) product of uniformly locally doubling CATð0Þ
spaces with a common doubling constant.

Then, the random group associated with a sequence fGlg of graphs which satisfies
the conditions (a), (b), (c), (d), (e) in Theorem 6.2 is non-elementary hyperbolic and
any of its isometric action on any X A X has a global fixed point.

Definition 6.4 (sequences of expanders). A sequence fGl ¼ ðVl;ElÞgl AL of
graphs indexed by an unbounded set L of positive integers is called a sequence
of expanders if it satisfies the following conditions:

(1) liml!yjVlj ¼ y,
(2) There exists d > 0 which satisfies degðuÞa d for all l A L and u A Vl,
(3) There exists l > 0 which satisfies m1ðGlÞb l for all l A L.

So the graph sequence which is used to define the random group in Theorem
6.2 and Theorem 6.3 is a sequence of expanders.
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Definition 6.5. Let ðX ; dX Þ and ðY ; dY Þ be metric spaces. A mapping
f : X ! Y is said to be a coarse embedding if there exist unbounded non-
decreasing functions a; b : ½0;yÞ ! ½0;yÞ which satisfy

aðdX ðx; x0ÞÞa dY ð f ðxÞ; f ðx 0ÞÞa bðdX ðx; x0ÞÞ
for every x; x 0 A X .

Let fGl ¼ ðVl;ElÞg be a sequence of expanders, and let dl be the graph
metric on Vl. Then, the sequence of expanders is said to be embedded coarsely
into a metric space ðX ; dX Þ if there exist unbounded nondecreasing functions
a; b : ½0;yÞ ! ½0;yÞ and mappings f fl : Vl ! Xgn which satisfy

aðdlðu; vÞÞa dX ð flðuÞ; flðvÞÞa bðdlðu; vÞÞ

for every l and every u; v A Vl. Coarse embeddability of a sequence of expanders
into a metric space X is a well-known obstruction for X to be embedded coarsely
into a Hilbert space (see [4] and [11]). Combining Theorem 1.4 and Theorem 1.6
with the conclusion (B) in Section 1, we see that a space satisfying the hypothesis
of either theorem does not have such an obstruction.

Theorem 6.6. If a complete CATð0Þ space X satisfies the either condition
(i) or (ii) in Theorem 6.3, then a sequence of expanders does not embed coarsely
into X.

Appendix A. Some remarks on the Izeki-Nayatani invariant

In this appendix, we collect some basic facts concerning the Izeki-Nayatani
invariant, which are not mentioned in Section 3. First, the following proposition
describes a basic behavior of the Izeki-Nayatani invariant under taking product,
which is a slight generalization of Proposition 6.5 of [7] and quite similar to
Lemma 4.3 of [13]. We include its proof for the sake of completeness.

Proposition A.1. Let X1;X2;X3; . . . be complete CATð0Þ spaces. Let X be
a product of X1;X2;X3; . . . (with respect to some basepoints). Then we have

dðXÞ ¼ supfdðXiÞ j i ¼ 1; 2; 3; . . .g:

Proof. The inequality dðXÞb supfdðXiÞ j i ¼ 1; 2; 3; . . .g is obvious since
every Xi is isometrically embedded into X . Let m ¼

Pm
i¼1 ti Diracpi be a finitely

supported probability measure on X whose support contains at least two points.

We write pi ¼ ðpð1Þi ; p
ð2Þ
i ; p

ð3Þ
i ; . . .Þ A

Q
n Xn ¼ X for each i ¼ 1; . . . ; n. For each

n, we define a probability measure mn on Xn to be

mn ¼
Xm
i¼1

ti Dirac
p
ðnÞ
i

:
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Let barðmÞ ¼ ðb1; b2; b3; . . .Þ be the barycenter of m. Then we have barðmnÞ ¼ bn
for every n since if we had barðmnÞ0 bn for some n, then it would follow thatð

X

dX ðp; b 0Þ2mðdpÞ <
ð
X

dX ðp; barðmÞÞ2mðdpÞ;

where b 0 denotes the point on X such that the n-th component is bn and the i-th
component is barðmiÞ for every i0 n.

For each n, let fn : SuppðmnÞ ! Hn be a realization of mn which satisfies

dðmnÞ ¼
k
Ð
Xn

fnðpÞmnðdpÞk
2Ð

Xn
kfnðpÞk

2mnðdpÞ
:

Such a realization fn exists for every n since the space of all realizations of mn is
compact. Define a mapping f : SuppðmÞ ! H1 lH2 lH3 l � � � as

fðpiÞ ¼ ðf1ðp
ð1Þ
i Þ; f2ðp

ð2Þ
i Þ; f3ðp

ð3Þ
i Þ; . . .Þ; i ¼ 1; . . . ;m:

Then, it is easily seen that f is a realization of m. And, we have

dðmÞa
k
Ð
X
fðpÞmðdpÞk2Ð

X
kfðpÞk2mðdpÞ

¼
Py

n¼1 k
Pm

i¼1 tifnðp
ðnÞ
i Þk2Py

n¼1

Pm
i¼1 tikfnðp

ðnÞ
i Þk2

a sup
n

k
Pm

i¼1 tifnðp
ðnÞ
i Þk2Pm

i¼1 tikfnðp
ðnÞ
i Þk2

a sup
n

dðmnÞ;

which proves the desired inequality dðXÞa supfdðXiÞ j i ¼ 1; 2; 3; . . .g. r

Although the Izeki-Nayatani invariant is defined as a global invariant of the
space, it can be estimated by the local property of the space. To see this, we
define the following notation, which is introduced in [7].

Definition A.2 (Izeki-Nayatani [7]). Let X be a complete CATð0Þ space,
and p A X . We define dðX ; pÞ A ½0; 1� to be

dðX ; pÞ ¼ supfdðnÞ j n A PðXÞ; barðnÞ ¼ pg;
where PðX Þ is the space of all finitely supported probability measures on Y
whose supports contain at least two points. If no such n exists, we define
dðX ; pÞ ¼ �y.

Although, the following proposition is basic and important, it seems that
there is no reference containing its complete proof.

Proposition A.3. Suppose that X is a complete CATð0Þ space. Then we
have

dðX Þ ¼ supfdðTCpX ; oÞ j p A Xg ¼ supfdðTCpXÞ j p A Xg;ðA:1Þ
where o denotes the origin of the tangent cone TCpX.
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Proof. The inequality

dðX Þa supfdðTCpX ; oÞ j p A Xg

was proved in [7, Lemma 6.2], and the inequality

supfdðTCpX ; oÞ j p A Xga supfdðTCpXÞ j p A Xg

is trivial from the definition. So we need only to prove the inequality

supfdðTCpX Þ j p A Xga dðXÞ:ðA:2Þ

To this end, it su‰ces to show that dðTCpXÞa dðX Þ for any p A X . By Prop-
osition 4.2 of [5], if fXngn AN is a sequence of complete CATð0Þ spaces, o is a
nonprincipal ultrafilter on N, and Xo is the ultralimit of fXng with respect to
o, then dðXoÞao-limn dðXnÞ holds. Combining this with Proposition 5.8 in
Section 5, the inequality (A.2) follows immediately. r

Remark A.4. Although the previous version of this paper [14] also includes
the proof of Proposition A.3 without using the notion of ultralimit, we omit it
here to avoid redundancy.
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