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VIRTUAL HODGE POLYNOMIALS OF THE MODULI SPACES OF

REPRESENTATIONS OF DEGREE 2 FOR FREE MONOIDS

Kazunori Nakamoto and Takeshi Torii

Abstract

In this paper we study the topology of the moduli spaces of representations of

degree 2 for free monoids. We calculate the virtual Hodge polynomials of the character

varieties for several types of 2-dimensional representations. Furthermore, we count the

number of isomorphism classes for each type of 2-dimensional representations over any

finite field Fq, and show that the number coincides with the virtual Hodge polynomial

evaluated at q.

1. Introduction

The moduli spaces of representations have been studied in various contexts
(see, for example, [7, 11, 23, 24]). In order to study the representation theory
over schemes, the first author defined the representation variety and the character
variety over Z of absolutely irreducible representations for groups or monoids
in [18]. Although they are of great importance in the representation theory
over schemes, it is di‰cult to analyze them. To overcome this di‰culty, the first
author introduced representations with Borel mold and studied the representation
variety and the character variety of representations with Borel mold in [19].
Furthermore, we studied the topology of these moduli spaces of representa-
tions with Borel mold for free monoids over the field C of complex numbers
in [21].

Let us introduce a general framework for the representation theory
over schemes for free monoids (cf. [20, 21]). Let RepnðmÞ ¼ ðMnÞm the pro-
duct of m-copies of the full n� n matrix ring, which is the representation variety
of degree n over Z for the free monoid with m generators. There is a
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decomposition of RepnðmÞ by locally closed subschemes

RepnðmÞ ¼ 6
n2

h¼1

RepnðmÞrk h;

where RepnðmÞrk h is the moduli space of representations which generate a
subalgebra of rank h in the matrix algebra Mn. Here we use ‘‘rank’’ in the
sense of the rank of a subalgebra of the full matrix ring as projective module
or locally free sheaf, because we deal with subalgebras (which is a projective
module or locally free sheaf ) of the matrix algebra Mn over an arbitrary
commutative ring or scheme. The open subscheme RepnðmÞrk n2 is the moduli
space RepnðmÞair of absolutely irreducible representations

RepnðmÞair ¼ RepnðmÞrk n2 :

In degree 2 case we can study these moduli spaces in more detail as in [20]. In
particular, Rep2ðmÞrk 3 is the moduli space Rep2ðmÞB of representations with
Borel mold. We have two subschemes of Rep2ðmÞrk 2. One is the moduli space
Rep2ðmÞss of semi-simple representations, and the other is the moduli space
Rep2ðmÞu of unipotent representations. Then Rep2ðmÞu is closed in Rep2ðmÞrk 2,
and Rep2ðmÞss is its open complement. We can regard Rep2ðmÞrk 1 as the moduli
space Rep2ðmÞsc of scalar representations. The conjugate action of matrices
induces an action of the group scheme PGL2 on Rep2ðmÞ� for � ¼ air;B; ss; u; sc.
The character variety Ch2ðmÞ� is defined as

Ch2ðmÞ� ¼ Rep2ðmÞ�=PGL2:

In [18], [19], and [20], the first author showed that Ch2ðmÞ� is a universal
geometric quotient of Rep2ðmÞ� by PGL2 for � ¼ air;B; ss; u; sc. (For � ¼ u, we
need to divide Rep2ðmÞu into two parts: the Z½1=2�-part and the F2-part. More
precisely, see [20].)

In this paper we study the topology of the moduli spaces of representations
of degree 2 for free monoids. We calculate the integral and rational cohomology
groups of representation varieties Rep2ðmÞ� and character varieties Ch2ðmÞ� over
the field C of complex numbers for � ¼ ss; u; sc. Also, we give the virtual
Hodge polynomial of Rep2ðmÞ� and Ch2ðmÞ� for � ¼ ss; u; sc; air. See §5 for the
definition of virtual Hodge polynomials. In this paper we obtain the following
theorems:

Theorem 1.1 (Theorem 5.8). The virtual Hodge polynomial of Rep2ðmÞairðCÞ
is given by

VHPðRep2ðmÞairðCÞÞðzÞ ¼ ð1� zmÞð1� zm�1Þ;

VHPcðRep2ðmÞairðCÞÞðzÞ ¼ z2mþ1ðzm � 1Þðzm�1 � 1Þ:

Theorem 1.2 (Theorem 5.18). The virtual Hodge polynomial of Ch2ðmÞairðCÞ
is given by
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VHPðCh2ðmÞairðCÞÞðzÞ ¼
ð1� zmÞð1� zm�1Þ

1� z2
;

VHPcðCh2ðmÞairðCÞÞðzÞ ¼
z2mðzm � 1Þðzm�1 � 1Þ

z2 � 1
:

These results can be obtained by considering the mixed Hodge structures on the
rational cohomology of Rep2ðmÞ� for � ¼ B; ss; u; sc and calculating these virtual
Hodge polynomials.

Furthermore, we count the numbers of Fq-valued points of the moduli spaces
of representations of degree 2 for free monoids. In particular, the number of
Fq-valued points of Rep2ðmÞair is the number of absolutely irreducible represen-
tations of degree 2 over Fq for the free monoid with m generators, and the
number of Fq-valued points of Ch2ðmÞair is the number of isomorphism classes of
such representations.

Theorem 1.3 (cf. Theorems 6.10 and 6.11). For any finite field Fq, the
number of absolutely irreducible representations of degree 2 over Fq for the free
monoid with m generators is given by

jRep2ðmÞairðFqÞj ¼ VHPcðRep2ðmÞairðCÞÞðqÞ;

and the number of isomorphism classes of such representations is given by

jCh2ðmÞairðFqÞj ¼ VHPcðCh2ðmÞairðCÞÞðqÞ:

Note that if there exists a polynomial with integer coe‰cients which counts
the number of Fq-valued points of a separated scheme X of finite type over Z,
then jXðFqÞj ¼ VHPcðX ðCÞÞðqÞ. For more details, see [9, §6]. We should
mention that these results coincide with the calculation of [25, Example 7.2].
Reineke has already calculated the virtual Hodge polynomials of Ch2ðmÞairðCÞ.

By these results, we have the following main theorem of this paper:

Theorem 1.4 (Theorem 6.14). The number of Fq-valued points of Ch2ðmÞ is
given by

jCh2ðmÞðFqÞj ¼ jCh2ðmÞairðFqÞj þ jCh2ðmÞssðFqÞj þ jCh2ðmÞscðFqÞj

¼ q2mþ2ðq2m�3 � qm�2 � qm�3 þ 1Þ
q2 � 1

:

In particular, the virtual Hodge polynomial of Ch2ðmÞ is given by

VHPcðCh2ðmÞÞðzÞ ¼ z2mþ2ðz2m�3 � zm�2 � zm�3 þ 1Þ
z2 � 1

:

In the present paper, we deal with only 2-dimensional representations of
free monoids. However, our strategy is available for other groups or monoids.
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We can calculate the numbers of equivalence classes of absolutely irreducible
2-dimensional representations over Fq for finitely generated groups or monoids
G by calculating the number of the Fq-valued points of the representation variety
Rep2ðGÞ and the others Rep2ðGÞ� for � ¼ B; s:s:; u; sc. If there are polynomials
with integer coe‰cients which count the numbers of the Fq-valued points of the
reprensetation variety Rep2ðGÞ and the others Rep2ðGÞ�, then the polynomials
coincide with virtual Hodge polynomials of the corresponding schemes.

For 3-dimensional representations, we can also calculate the virtual Hodge
polynomials of the character varieties of absolutely irreducible representations for
finitely generated free monoids. Indeed, there are 26 types of subalgebras of the
full matrix ring of degree 3, and we can calculate the virtual Hodge polynomial
of the representation variety Rep3ðmÞ� associated to each subalgebra of M3 in the
same way as 2-dimensional representations.

Here we should point out the results of [3], [13], [15], [16], [25], and so on.
After we wrote the present paper, we found out their papers. Their results are
very much related to our paper. Our strategy to calculate the numbers of
Fq-valued points and the virtual Hodge polynomials of the representation
varieties and the character varieties is essentially same as [3] and [13]. Moreover,
it is much easier to calculate the virtual Hodge polynomials of ChnðmÞair :¼
RepnðmÞair=PGLn by the method of [25] than to calculate them by our strategy.
However, we believe that it is worth publishing our results. Not only are our
objects Rep2ðmÞ� and Ch2ðmÞ� di¤erent from the SL2ðCÞ-character varieties of
free groups, but also we give a geometric meaning to their stratifications of the
representation varieties in [3]. Each stratification represents a certain moduli
functor which is described in terms of representation theory. This interpretation
allows us to overview the representation varieties and the character varieties from
viewpoints of algebraic geometry, algebraic topology, representation theory, and
so on. Furthermore, as far as we know, our strategy is the only way to calculate
the virtual Hodge polynomial of Ch2ðmÞ.

The organization of this paper is as follows: In §2 we study the represen-
tation variety and the character variety of semi-simple representations. We give
descriptions of these moduli spaces. Then we calculate the integral and rational
cohomology groups of them. In §3 we define the representation variety and the
character variety of unipotent representations of degree 2. Then we give descrip-
tions and calculate the cohomology groups of them. In §4 we define and study
the moduli spaces of scalar representations. In §5 we study the virtual Hodge
polynomials of the representation varieties and the character varieties of represen-
tations of degree 2 for free monoid. Then we prove Theorem 1.1 and Theorem
1.2. In §6 we count the number of Fq-valued points of the moduli spaces, and
prove Theorem 1.3 and Theorem 1.4.

Let Z, Q, R, C be the ring of integers, the field of rational numbers, the field
of real numbers, the field of complex numbers, respectively. In this paper we
denote by H �ðX Þ the integral cohomology groups, and by H �ðX ;QÞ the rational
cohomology groups of a space X . For a graded module V over Z or Q, we
denote by LðVÞ the free commutative graded algebra on V .
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2. The moduli spaces of semi-simple representations

In this section we study the moduli spaces related to semi-simple representa-
tions. We give descriptions for the moduli spaces and calculate the cohomology
groups of them.

2.1. Descriptions for the moduli spaces of semi-simple representations. Let
K be an algebraically closed field. For ðA1; . . . ;AmÞ A ðMnðKÞÞm, we write
Ak ¼ ðaijðkÞÞij . Then we define aij A Km by aij ¼ ðaijð1Þ; . . . ; aijðmÞÞ. We denote

by Dn the K-subalgebra of MnðKÞ consisting of diagonal matrices. Let SSnðmÞ
be the subspace of ðDnÞm given by

SSnðmÞ ¼ fðA1; . . . ;AmÞ A ðDnÞm jA1; . . . ;Am generate Dn as a K-algebrag:

We define the moduli space RepnðmÞssðKÞ of semi-simple representations by

RepnðmÞssðKÞ ¼ fðA1; . . . ;AmÞ A ðMnðKÞÞm j ðPA1P
�1; . . . ;PAmP

�1Þ A SSnðmÞ
for some P A PGLnðKÞg:

Note that SSnðmÞ is a subspace of RepnðmÞssðKÞ. Let FnðKmÞ be the config-
uration space of distinct ordered n-points in Km:

FnðKmÞ ¼ fðp1; . . . ; pnÞ A ðKmÞn j pi 0 pj for i0 jg:

For p ¼ ðp1; . . . ; pnÞ A ðKmÞn, we set

jðpÞ ¼ ðA1; . . . ;AmÞ A ðDnÞm

where aij ¼ pi if i ¼ j, and aij ¼ 0 if i0 j. Then we obtain an isomorphism
j : ðKmÞn !G ðDnÞm. By [21, Lemma 3.3], we obtain the following lemma.

Lemma 2.1. The map j induces an isomorphism FnðKmÞ !G SSnðmÞ of smooth
algebraic varieties. So we can regard FnðKmÞ as a subspace of RepnðmÞssðKÞ.

Let Sn be the symmetric group on n-letters. We regard Sn as a subgroup of
PGLnðKÞ consisting of permutation matrices. Let Tn be the diagonal subgroup
of PGLnðKÞ. We denote by Hn the subgroup of PGLnðKÞ generated by Sn and
Tn. Then Tn is a normal subgroup of Hn and Hn is isomorphic to the semi-
direct product Tn zSn. It is easy to prove the following lemma.

Lemma 2.2. If P A PGLnðKÞ satisfies PDnP
�1 ¼ Dn, then P A Hn.

Since PGLnðKÞ acts on RepnðmÞssðKÞ by conjugation, we can extend the
inclusion map j : FnðKmÞ ! RepnðmÞssðKÞ to a map PGLnðKÞ � FnðKmÞ !
RepnðmÞssðKÞ. Note that the subgroup Hn preserves the subspace
FnðKmÞ. So this map factors through PGLnðKÞ �Hn

FnðKmÞ.
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Theorem 2.3. There is an isomorphism of smooth algebraic varieties with
PGLnðKÞ-action

RepnðmÞssðKÞGPGLnðKÞ �Hn
FnðKmÞ:

In particular, dimK RepnðmÞssðKÞ ¼ mnþ nðn� 1Þ.

Proof. For any A ¼ ðA1; . . . ;AmÞ A RepnðmÞssðKÞ, there exists P A PGLnðKÞ
such that PAP�1 A FnðKmÞ. So PGLnðKÞ �Hn

FnðKmÞ ! RepnðmÞssðKÞ is sur-
jective. Suppose that PUP�1 ¼ QVQ�1 for P;Q A PGLnðKÞ, U ;V A FnðKmÞ.
Then U ¼ P�1QVQ�1P A FnðKmÞ. So both of U and P�1QVQ�1P generate
Dn. By Lemma 2.2, P�1Q ¼ B A Hn. Then we see that ðQ;VÞ ¼ ðPB;VÞ ¼
ðP;BVB�1Þ ¼ ðP;UÞ in PGLnðKÞ �Hn

FnðKmÞ. This completes the proof. r

Remark 2.4. There exists a scheme Rep2ðmÞss of finite type over Z by [20],
and Rep2ðmÞssðKÞ is the associated algebraic variety.

By Theorem 2.3, we have RepnðmÞssðKÞGPGLnðKÞ=Tn �Sn
FnðKmÞ. Note

that PGLnðKÞ=Tn is the space of n-tuples ðl1; . . . ; lnÞ, where li is a 1-dimensional
subspace of Kn for i ¼ 1; . . . ; n, and

Pn
i¼1 li ¼ K n. Then Sn acts on

PGLnðKÞ=Tn as permutations of lines.
We define the character variety ChnðmÞssðKÞ of semi-simple representations

as the quotient space of RepnðmÞssðKÞ by PGLnðKÞ:

ChnðmÞssðKÞ ¼ RepnðmÞssðKÞ=PGLnðKÞ:

Let CnðKmÞ be the configuration space of distinct unordered n-points in Km

which is defined to be the quotient space FnðKmÞ=Sn:

CnðKmÞ ¼ FnðKmÞ=Sn:

Since ChnðmÞssðKÞ ¼ RepnðmÞssðKÞ=PGLnðKÞGFnðKmÞ=Hn and the subgroup Tn

acts trivially on FnðKmÞ, we obtain the following corollary.

Corollary 2.5. There is an isomorphism of smooth algebraic varieties

ChnðmÞssðKÞGCnðKmÞ:

Remark 2.6. There exists a scheme Ch2ðmÞss of finite type over Z by [20],
and Ch2ðmÞssðKÞ is the associated algebraic variety.

2.2. Integral cohomology groups of the moduli spaces of degree 2. In this
subsection we restrict our attention to the degree 2 representations over C. We
study the integral cohomology groups of the moduli spaces related to semi-simple
representations of degree 2.

We denote by Sr the r-sphere, and by Pr the projective r-space.

85vhp of the moduli spaces of representations of degree 2



Lemma 2.7. The configuration space F2ðCmÞ with S2-action is equivariantly
homotopy equivalent to S2m�1 with antipodal S2-action. Hence C2ðCmÞ is homo-
topy equivalent to P2m�1ðRÞ.

Proof. We regard S2m�1 as the unit sphere in Cm. We have a S2-

equivariant map from F2ðCmÞ to S2m�1 given by ðp1; p2Þ 7!
p1 � p2

kp1 � p2k
, where

k � k is the standard norm in Cm. It is easy to see that this map is a non-
equivariant homotopy equivalence. Since F2ðCmÞ and S2m�1 are free S2-spaces,
this map is a S2-equivariant homotopy equivalence. r

By Corollary 2.5 and Lemma 2.7, we can calculate the cohomology groups
of Ch2ðmÞssðCÞ.

Corollary 2.8. We have an isomorphism of commutative graded algebras

H �ðCh2ðmÞssðCÞÞGLðs; tÞ=ð2s; sm; stÞ

with jsj ¼ 2 and jtj ¼ 2m� 1.

Lemma 2.9. The S2-space PGL2ðCÞ=T2 is equivariantly homotopy equivalent
to S2 with antipodal S2-action. Hence PGL2ðCÞ=H2 is homotopy equivalent to
P2ðRÞ.

Proof. Let X be the space of pairs ðL1;L2Þ where L1 and L2 are orthogonal
lines in C2. Then X is a S2-subspace of PGL2ðCÞ=T2, and the inclusion X ,!
PGL2ðCÞ=T2 is non-equivariantly homotopy equivalent. Since PGL2ðCÞ=T2 and
X are free S2-spaces, X is S2-equivariantly equivalent to PGL2ðCÞ=T2.

We regard P1ðCÞ as the space of lines in C2. Since the orthogonal
complement L? of L A P1ðCÞ is uniquely determined, we can identify X with
P1ðCÞ. Then the nontrivial element t in S2 acts on P1ðCÞ as tðLÞ ¼ L? for
L A P1ðCÞ. The space P1ðCÞ with this S2-action can be identified with S2 with
antipodal S2-action. r

Corollary 2.10. The space Rep2ðmÞssðCÞ is homotopy equivalent to
S2 �S2

S2m�1.

Proof. By Theorem 2.3, Rep2ðmÞssðCÞGPGL2ðCÞ=T2 �S2
F2ðCmÞ. Then

the corollary follows from Lemmas 2.7 and 2.9. r

Proposition 2.11. We have an isomorphism of commutative graded
algebras

H �ðRep2ð1ÞssðCÞÞGLða; bÞ=ð2b; abÞ

with jaj ¼ 1 and jbj ¼ 3.
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Proof. By Corollary 2.10, Rep2ð1ÞssðCÞ is homotopy equivalent to
S2 �S2

S1. Consider the Serre spectral sequence associated with the fibration
S2 ! S2 �S2

S1 ! S1=S2 GS1:

E
p;q
2 ¼ HpðZ;HqðS2ÞÞ ) HpþqðS2 �S2

S1Þ:
Note that p1ðS1ÞGZ acts nontrivially on H 2ðS2Þ. Then we have E0;0

2 GE1;0
2 G

Z, E1;2
2 GZ=2, and E

p;q
2 ¼ 0 otherwise. Hence the spectral sequence collapses.

Since there are no extension problems, we obtain the proposition. r

Theorem 2.12. For mb 2, we have an isomorphism of commutative graded
algebras

H �ðRep2ðmÞssðCÞÞGLða; bÞ=ð2a; a2Þ
with jaj ¼ 2 and jbj ¼ 2m� 1.

Proof. By Corollary 2.10, Rep2ðmÞssðCÞ is homotopy equivalent to
S2 �S2

S2m�1. Consider the Serre spectral sequence associated with the fibration

S2m�1 ! S2 �S2
S2m�1 ! S2=S2 GP2ðRÞ:

E
p;q
2 ¼ HpðP2ðRÞ;HqðS2m�1ÞÞ ) HpþqðS2 �S2

S2m�1Þ;
where HqðS2m�1Þ is the local coe‰cient system determined by the action of the
fundamental group p1ðP2ðRÞÞ on HqðS2m�1Þ. In this case p1ðP2ðRÞÞGZ=2 acts

trivially on H 2m�1ðS2m�1Þ. Then we have E
0;0
2 GE

0;2m�1
2 GZ, E2;0

2 GE
2;2m�1
2 G

Z=2, and E
p;q
2 ¼ 0 otherwise. Hence the spectral sequence collapses. Since

there are no extension problems, we obtain the theorem. r

2.3. Rational cohomology groups of the moduli spaces. In this subsection
we study the rational cohomology groups of the moduli spaces related to semi-
simple representations over C.

Recall that PGLnðCÞ=Tn is the space of ordered n-lines ðl1; . . . ; lnÞ in Cn such
that

Pn
i¼1 li ¼ Cn. We let Fj ¼

P j
i¼1 lj be the subspace of Cn spanned by li for

1a ia j. Then ðF1; . . . ;FnÞ is a complete flag in Cn. We denote by FlagðCnÞ
the flag variety, which is the space of complete flags in Cn. So we obtain a map
PGLnðCÞ=Tn ! FlagðCnÞ of complex manifolds. Since this map is a homotopy
equivalence, we obtain the following lemma.

Lemma 2.13. The cohomology group of PGLnðCÞ=Tn is given by

H �ðPGLnðCÞ=TnÞGZ½t1; . . . ; tn�=ðc1; . . . ; cnÞ;
where jt1j ¼ � � � ¼ jtnj ¼ 2, and ci is the ith elementary symmetric polynomial of
t1; . . . ; tn for i ¼ 1; . . . ; n. The action of Sn on PGLnðCÞ=Tn induces an action on
H �ðPGLnðCÞ=TnÞ, which is given by permutations of t1; . . . ; tn.

Lemma 2.14. The rational cohomology H �ðPGLnðCÞ=Tn;QÞ is the regular
representation of Sn.
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Proof. Since Sn freely acts on PGLnðCÞ=Tn, there are no fixed points. Let
w be the character of the representation defined by H �ðPGLnðCÞ=Tn;QÞ. By the
Lefschetz fixed point formula, wðgÞ ¼ 0 if g is not the identity in Sn, and wðgÞ ¼ n!
if g is the identity. Hence H �ðPGLnðCÞ=Tn;QÞ is the regular representation
of Sn. r

We can easily describe the rational cohomology groups of a quotient space
by a free action of a finite group. We put the following well-known lemma for
the reader’s convenience.

Lemma 2.15. Let G be a finite group. Suppose that G freely acts on a space
X and that the quotient map X ! X=G is a principal G-bundle. Then we have an
isomorphism of commutative graded algebras

H �ðX=G;QÞGH �ðX ;QÞG:

Proof. By the assumptions, we have a fibration X ! X=G ! BG, where
BG is the classifying space of G. We consider the associated Serre spectral
sequence

E
p;q
2 ¼ HpðG;HqðX ;QÞÞ ) HpþqðX=G;QÞ:

For any G-module M over Q, we have HpðG;MÞ ¼ 0 for p > 0 (see, for
example, [1, Chapter III, Corollary 10.2]). Hence the spectral sequence collapses
and we obtain that HpðX=G;QÞGHpðX ;QÞG. r

Theorem 2.16. We have an isomorphism of commutative graded algebras

H �ðRepnðmÞssðCÞ;QÞG ðH �ðPGLnðCÞ=Tn;QÞnH �ðFnðCmÞ;QÞÞSn :

Proof. The symmetric group Sn freely acts on PGLnðCÞ=Tn � FnðCmÞ and
the quotient space PGL2ðCÞ=Tn �Sn

FnðCmÞ is isomorphic to RepnðmÞssðCÞ by
Theorem 2.3. Hence we obtain the theorem by Lemma 2.15. r

Note that the cohomology groups of the configuration space FnðCmÞ is given
by

H �ðFnðCmÞÞ ¼ Lðsði; jÞÞ1ai<jan=I ;

where jsði; jÞj ¼ 2m� 1 for 1a i < ja n and the ideal I is generated by

sði; kÞsð j; kÞ � sði; jÞsð j; kÞ þ sði; jÞsði; kÞ
for 1a i < j < ka n.

Corollary 2.17. For n ¼ 2, the inclusion F2ðCmÞ ,! Rep2ðmÞssðCÞ induces
an isomorphism of rational cohomology groups

H �ðRep2ðmÞssðCÞ;QÞ !G H �ðF2ðCmÞ;QÞ;
which is an isomorphism of commutative graded algebras.
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Proof. By Lemma 2.9, we see that S2 non-trivially acts on
H 2ðPGL2ðCÞ=T2;QÞ. On the other hand, S2 trivially acts on H �ðF2ðCmÞ;QÞ
by Lemma 2.7. These imply that ðH �ðPGL2ðCÞ=T2;QÞnH �ðF2ðCmÞ;QÞÞS2 G
H �ðF2ðCmÞ;QÞ. r

Remark 2.18. Corollary 2.17 also follows from Proposition 2.11 and
Theorem 2.12.

Corollary 2.19. We have

dim H evenðRepnðmÞssðCÞ;QÞ ¼ dim H oddðRepnðmÞssðCÞ;QÞ ¼ n!

2
:

Proof. By induction on n, we see that dim H evenðFnðCmÞ;QÞ ¼
dim H oddðFnðCmÞ;QÞ ¼ n!=2. Since Q½Sn�nV GQ½Sn�ldim V as Q½Sn�-modules
for any representation V of Sn, we see that H �ðRepnðmÞssðCÞ;QÞG
H �ðFnðCmÞ;QÞ as Q-vector spaces for � ¼ even; odd by Lemma 2.14 and
Theorem 2.16. r

Lemma 2.20. The quotient map FnðCmÞ ! CnðCmÞ induces an injection of
rational cohomology groups

H �ðCnðCmÞ;QÞ ,! H �ðFnðCmÞ;QÞ;

and the image of the map is identified with the Sn-invariant submodule of
H �ðFnðCmÞ;QÞ. We have an isomorphism of commutative graded algebras

H �ðCnðCmÞ;QÞGLðsÞ
with jsj ¼ 2m� 1.

Proof. Since Sn freely acts on FnðCmÞ, we obtain that HpðCnðCmÞ;QÞG
HpðFnðCmÞ;QÞSn by Lemma 2.15. Let s ¼

P
i< j sði; jÞ A H 2m�1ðFnðCmÞ;QÞ.

Then we have H �ðFnðCmÞ;QÞSn ¼ LðsÞ by [4, Corollary 5.2]. This completes
the proof. r

By Corollary 2.5, we obtain the following proposition.

Proposition 2.21. The composition map FnðCmÞ ! RepnðmÞssðCÞ !
ChnðmÞssðCÞ induces an injection of the rational cohomology groups

H �ðChnðmÞssðCÞ;QÞ ,! H �ðFnðCmÞ;QÞ:

We have an isomorphism of commutative graded algebras

H �ðChnðmÞssðCÞ;QÞGLðsÞ
with jsj ¼ 2m� 1.
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3. The moduli spaces of unipotent representations of degree 2

In this section we study the moduli spaces related to unipotent representa-
tions of degree 2. We give descriptions for the moduli spaces and calculate the
cohomology groups of them.

3.1. Descriptions for the moduli spaces of unipotent representations of degree
2. Let K be an algebraically closed field. Let N2 be the K-subalgebra of
M2ðKÞ generated by the following matrix

0 1

0 0

� �
:

Note that dimK N2 ¼ 2. Let U2ðmÞðKÞ be the subspace of ðN2Þm given by

U2ðmÞðKÞ ¼ fðA1; . . . ;AmÞ A ðN2Þm jA1; . . . ;Am generate N2 as a K-algebrag:
Note that U2ðmÞðKÞ is an algebraic variety associated to a scheme U2ðmÞ over
Z. We define the moduli space Rep2ðmÞuðKÞ of unipotent representations of
degree 2 by

Rep2ðmÞuðKÞ ¼ ðA1; . . . ;AmÞ A ðM2ðKÞÞm
���� ðPA1P

�1; . . . ;PAmP
�1Þ AU2ðmÞðKÞ

for some P A PGL2ðKÞ

� �
:

In [20] we showed that there exists a scheme Rep2ðmÞu of finite type over Z½1=2�
(or Z=2Z). Hence Rep2ðmÞuðKÞ is an algebraic variety over K associated to
the scheme Rep2ðmÞu. Note that there is a map U2ðmÞðKÞ ! Rep2ðmÞuðKÞ of
algebraic varieties which is injective as a map of sets.

Let B2ðKÞ be the subgroup of PGL2ðKÞ consisting of upper triangular
matrices. The group B2ðKÞ acts on U2ðmÞðKÞ by conjugation. Since PGL2ðKÞ
acts on Rep2ðmÞuðKÞ by conjugation, the map U2ðmÞðKÞ ! Rep2ðmÞuðKÞ extends
to a map PGL2ðKÞ �U2ðmÞðKÞ ! Rep2ðmÞuðKÞ of algebraic varieties. This
map factors through the quotient algebraic variety PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ,
and hence we obtain a map

PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ ! Rep2ðmÞuðKÞ
of algebraic varieties.

It is easy to prove the following lemma.

Lemma 3.1. If P A PGL2ðKÞ satisfies PN2P
�1 ¼ N2, then P A B2ðKÞ.

Theorem 3.2. The map PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ ! Rep2ðmÞuðKÞ of
algebraic varieties is a bijection

PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ !G Rep2ðmÞuðKÞ
as a map of sets.

Proof. For any A ¼ ðA1; . . . ;AmÞ A Rep2ðmÞuðKÞ, there exists P A PGL2ðKÞ
such that PAP�1 A N2. So PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ ! Rep2ðmÞuðKÞ is surjec-
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tive. Suppose that PUP�1 ¼ QVQ�1 for P;Q A PGL2ðKÞ and U ;V A U2ðmÞðKÞ.
Then U ¼ P�1QVQ�1P A U2ðmÞðKÞ. So both of U and P�1QVQ�1P generate
N2. By Lemma 3.1, P�1Q ¼ B A B2ðKÞ. We see that ðQ;VÞ ¼ ðPB;VÞ ¼
ðP;BVB�1Þ ¼ ðP;UÞ in PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ. This completes the proof.

r

Remark 3.3. If the characteristic of K is not 2, then the map is an
isomorphism of algebraic varieties. If the characteristic of K is 2, then the map
induces a purely inseparable extension of degree 2 between the function fields.

We define the character variety Ch2ðmÞuðKÞ of unipotent representations of
degree 2 as the quotient algebraic variety of Rep2ðmÞuðKÞ by PGL2ðKÞ:

Ch2ðmÞuðKÞ ¼ Rep2ðmÞuðKÞ=PGL2ðKÞ:

The map PGL2ðKÞ �B2ðKÞ U2ðmÞðKÞ ! Rep2ðmÞuðKÞ induces a map

U2ðmÞðKÞ=B2ðKÞ ! Ch2ðmÞuðKÞ
of algebraic varieties.

Recall that for ðA1; . . . ;AmÞ A ðM2ðKÞÞm, we have aij ¼ ðaijð1Þ; . . . ; aijðmÞÞ
for i; j ¼ 1; 2, where Ak ¼ ðaijðkÞÞ ðk ¼ 1; . . . ;mÞ. The map ðM2ðKÞÞm ! ðKmÞ2
given by ðA1; . . . ;AmÞ 7! ða11; a12Þ induces an isomorphism

U2ðmÞðKÞGKm � ðKm � 0Þ:

of algebraic varieties. By this isomorphism, we obtain an isomorphism

U2ðmÞðKÞ=B2ðKÞGKm � Pm�1ðKÞ;

of algebraic varieties. This induces a map

Km � Pm�1ðKÞ ! Ch2ðmÞuðKÞ
of algebraic varieties.

We easily obtain the following corollary by Theorem 3.2.

Corollary 3.4. The map Km � Pm�1ðKÞ ! Ch2ðmÞuðKÞ of algebraic vari-
eties is a bijection

Km � Pm�1ðKÞ !G Ch2ðmÞuðKÞ
as a map of sets.

Remark 3.5. If the characteristic of K is not 2, then the map is an
isomorphism of algebraic varieties. If the characteristic of K is 2, then the map
induces a purely inseparable extension of degree 2 between the function fields.

3.2. Cohomology groups of the moduli spaces of unipotent representations
of degree 2. In this subsection we study the integral cohomology groups of the
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moduli spaces of unipotent representations of degree 2 over C. First, we treat
Rep2ð1ÞuðCÞ.

Proposition 3.6. The space Rep2ð1ÞuðCÞ is homotopy equivalent to P3ðRÞ.
Hence we have an isomorphism of commutative graded algebras

H �ðRep2ð1ÞuðCÞÞGLðs; tÞ=ð2s; s2; stÞ
with jsj ¼ 2 and jtj ¼ 3.

Proof. By Theorem 3.2 and Remark 3.3, Rep2ð1ÞuðCÞGPGL2ðCÞ �B2ðCÞ
U2ð1ÞðCÞ. Recall that U2ð1ÞGC� C�. Then B2ðCÞ acts trivially on the left
factor C and transitively on the right factor C�. Let S be the stabilizer sub-
group of B2ðCÞ at 1 A C�. Then

S ¼ 1 �
0 1

� �
A PGL2ðCÞ

� �
:

We can write U2ð1ÞðCÞGC� ðB2ðCÞ=SÞ. Hence Rep2ð1ÞuðCÞG
ðPGL2ðCÞ=SÞ � CFPGL2ðCÞ=S. Since SGC, PGL2ðCÞ ! PGL2ðCÞ=S is a
homotopy equivalence. So we see that Rep2ð1ÞuðCÞFPGL2ðCÞ. It is well-
known that the inclusion PUð2Þ ! PGL2ðCÞ induces a homotopy equivalence
PUð2ÞFPGL2ðCÞ. Hence Rep2ð1ÞuðCÞ is homotopy equivalent to PUð2ÞG
P3ðRÞ. r

Corollary 3.7. We have an isomorphism of commutative graded algebras

H �ðRep2ð1ÞuðCÞ;QÞGLðtÞ
with jtj ¼ 3.

For mb 2 we have the following theorem on the cohomology groups of
Rep2ðmÞuðCÞ.

Theorem 3.8. For mb 2, we have an isomorphism of commutative graded
algebras

H �ðRep2ðmÞuðCÞÞGLðu; sÞ=ðu2Þ
with juj ¼ 2 and jsj ¼ 2m� 1.

Proof. By Theorem 3.2 and Remark 3.3, there is a fibre bundle U2ðmÞðCÞ
! Rep2ðmÞuðCÞ ! PGL2ðCÞ=B2ðCÞGP1ðCÞ. Since U2ðmÞðCÞFS2m�1, the as-
sociated Serre spectral sequence collapses. This completes the proof. r

Corollary 3.9. For mb 2, we have an isomorphism of commutative graded
algebras

H �ðRep2ðmÞuðCÞ;QÞGLðu; sÞ=ðu2Þ
with juj ¼ 2 and jsj ¼ 2m� 1.
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Proof. This follows from the fact that the integral cohomology groups of
Rep2ðmÞuðCÞ is torsion-free by Theorem 3.8. r

By Corollary 3.4 and Remark 3.5, the cohomology groups of Ch2ðmÞuðCÞ is
given as follows.

Proposition 3.10. We have isomorphisms of commutative graded algebras

H �ðCh2ðmÞuðCÞÞGZ½t�=ðtmÞ
and

H �ðCh2ðmÞuðCÞ;QÞGQ½t�=ðtmÞ
with jtj ¼ 2.

4. The moduli spaces of scalar representations

In this section we define the moduli spaces related to scalar representations.
It is easy to give descriptions of the moduli spaces. Then we obtain the
cohomology groups of them.

Let K be an algebraically closed field. We define the moduli space
RepnðmÞscðKÞ of scalar representations by

RepnðmÞscðKÞ ¼ fðA1; . . . ;AmÞ A ðMnðKÞÞm j dimK KhA1; . . . ;Ami ¼ 1g;

where KhA1; . . . ;Ami is the K-subalgebra of MnðKÞ generated by A1; . . . ;Am.

Theorem 4.1. We have an isomorphism of smooth algebraic varieties

RepnðmÞscðKÞGKm:

Hence we have isomorphisms of commutative graded algebras

H �ðRepnðmÞscðCÞÞGZ

and

H �ðRepnðmÞscðCÞ;QÞGQ:

Proof. If ðA1; . . . ;AmÞ A RepnðmÞscðKÞ, then Ai is a scalar matrix for
1a iam. Hence RepnðmÞscðKÞGKm. r

The group PGLnðKÞ acts on RepnðmÞscðKÞ by conjugation. We define the
character variety ChnðmÞscðKÞ of scalar representations by the quotient space

ChnðmÞscðKÞ ¼ RepnðmÞscðKÞ=PGLnðKÞ:

Theorem 4.2. We have an isomorphism of smooth algebraic varieties

ChnðmÞscðKÞGKm:
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Hence we have isomorphisms of commutative graded algebras

H �ðChnðmÞscðCÞÞGZ

and

H �ðChnðmÞscðCÞ;QÞGQ

Proof. This follows from the fact that the action of PGLnðKÞ on
RepnðmÞscðKÞ is trivial since RepnðmÞscðKÞ consists of m-tuples of scalar matrices.

r

Remark 3. There exist smooth schemes RepnðmÞsc GAm
Z and ChnðmÞsc G

Am
Z over Z, and RepnðmÞscðKÞ and ChnðmÞscðKÞ are the associated algebraic

varieties.

5. Virtual Hodge polynomials of the moduli spaces

In this section we study the virtual Hodge polynomials of the moduli spaces
of representations of degree 2 over C. See, for example, [5] for the precise
definition and properties of the virtual Hodge polynomial. Also, see [21, 22] for
the virtual Hodge polynomials of the moduli spaces of representations with Borel
mold.

For a mixed Hodge structure ðV ;W ;FÞ, we denote by ap;qðVÞ the dimension

of the ðp; qÞ-component of the pure Hodge structure GrWpþqðVÞ of weight pþ q.

For an algebraic scheme X over C, we denote by VHPðXÞ the virtual Hodge
polynomial of X :

VHPðXÞ :¼
X
p;q;n

ð�1Þnap;qðHnðX ;QÞÞxpyq:

We also denote by VHPcðXÞ the virtual Hodge polynomial of X based on the
compact support cohomology. Note that if X is smooth of pure dimension m,
then

VHPcðXÞ ¼ ðxyÞm VHPðX Þðx�1; y�1Þð5:1Þ

by the Poincaré duality. For simplicity, we set z ¼ xy.

5.1. Virtual Hodge polynomials of the moduli spaces of representations of
degree 2. In this subsection we study the virtual Hodge polynomials of the
moduli spaces of representations of degree 2 over C. In particular, we calculate
the virtual Hodge polynomial of the moduli space of absolutely irreducible
representations of degree 2.

Let K be an algebraically closed field. Let RepnðmÞðKÞ ¼ ðMnðKÞÞm be the
representation variety of degree n for the free monoid with m generators. We
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define the subvariety RepnðmÞrk hðKÞ of RepnðmÞðKÞ by

RepnðmÞrk hðKÞ ¼ fðA1; . . . ;AmÞ A ðMnðKÞm j dimK KhA1; . . . ;Ami ¼ hg:

The representation variety RepnðmÞairðKÞ of absolutely irreducible representations
is defined by

RepnðmÞairðKÞ ¼ RepnðmÞrk n2ðKÞ:

Remark 5.1. By [18], there exists a smooth scheme RepnðmÞair over Z and
RepnðmÞairðKÞ is the associated algebraic variety.

Let RepnðmÞBðKÞ be the representation variety of representations with Borel
mold. When n ¼ 2, we have Rep2ðmÞBðKÞ ¼ Rep2ðmÞrk 3ðKÞ. We calculated
the virtual Hodge polynomial of RepnðmÞBðCÞ in [21] and [22].

Proposition 5.2 ([21, Proposition 7.9] and [22, Corollary 8.16]). The virtual
Hodge polynomial of RepnðmÞBðCÞ is given by

VHPðRepnðmÞBðCÞÞ ¼
ð1� zm�1Þn�1Qn�1

k¼1ð1� kzmÞ
Qn

i¼1ð1� ziÞ
ð1� zÞn ;

VHPcðRepnðmÞBðCÞÞ ¼
zmðn�1Þðn�2Þ=2ðzm � zÞn�1Qn�1

k¼0ðzm � kÞ
Qn

k¼1ðzk � 1Þ
ðz� 1Þn :

Next we consider the virtual Hodge polynomial of Rep2ðmÞssðCÞ.

Proposition 5.3. The virtual Hodge polynomial of Rep2ðmÞssðCÞ is given by

VHPðRep2ðmÞssðCÞÞ ¼ 1� zm;

VHPcðRep2ðmÞssðCÞÞ ¼ zmþ2ðzm � 1Þ:

Proof. By Corollary 2.17, the inclusion F2ðCmÞ ,! Rep2ðmÞssðCÞ induces
an isomorphism of rational cohomology groups. Hence VHPðRep2ðmÞssðCÞÞ ¼
VHPðF2ðCmÞÞ ¼ 1� zm. Since dimC Rep2ðmÞssðCÞ ¼ 2mþ 2, we have

VHPcðRep2ðmÞssðCÞÞðzÞ ¼ z2mþ2 VHPðRep2ðmÞssðCÞÞðz�1Þ:

Hence we obtain that VHPcðRep2ðmÞssðCÞÞ ¼ zmþ2ðzm � 1Þ. r

The virtual Hodge polynomial of Rep2ðmÞuðCÞ is given as follows.

Proposition 5.4. The virtual Hodge polynomial of Rep2ðmÞuðCÞ is given by

VHPðRep2ðmÞuðCÞÞ ¼ ð1þ zÞð1� zmÞ;
VHPcðRep2ðmÞuðCÞÞ ¼ zmðzþ 1Þðzm � 1Þ:
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Proof. By Theorem 3.2 and Remark 3.3, we have the fiber bundle
U2ðmÞðCÞ ! Rep2ðmÞuðCÞ ! PGL2ðCÞ=B2ðCÞ with respect to the Zariski top-
ology. Note that U2ðmÞðCÞGCm � ðCm � 0Þ and PGL2ðCÞ=B2ðCÞGP1ðCÞ.
By the property of the virtual Hodge polynomial, we obtain that

VHPcðRep2ðmÞuðCÞÞ ¼ VHPcðU2ðmÞðCÞÞ � VHPcðPGL2ðCÞ=B2ðCÞÞ:
Since VHPcðU2ðmÞðCÞÞ ¼ zmðzm � 1Þ and VHPcðPGL2ðCÞ=B2ðCÞÞ ¼ 1þ z,
VHPcðRep2ðmÞuðCÞÞ ¼ zmðzþ 1Þðzm � 1Þ. Since dimC Rep2ðmÞuðCÞ ¼ 2mþ 1,
we have

VHPðRep2ðmÞuðCÞÞ ¼ z2mþ1 VHPcðRep2ðmÞuðCÞÞðz�1Þ:
Hence VHPðRep2ðmÞuðCÞÞ ¼ ð1þ zÞð1� zmÞ. r

We consider the virtual Hodge polynomial of Rep2ðmÞrk 2ðCÞ. Let Ui be the
subspace of Rep2ðmÞrk 2ðCÞ consisting of ðA1; . . . ;AmÞ such that A1; . . . ;Ai�1 are
scalar matrices, and Ai is not a scalar matrix. Then we have a decomposition of
Rep2ðmÞrk 2ðCÞ:

Rep2ðmÞrk 2ðCÞ ¼ U1 U � � �UUm:

Note that Ui VUj ¼ j for i0 j. Since Uk is open in 6n

i¼k
Ui, we have

VHPc 6
n

i¼k

Ui

 !
¼ VHPcðUkÞ þ VHPc 6

n

i¼kþ1

Ui

 !

for 1a ka n. Hence we obtain

VHPcðRep2ðmÞrk 2ðCÞÞ ¼
Xn
i¼1

VHPcðUiÞ:

Let I2 be the identity matrix in M2ðCÞ. For ðA1; . . . ;AmÞ A Ui, we can uniquely
write Ar ¼ arI2 þ brAi for rb i þ 1, where ar; br A C. This implies that

Ui GC i�1 � ðM2ðCÞ � C � I2Þ � ðC2Þm�i:

Then we have VHPðUiÞ ¼ 1� z3 and VHPcðUiÞ ¼ zi�1 � ðz4 � zÞ � z2ðm�iÞ ¼
z2m�iðz3 � 1Þ. Hence we obtain the following proposition.

Proposition 5.5. The virtual Hodge polynomial of Rep2ðmÞrk 2ðCÞ is given
by

VHPcðRep2ðmÞrk 2ðCÞÞ ¼ zmðz2 þ zþ 1Þðzm � 1Þ:

Remark 5.6. We have a decomposition

Rep2ðmÞrk 2ðCÞ ¼ Rep2ðmÞssðCÞURep2ðmÞuðCÞ;
where Rep2ðmÞssðCÞVRep2ðmÞuðCÞ ¼ j and Rep2ðmÞssðCÞ is open in
Rep2ðmÞrk 2ðCÞ. By Propositions 5.3 and 5.4, VHPcðRep2ðmÞssðCÞÞ ¼
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zmþ2ðzm � 1Þ and VHPcðRep2ðmÞuðCÞÞ ¼ zmðzþ 1Þðzm � 1Þ. Hence we have

VHPcðRep2ðmÞrk 2ðCÞÞ ¼ zmþ2ðzm � 1Þ þ zmðzþ 1Þðzm � 1Þ

¼ zmðz2 þ zþ 1Þðzm � 1Þ:

By definition, we have Rep2ðmÞrk 1ðCÞ ¼ Rep2ðmÞscðCÞ. Then we obtain the
following proposition by Theorem 4.1.

Proposition 5.7. The virtual Hodge polynomial of RepnðmÞscðCÞ is given by

VHPðRepnðmÞscðCÞÞ ¼ 1;

VHPcðRepnðmÞscðCÞÞ ¼ zm:

Recall that RepnðmÞairðKÞ ¼ RepnðmÞrk n2ðKÞ is the representation variety of
absolutely irreducible representations. Since RepnðmÞairðKÞ is an open subvariety
of RepnðmÞðKÞ ¼ ðMnðKÞÞm, RepnðmÞairðKÞ is smooth of pure dimension mn2.
When n ¼ 2, we can calculate the virtual Hodge polynomial of Rep2ðmÞairðCÞ by
using the above results.

Theorem 5.8 (Theorem 1.1). The virtual Hodge polynomial of Rep2ðmÞairðCÞ
is given by

VHPðRep2ðmÞairðCÞÞ ¼ ð1� zmÞð1� zm�1Þ;

VHPcðRep2ðmÞairðCÞÞ ¼ z2mþ1ðzm � 1Þðzm�1 � 1Þ:

Proof. First, we calculate VHPcðRep2ðmÞairðCÞÞ. We see that
VHPcðRep2ðmÞÞ ¼ z4m since Rep2ðmÞðCÞ ¼ M2ðCÞm. We have a decomposition
of Rep2ðmÞðCÞ:

Rep2ðmÞðCÞ ¼ 6
4

h¼1

Rep2ðmÞrk hðCÞ:

Then Rep2ðmÞrk iðCÞVRep2ðmÞrk jðCÞ ¼ j if i0 j. Furthermore, Rep2ðmÞrk hðCÞ
is closed in 64

i¼h
Rep2ðmÞrk iðCÞ. By the additivity property of virtual Hodge

polynomial,

VHPcðRep2ðmÞðCÞÞ ¼
X4
h¼1

VHPcðRep2ðmÞrk hðCÞÞ:

Recall that Rep2ðmÞrk 4ðCÞ ¼ Rep2ðmÞairðCÞ and Rep2ðmÞrk 3ðCÞ ¼ Rep2ðmÞBðCÞ.
Then we can calculate VHPcðRep2ðmÞairðCÞÞ by Propositions 5.3, 5.4, 5.7, and
5.2.

Since Rep2ðmÞairðCÞ is smooth of pure dimension 4m, we can calculate
VHPðRep2ðmÞairðCÞÞ by the formula

VHPðRep2ðmÞairðCÞÞ ¼ z4m VHPcðRep2ðmÞairðCÞÞðz�1Þ. r
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5.2. Virtual Hodge polynomials of the character varieties of degree 2. In
this subsection we study the virtual Hodge polynomials of the character varieties
of degree 2 over C.

Lemma 5.9. The virtual Hodge polynomial of the configuration space CnðCmÞ
is given by

VHPðCnðCmÞÞ ¼ 1� zm;

VHPcðCnðCmÞÞ ¼ zmðn�1Þðzm � 1Þ:

Proof. By Lemma 2.20, the quotient map FnðCmÞ ! CnðCmÞ induces an
injection on the rational cohomology groups H �ðCnðCmÞ;QÞ ,! H �ðFnðCmÞ;QÞ,
and H �ðCnðCmÞ;QÞ ¼ LðsÞ with jsj ¼ 2m� 1. Since the mixed Hodge structure
on H 2m�1ðFnðCmÞ;QÞ is pure of type ðm;mÞ (cf. [22, Section 5.3]), we see that the
virtual Hodge polynomial of CnðCmÞ is given by VHPðCnðCmÞÞ ¼ 1� zm. Since
CnðCmÞ is smooth of dimension mn, VHPcðCnðCmÞÞ ¼ zmn VHPðCnðCmÞÞðz�1Þ.
Hence we obtain that VHPcðCnðCmÞÞ ¼ zmðn�1Þðzm � 1Þ. r

By Corollary 2.5, we obtain the following proposition.

Proposition 5.10. The virtual Hodge polynomial of ChnðmÞssðCÞ is given
by

VHPðChnðmÞssðCÞÞ ¼ 1� zm;

VHPcðChnðmÞssðCÞÞ ¼ zmðn�1Þðzm � 1Þ:

By Corollary 3.4 and Remark 3.5, we obtain the following proposition.

Proposition 5.11. The virtual Hodge polynomial of Ch2ðmÞuðCÞ is given by

VHPðCh2ðmÞuðCÞÞ ¼
1� zm

1� z
;

VHPcðCh2ðmÞuðCÞÞ ¼
zmðzm � 1Þ

z� 1
:

By Theorems 4.1 and 4.2, we have ChnðmÞscðCÞ ¼ RepnðmÞscðCÞGCm.
Hence we obtain the following proposition.

Proposition 5.12. The virtual Hodge polynomial of ChnðmÞscðCÞ is given by

VHPðChnðmÞscðCÞÞ ¼ 1;

VHPcðChnðmÞscðCÞÞ ¼ zm:

We calculated the virtual Hodge polynomial of ChnðmÞBðCÞ in [21] and [22].
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Proposition 5.13 ([21, Proposition 7.8] and [22, Corollary 8.8]). The virtual
Hodge polynomial of ChnðmÞBðCÞ is given by

VHPðChnðmÞBðCÞÞ ¼
ð1� zm�1Þn�1Qn�1

k¼1ð1� kzmÞ
ð1� zÞn�1

;

VHPcðChnðmÞBðCÞÞ ¼
zðm�1Þðn�1Þðn�2Þ=2ðzm�1 � 1Þn�1Qn�1

k¼0ðzm � kÞ
ðz� 1Þn�1

:

The conjugate action of matrices induces an action of PGLnðCÞ on
RepnðmÞairðCÞ. The character variety ChnðmÞairðCÞ of absolutely irreducible
representations is defined to be the quotient space

ChnðmÞairðCÞ ¼ RepnðmÞairðCÞ=PGLnðCÞ:

We let p be the quotient map

p : RepnðmÞairðCÞ ! ChnðmÞairðCÞ:

By [18], there exists a smooth scheme ChnðmÞair over Z, and ChnðmÞairðCÞ is the
associated algebraic variety. Furthermore, the quotient map p is induced by a
map

p : RepnðmÞair ! ChnðmÞair
of schemes over Z.

To calculate the virtual Hodge polynomial of ChnðmÞairðCÞ, we need the
multiplicative property of the virtual Hodge polynomials. Let j : X ! Y be
a map of complex algebraic varieties. Let QX be the constant sheaf on X . We
denote by Rqj�QX the qth higher direct image of QX , and by Rqj!QX the qth
higher direct image with compact support.

Theorem 5.14 (cf. [2, Lemma 2 and Remark 2] and [6, Theorem 6.1]). Let
f : X ! Y be a map of complex algebraic varieties, where Y is smooth and
connected. We suppose that f is a locally trivial fibration with respect to the
complex topology. Suppose further that Rqj�QX , respectively Rqj!QX , is a
constant sheaf on Y for all q. Then we have

VHPðX Þ ¼ VHPðYÞ � VHPðFÞ;
respectively

VHPcðXÞ ¼ VHPcðYÞ � VHPcðFÞ:

Let us verify if p satisfies the conditions in Theorem 5.14.

Proposition 5.15. Let f : X ! Y be a principal fibre bundle with group G
over a scheme S in the sense of [17, Definition 0.10]. In other words, ðY ; f Þ is a
geometric quotient of X by G over S satisfying
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(1) G is flat and of finite type over S,
(2) f is a flat morphism of finite type,
(3) G �S X ! X �Y X is an isomorphism.

If f is smooth, then f has a local trivialization with respect to the étale
topology.

Proof. By [8, 17.16.3(ii)] (cf. [14, Chapter I, Propositions 3.24 and 3.26]),
there exist a surjective étale morphism h : Y 0 ! Y , and a Y -morphism
g : Y 0 ! X . Hence f has a local trivialization with respect to the étale
topology. r

By [18, Corollary 6.4], p is a principal fibre bundle with PGLn. Note that p
is smooth because p is flat and the p�1ðxÞ is regular for any geometric point x of
ChnðmÞair. By Proposition 5.15, we obtain the following corollary.

Corollary 5.16. The map p is a fibre bundle with respect to the étale
topology. In particular, so is p with respect to the complex topology.

Notice that ChnðmÞairðCÞ is path-connected.

Lemma 5.17. For any q, Rqp�Q and Rqp!Q are constant sheaves on
ChnðmÞairðCÞ.

Proof. Since p is locally trivial with respect to the complex topology,
Rqp�Q and Rqp!Q are locally constant. Take a base point x in ChnðmÞairðCÞ.
The fundamental group p1ðChnðmÞairðCÞ; xÞ acts on the stalks ðRqp�QÞx G
Hqðp�1ðxÞ;QÞ and ðRqp!QÞx GHq

c ðp�1ðxÞ;QÞ through the map

p1ðChnðmÞairðCÞ; xÞ ! p0ðPGLnðCÞÞ:

Since PGLnðCÞ is path-connected, the action is trivial. Hence the locally
constant sheaves Rqp�Q and Rqp�Q are constant. r

By the above argument, we can apply Theorem 5.14. Then we obtain the
following theorem.

Theorem 5.18 (Theorem 1.2). The virtual Hodge polynomial of the character
variety Ch2ðmÞairðCÞ of absolutely irreducible representations is given by

VHPðCh2ðmÞairðCÞÞ ¼
ð1� zmÞð1� zm�1Þ

1� z2
;

VHPcðCh2ðmÞairðCÞÞ ¼
z2mðzm � 1Þðzm�1 � 1Þ

z2 � 1
:

Proof. The theorem follows from Theorem 5.8. r
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6. The number of absolutely irreducible representations

Let p be a prime number and let q be a power of p. We denote by Fq the
finite field with q elements. In this section we study the number of absolutely
irreducible representations of degree 2 over Fq for the free monoid with m
generators. For a scheme X , we denote by jX ðFqÞj the number of Fq-valued
points of X . Then jRepnðmÞairðFqÞj is the number of absolutely irreducible
representations of degree n over Fq for the free monoid with m generators. We
show that jChnðmÞairðFqÞj is the number of isomorphism classes of such represen-
tations. In case n ¼ 2, we show that these numbers coincide with the virtual
Hodge polynomials evaluated at q.

Let Fq be the algebraic closure of Fq and let F : Fq ! Fq be the Frobenius
map given by FðxÞ ¼ xq. If a scheme X is defined over Z, F induces a map
F : X ðFqÞ ! XðFqÞ. Since F is a topological generator of GalðFq=FqÞ, jX ðFqÞj is
the number of fixed points under F .

Proposition 6.1. The number of Fq-valued points of Ch2ðmÞss is given by

jCh2ðmÞssðFqÞj ¼ qmðqm � 1Þ:

Proof. By Corollary 2.5, we have an isomorphism

Ch2ðmÞssðFqÞGC2ðFm
q Þ:

Take x ¼ ½a; b� A C2ðFm
q Þ. Then F ðxÞ ¼ ½FðaÞ;FðbÞ�. If F ðxÞ ¼ x, then (i)

FðaÞ ¼ a and FðbÞ ¼ b, or (ii) FðaÞ ¼ b and F ðbÞ ¼ a. We denote by X1 and
X2 the subsets of Ch2ðmÞssðFqÞ consisting of elements of type (i) and (ii),
respectively.

In case (i), a; b A ðFqÞm. Since jF2ðFm
q Þj ¼ qmðqm � 1Þ and S2 freely acts on

F2ðFm
q Þ, the number of X1 is given by

jX1j ¼
1

2
qmðqm � 1Þ:

In case (ii), a A ðFq2Þm and b ¼ FðaÞ. Hence b is determined by a. Since

a0 b, a A ðFq2Þm � ðFqÞm. Noticing ½a;FðaÞ� ¼ ½FðaÞ; a�, we obtain that the
number of X2 is given by

jX2j ¼
1

2
ðq2m � qmÞ:

The number of Fq-valued points of Ch2ðmÞss is calculated as

jX1j þ jX2j ¼ qmðqm � 1Þ: r

Proposition 6.2. The number of Fq-valued points of Rep2ðmÞss is given by

jRep2ðmÞssðFqÞj ¼ qmþ2ðqm � 1Þ:
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Proof. By Theorem 2.3, we have an isomorphism

Rep2ðmÞssðFqÞGPGL2ðFqÞ �H2
F2ðFm

q Þ:

Take x ¼ ½G; a; b� A Rep2ðmÞssðFqÞ, where G A PGL2ðFqÞ and ða; bÞ A F2ðFm
q Þ. Let

us regard T2 as a closed subgroup scheme of PGL2. If FðxÞ ¼ x, then (i) there
exists T A T2ðFqÞ such that F ðGÞ ¼ GT and F ðaÞ ¼ a, FðbÞ ¼ b, or (ii) there

exists T A T2ðFqÞ such that FðGÞ ¼ GTt and F ðaÞ ¼ b, F ðbÞ ¼ a, where t is the
permutation matrix corresponding to the permutation ð1; 2Þ. We denote by X1

and X2 the subsets of Rep2ðmÞssðFqÞ consisting of elements of type (i) and (ii),
respectively.

In case (i), ða; bÞ A F2ðFm
q Þ. We can take T 0 A T2ðFqÞ such that T 0FðT 0Þ�1 ¼

T . Setting G 0 ¼ GT 0, we have FðG 0Þ ¼ G 0, and hence G 0 A PGL2ðFqÞ. Then
x ¼ ½G; a; b� ¼ ½G 0; a; b�. This means we can take a representative of x as
½G 0; a; b� with G 0 A PGL2ðFqÞ and ða; bÞ A F2ðFm

q Þ. Let ½ ~GG; ~aa; ~bb� be another rep-

resentative of x with ~GG A PGL2ðFqÞ and ð~aa; ~bbÞ A F2ðFm
q Þ. Then there exists

H A H2 such that ~GG ¼ G 0H and H�1ð~aa; ~bbÞH ¼ ða; bÞ. In particular, H ¼
G 0�1 ~GG A H2 VPGL2ðFqÞ. Since H2 VPGL2ðFqÞ freely acts on PGL2ðFqÞ �
F2ðFm

q Þ, the number of X1 is given by

jX1j ¼
jPGL2ðFqÞj � jF2ðFm

q Þj
jH2 VPGL2ðFqÞj

¼ 1

2
qmþ1ðqm � 1Þðqþ 1Þ:

In case (ii), b ¼ FðaÞ with a A ðFq2Þm � ðFqÞm. We can take T 0 A T2ðFqÞ
such that T 0F 2ðT 0Þ�1 ¼ T . Setting G 0 ¼ GT 0tF ðT 0Þt, we have FðG 0Þ ¼ G 0t.
In particular, F 2ðG 0Þ ¼ G 0 and G 0 A PGL2ðFq2Þ. Notice that G 0 has the form

G 0 ¼ 1 1

s sq

� �
t 0

0 tq

� �
with s A Fq2 � Fq, t A F�

q2 . Put S ¼ 1 1

s sq

� �
. Then

x ¼ ½S; a;FðaÞ�. So any element of X2 has a representative of this form. Since
any element of X2 has exactly two representatives of this form, the number of X2

is given by

jX2j ¼
1

2
qmþ1ðqm � 1Þðq� 1Þ:

The number of Fq-valued points of Rep2ðmÞss is calculated as

jX1j þ jX2j ¼ qmþ2ðqm � 1Þ: r

Proposition 6.3. The number of Fq-valued points of RepnðmÞsc and ChnðmÞsc
are given by

jRep2ðmÞscðFqÞj ¼ jCh2ðmÞscðFqÞj ¼ qm:

Proof. The proposition follows from Theorems 4.1 and 4.2. r
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In order to calculate the number of Fq-valued points of the other moduli
spaces, we need the following lemmas.

Lemma 6.4. Let L be a field and let L be its separable closure. Let G be
an algebraic group over L and let X be a scheme of finite type over L. Suppose
that G acts on X over L. If GðLÞ freely acts on X ðLÞ and the Galois cohomology
H 1ðL;GÞ is trivial, then there is a bijection

ðXðLÞ=GðLÞÞGalðL=LÞ GXðLÞ=GðLÞ:

Proof. We put Gal ¼ GalðL=LÞ. Let x be an element in XðLÞ such that
the image under the quotient map X ðLÞ ! X ðLÞ=GðLÞ is invariant under the
action of Gal. Since the action of GðLÞ on X ðLÞ is free, there exists a unique
cðsÞ A GðLÞ such that xs ¼ cðsÞx for each s A Gal. Then c is a continuous
1-cocycle for Gal with the values in GðLÞ. Since H 1ðL;GÞ is trivial, there
exists g A GðLÞ such that cðsÞ ¼ gsg�1 for all s A Gal. Then ðg�1xÞs ¼ g�1x and
hence g�1x A XðLÞ. This means the canonical map X ðLÞ ! ðX ðLÞ=GðLÞÞGal is
surjective.

Let x1 and x2 be elements in XðLÞ that coincide in ðX ðLÞ=GðLÞÞGal. There
exists h A GðLÞ such that x1 ¼ hx2. Then x1 ¼ hsx2 for any s A Gal. Since the
action of GðLÞ on XðLÞ is free, hs ¼ h and hence h A GðLÞ. Therefore, the map
XðLÞ ! ðXðLÞ=GðLÞÞGal induces a bijection

XðLÞ=GðLÞ !G ðXðLÞ=GðLÞÞGal: r

Lemma 6.5 ([12], see also [26, Chapter VI, Proposition 3]). The Galois
cohomology H 1ðFq;GÞ is trivial for any connected algebraic group G over Fq.

Proposition 6.6. The number of Fq-valued points of Rep2ðmÞu is given by

jRep2ðmÞuðFqÞj ¼ qmðqm � 1Þðqþ 1Þ:

Proof. By Theorem 3.2, the map PGL2 �B2
U2ðmÞ ! Rep2ðmÞu of algebraic

varieties induces a bijection

PGL2ðFqÞ �B2ðFqÞ U2ðmÞðFqÞ !
G

Rep2ðmÞuðFqÞ:

Since this bijection is compatible with the action of the Galois group GalðFq=FqÞ
on both sides, we see that

Rep2ðmÞuðFqÞG ðPGL2ðFqÞ �B2ðFqÞ U2ðmÞðFqÞÞGalðFq=FqÞ:

Notice that the action of B2ðFqÞ on PGL2ðFqÞ �U2ðmÞðFqÞ is free. By Lemmas
6.4 and 6.5, we obtain

jRep2ðmÞuðFqÞj ¼
jPGL2ðFqÞj � jU2ðmÞðFqÞj

jB2ðFqÞj
:

The proposition follows from the fact that U2ðmÞðFqÞGFm
q � ðFm

q � 0Þ. r
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Proposition 6.7. The number of Fq-valued points of Ch2ðmÞu is given by

jCh2ðmÞuðFqÞj ¼
qmðqm � 1Þ

q� 1
:

Proof. By Corollary 3.4, the map U2ðmÞ=B2 ! Ch2ðmÞu of algebraic
varieties induces a bijection

ðFqÞm � Pm�1ðFqÞ !
G

Ch2ðmÞuðFqÞ
of Fq-valued points. This bijection is compatible with the action of the Galois
group GalðFq=FqÞ on both sides, and hence we obtain the following bijection

ðFqÞm � Pm�1ðFqÞ !
G

Ch2ðmÞuðFqÞ:
The proposition follows from the fact that jðFqÞm � Pm�1ðFqÞj ¼ qmðqm � 1Þ=
ðq� 1Þ. r

Proposition 6.8. The number of Fq-valued points of RepnðmÞB is given by

jRepnðmÞBðFqÞj ¼
qmðn�1Þðn�2Þ=2ðqm � qÞn�1Qn�1

k¼0ðqm � kÞ
Qn

k¼1ðqk � 1Þ
ðq� 1Þn :

Proof. By [21, §3], we have a bijection

RepnðmÞBðFqÞGPGLnðFqÞ �BnðFqÞ BnðmÞBðFqÞ;

where we regard BnðmÞB as a scheme over Z. Notice that the action of BnðFqÞ
on PGLnðFqÞ � BnðmÞBðFqÞ is free. By Lemmas 6.4 and 6.5, we obtain

jRepnðmÞBðFqÞj ¼
jPGLnðFqÞj � jBnðmÞBðFqÞj

jBnðFqÞj
The proposition follows from the fact that

jBnðmÞBðFqÞj ¼ qmðn�1Þðn�2Þ=2ðqm � qÞn�1
Yn�1

k¼0

ðqm � kÞ: r

Proposition 6.9. The number of Fq-valued points of ChnðmÞB is given by

jChnðmÞBðFqÞj ¼
ðqm�1 � 1Þn�1

qðm�1Þðn�1Þðn�2Þ=2Qn�1
k¼0ðqm � kÞ

ðq� 1Þn�1
:

Proof. By definition, there is a bijection

ChnðmÞBðFqÞGRepnðmÞBðFqÞ=PGLnðFqÞ

This implies that there is a bijection

ChnðmÞBðFqÞGBnðmÞBðFqÞ=BnðFqÞ
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Note that BnðFqÞ freely acts on B2ðmÞBðFqÞ. By Lemmas 6.4 and 6.5, we
obtain

jChnðmÞBðFqÞj ¼
jBnðmÞBðFqÞj

jBnðFqÞj
:

The proposition is easily obtained from this. r

Theorem 6.10 (cf. Theorem 1.3). The number of absolutely irreducible
representations of degree 2 over Fq for the free monoid with m generators coincides
with the virtual Hodge polynomial evaluated at q so that

jRep2ðmÞairðFqÞj ¼ VHPcðRep2ðmÞairðCÞÞðqÞ

¼ q2mþ1ðqm � 1Þðqm�1 � 1Þ:

Proof. By definition, we have a decomposition

M2ðFqÞm ¼
a

�¼sc; ss;u;B;air

Rep2ðmÞ�ðFqÞ:

This decomposition is compatible with the map F . Taking the fixed points of F ,
we obtain a decomposition of M2ðFqÞm:

M2ðFqÞm ¼
a

�¼sc; ss;u;B;air

Rep2ðmÞ�ðFqÞ:

Hence

jRep2ðmÞairðFqÞj ¼ q4m �
X

�¼sc; ss;u;B

jRep2ðmÞ�ðFqÞj:

The theorem follows from Propositions 6.2, 6.3, 6.6, and 6.8. r

Theorem 6.11 (cf. Theorem 1.3). The number of isomorphism classes of
absolutely irreducible representations of degree n over Fq for the free monoid with
m generators is

jChnðmÞairðFqÞj ¼
jRepnðmÞairðFqÞj

jPGLnðFqÞj
:

In case n ¼ 2, the number coincides with the virtual Hodge polynomial evaluated at
q so that

jCh2ðmÞairðFqÞj ¼ VHPcðCh2ðmÞairðCÞÞðqÞ

¼ q2mðqm � 1Þðqm�1 � 1Þ
q2 � 1

:
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Proof. Since ChnðmÞair is the geometric quotient of RepnðmÞair by PGLn,
there is a bijection

ChnðmÞairðFqÞGRepnðmÞairðFqÞ=PGLnðFqÞ:

Notice that PGLnðFqÞ freely acts on RepnðmÞairðFqÞ. By Lemmas 6.4 and 6.5,
we obtain

jChnðmÞairðFqÞj ¼
jRepnðmÞairðFqÞj

jPGLnðFqÞj
:

This shows that the number of isomorphism classes of absolutely irreducible
representations over Fq is jChnðmÞairðFqÞj. When n ¼ 2, we can calculate the
number by Theorem 6.10. r

Remark 6.12. Let X be a separated scheme of finite type over Z. If there
exists a polynomial PX ðtÞ A Z½t� such that jXðFqÞj ¼ PX ðqÞ for all finite fields Fq,
then VHPcðXÞ is a polynomial of z ¼ xy, and

VHPcðXÞðzÞ ¼ PX ðzÞ:

See [9, §6] for more details.

Remark 6.13. Let Sm be the quiver with one vertex and m edge loops. The
path algebra of Sm over a field k is the free algebra khX1;X2; . . . ;Xmi. Hence
the representations of the quiver Sm are the same things as those of the free
monoid with m generators. Let AIRSm

ðn; qÞ be the number of isomorphism
classes of n-dimensional absolutely irreducible representations of Sm over Fq. By
Theorem 6.11, we have

AIRSm
ð2; qÞ ¼ q2mðqm � 1Þðqm�1 � 1Þ

q2 � 1
:

Let AIDSm
ðn; qÞ be the number of isomorphism classes of n-dimensional abso-

lutely indecomposable representations of Sm over Fq. Using [10, Theorem 4.6],
we can calculate AIDSm

ð2; qÞ as

AIDSm
ð2; qÞ ¼ q2m�1ðq2m � 1Þ

q2 � 1
:

We can verify that this number is equal to the sum

jCh2ðmÞuðFqÞj þ jCh2ðmÞBðFqÞj þ jCh2ðmÞairðFqÞj:

Let AnðmÞ be the a‰ne ring of RepnðmÞ. Let AnðmÞPGLn be the PGLn-

invariant ring of AnðmÞ. We set ChnðmÞ :¼ Spec AnðmÞPGLn . By [27, Theorem
3], the set of Fq-valued points of ChnðmÞ consists of the closed PGLn-orbits in
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RepnðmÞ. In particular, when n ¼ 2, we have a decomposition

Ch2ðmÞðFqÞ ¼ Ch2ðmÞairðFqÞ q Ch2ðmÞssðFqÞ q Ch2ðmÞscðFqÞ

of Fq-valued points. This implies the following main theorem:

Theorem 6.14 (Theorem 1.4). The number of Fq-valued points of Ch2ðmÞ is
given by

jCh2ðmÞðFqÞj ¼ jCh2ðmÞairðFqÞj þ jCh2ðmÞssðFqÞj þ jCh2ðmÞscðFqÞj

¼ q2mþ2ðq2m�3 � qm�2 � qm�3 þ 1Þ
q2 � 1

:

In particular, the virtual Hodge polynomial of Ch2ðmÞ is given by

VHPcðCh2ðmÞÞðzÞ ¼ z2mþ2ðz2m�3 � zm�2 � zm�3 þ 1Þ
z2 � 1

:

Remark 6.15. The Weil zeta functions of Rep2ðmÞair, Ch2ðmÞair, and Ch2ðmÞ
are given by

ZðRep2ðmÞair; q; tÞ :¼ exp
Xy
n¼1

jRep2ðmÞairðFqnÞj
n

tn

 !
¼ ð1� q3mþ1tÞð1� q3mtÞ

ð1� q4mtÞð1� q2mþ1tÞ ;

ZðCh2ðmÞair; q; tÞ :¼ exp
Xy
n¼1

jCh2ðmÞairðFqnÞj
n

tn

 !
¼

Q½m=2�

i¼1

ð1� q2mþ2i�2tÞ

Q½m=2�

i¼1

ð1� q4m�2i�1tÞ
;

ZðCh2ðmÞ; q; tÞ :¼ exp
Xy
n¼1

jCh2ðmÞðFqnÞj
n

tn

 !
¼ ZðCh2ðmÞair; q; tÞ

1� q2mt
:

The Hasse-Weil zeta functions of Rep2ðmÞair, Ch2ðmÞair, and Ch2ðmÞ are given
by

zðRep2ðmÞair; sÞ :¼
Y
p

ZðRep2ðmÞair; p; p�sÞ ¼ zðs� 4mÞzðs� 2m� 1Þ
zðs� 3m� 1Þzðs� 3mÞ ;

zðCh2ðmÞair; sÞ :¼
Y
p

ZðCh2ðmÞair; p; p�sÞ ¼

Q½m=2�

i¼1

zðs� 4mþ 2i þ 1Þ

Q½m=2�

i¼1

zðs� 2m� 2i þ 2Þ
;

zðCh2ðmÞ; sÞ :¼
Y
p

ZðCh2ðmÞ; p; p�sÞ ¼ zðCh2ðmÞair; sÞzðs� 2mÞ;
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where zðsÞ is the Riemann zeta function. The completions of these zeta
functions are defined as

ẑzðRep2ðmÞair; sÞ :¼
ẑzðs� 4mÞẑzðs� 2m� 1Þ
ẑzðs� 3m� 1Þẑzðs� 3mÞ

;

ẑzðCh2ðmÞair; sÞ :¼

Q½m=2�

i¼1

ẑzðs� 4mþ 2i þ 1Þ

Q½m=2�

i¼1

ẑzðs� 2m� 2i þ 2Þ
;

where ẑzðsÞ :¼ p�s=2Gðs=2ÞzðsÞ is the completion of the Riemann zeta function.
Since ẑzð1� sÞ ¼ ẑzðsÞ, we have the following functional equations

ẑzðRep2ðmÞair; 6mþ 2� sÞ ¼ ẑzðRep2ðmÞair; sÞ;

ẑzðCh2ðmÞair; 6m� 2� sÞ ¼ ẑzðCh2ðmÞair; sÞ
�1:
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