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Abstract

In this study, dissipative singular q-Sturm-Liouville operators are studied in the

Hilbert space L2
r; qðRq;þÞ; that the extensions of a minimal symmetric operator in limit-

point case. We construct a self-adjoint dilation of the dissipative operator together

with its incoming and outgoing spectral representations so that we can determine the

scattering function of the dilation as stated in the scheme of Lax-Phillips. Then, we

create a functional model of the maximal dissipative operator via the incoming spectral

representation and define its characteristic function in terms of the Weyl-Titchmarsh

function (or scattering function of the dilation) of a self-adjoint q-Sturm-Liouville

operator. Finally, we prove the theorem on completeness of the system of eigenfunc-

tions and associated functions (or root functions) of the dissipative q-Sturm-Liouville

operator.

1. Introduction and notations

In this section, we introduce some of the needed q-notations and results (see
[3–6, 9, 10]). Throughout this paper, q is a positive number with 0 < q < 1.
For m A R :¼ ð�y;yÞ; a set AJR is called a m-geometric set if mt A A for all
t A A. If AJR is a m-geometric set, then it contains all geometric sequences
fmntg ðn ¼ 0; 1; 2 . . .Þ, t A A. Let f be a function, real or complex-valued,
defined on a q-geometric set A. The q-di¤erence operator is defined by

Dq f ðtÞ :¼
f ðtÞ � f ðqtÞ

t� qt
; t A Anf0g:ð1:1Þ

If 0 A A, the q-derivative at zero is defined by

Dq f ð0Þ :¼ lim
n!y

f ðqntÞ � f ð0Þ
qnt
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if the limit exists and does not depend on t. Since the formulation of the
extension problems requires the definition of Dq�1 in a same manner to be

Dq�1 f ðtÞ :¼
f ðtÞ � f ðq�1tÞ

t� q�1t
; t A Anf0g;

Dq f ð0Þ; t ¼ 0;

8<
:

provided that Dq f ð0Þ exists. As a converse of the q-di¤erence operator,
Jackson’s q-integration [12] is given by

ð t

0

f ðtÞdqx :¼ tð1� qÞ
Xy
n¼0

qnf ðqntÞ; t A A;

provided that the series converges, andð b

a

f ðtÞdqt :¼
ð b

0

f ðtÞdqt�
ð a

0

f ðtÞdqt; a; b A A:

When required q will be replaced by q�1. The following facts, which will be
used often, can be verified directly from the definition and will be used often:

Dq�1 f ðtÞ ¼ ðDq f Þðq�1tÞ; D2
q f ðq�1tÞ ¼ qDq½Dq f ðq�1tÞ� ¼ Dq�1Dq f ðtÞ:

Associated with this operator there is a non-symmetric formula for the
q-di¤erentation of a product

Dq½ f ðtÞgðtÞ� ¼ f ðqtÞDqgðtÞ þ gðtÞDq f ðtÞ:

Through the remainder of the text, we deal only with functions q-regular at
zero, that is, functions satisfying

lim
n!y

f ðqntÞ ¼ f ð0Þ:

The class of the functions which are q-regular at zero includes the continuous
functions. If f and g are q-regular at zero, there is a rule of q-integration by
parts given byð a

0

gðtÞDq f ðtÞdqt ¼ ð fgÞðaÞ � ð fgÞð0Þ �
ð a

0

DqgðtÞ f ðqtÞdqt:

In [11], Hahn defined the q-integration for a function f over ½0;yÞ by

ðy
0

f ðtÞdqt :¼ ð1� qÞ
Xy
n¼�y

qnf ðqnÞ:

The q-di¤erence calculus or quantum calculus was initiated in the beginning
of the 19th century. The subject of q-di¤erential equations has evolved into a
multidisciplinary subject (see [3, 9, 10]). There are several physical models
involving q-derivatives, q-integrals, q-exponential function, q-trigonometric func-
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tion, q-Taylor formula, q-Beta and q-Gamma functions, Euler-Maclaurin formula
and their related problems (see [3, 9, 10]).

In [6], Annaby and Mansour studied a q-Sturm-Liouville eigenvalue problem
and formulated a self-adjoint q-Sturm-Liouville operator in a Hilbert space.
They also discussed properties of the eigenvalues and the eigenfunctions.
Annaby et al. [4, 5] established the q-Titchmarsh-Weyl theory for singular
q-Sturm-Liouville problems and defined q-limit-point and q-limit-circle singular-
ities and gave su‰cient conditions which guarantee that the singular point is in a
limit-point case in [5].

Let L2ðRÞ be the Hilbert space consisting of all complex-valued functions y
such that ðy

�y
jyðtÞj2 dt < y

and with the inner product

ðy; zÞ ¼
ðy
�y

yðtÞzðtÞ dt:

We denote by L2ðR�Þ ðL2ðRþÞÞ, where R� :¼ ð�y; 0� ðRþ :¼ ½0;yÞÞ, the
Hilbert space consisting of all complex-valued functions y satisfyingð0

�y
jyðtÞj2 dt < y

ðy
0

jyðtÞj2 dt < y

� �

and with the inner product

ðy; zÞ ¼
ð0

�y
yðtÞzðtÞ dt ðy; zÞ ¼

ðy
0

yðtÞzðtÞ dt
� �

:

Let W1
2 ðRGÞ be the Sobolev space consisting of all functions f A L2ðRGÞ

such that f are locally absolutely continuous functions on RG and f 0 A L2ðRGÞ.
We shall remind that the linear operator T (with dense domain DomðTÞ)

acting on some Hilbert space H is called dissipative (accumulative) if
ImðTf ; f Þb 0 ðImðTf ; f Þa 0Þ for all f A DomðTÞ ([1, 2, 13, 15, 17, 18]).

It is better to recall that a linear operator B (with domain DomðBÞ) acting in
a Hilbert space H is called completely non-self-adjoint (or pure) if the invariant
subspace MJDomðBÞ ðM0 f0gÞ of the operator B whose restriction to M is
self-adjoint, does not exist ([2, 13, 17]).

Let Y be an arbitrary non-constant inner function ([1, 2, 13, 15, 17]) defined
on the upper half-plane (we recall that a function Y analytic in the upper half-
plane Cþ is called inner function on Cþ if jYðlÞja 1 for l A Cþ, and jYðlÞj ¼ 1
for almost all l A R). Here and below, H2

G denote the Hardy classes ([15, 17])
in L2ðRÞ consisting of the functions analytically extendable to the upper and
lower half-planes, respectively. Let us consider the nontrivial subspace K ¼
H2

þ mYH2
þ : The semigroup of the operators XðsÞ ðsb 0Þ, XðsÞw ¼ P½eilsw�,

w :¼ wðlÞ A K, where P is the orthogonal projection from H2
þ onto K, acts in
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the subspace K. The generator of the semigroup fXðsÞg is denoted by T:

Tw ¼ lim
s!þ0

½ðisÞ�1ðXðsÞw� wÞ�;

which is a dissipative operator acting in K and having domain DomðTÞ which
consists of all vectors w A K such that the limit exists. The operator T is
called a model dissipative operator. This model dissipative operator, which is
associated with the names of Lax and Phillips [14], is a special case of a more
general model dissipative operator constructed by Sz.-Nagy and Foiaş [15]. The
basic assertion is that Y is the characteristic function of the operator T ([1, 2, 13,
15, 17, 18]).

Let S denote the linear operator acting in the Hilbert space H with the
domain DomðSÞ: We know that a complex number l0 is called an eigenvalue
of an operator S if there exists a non-zero vector z0 A DomðSÞ satisfying the
equation Sz0 ¼ l0z0; here, z0 is called an eigenvector of S for l0. The eigen-
vector for l0 spans a subspace of DomðSÞ, called the eigenspace for l0 and the
geometric multiplicity of l0 is the dimension of its eigenspace. The vectors
z1; z2; . . . ; zk are called the associated vectors of the eigenvector z0 if they belong
to DomðSÞ and Szj ¼ l0zj þ zj�1, j ¼ 1; 2; . . . ; k: The element z A DomðSÞ, z0 0
is called a root vector of the operator A corresponding to the eigenvalue l0, if all
powers of S are defined on this element and ðS� l0IÞmz ¼ 0 for some integer m:
The set of all root vectors of S corresponding to the same eigenvalue l0 with the
vector z ¼ 0 forms a linear set Nl0 and is called the root lineal. The dimension
of the lineal Nl0 is called the algebraic multiplicity of the eigenvalue l0: The root
lineal Nl0 coincides with the linear span of all eigenvectors and associated vectors
of S corresponding to the eigenvalue l0: As a result, the completeness of the
system of all eigenvectors and associated vectors of S is equivalent to the
completeness of the system of all root vectors of this operator ([2, 8, 16]).

Dissipative operators are one of the important classes of non-self-adjoint
operators. It is well recognized that [1, 2, 13, 15, 17, 18] the theory of dilations
with application of functional models gives an ample approach to the spectral
theory of dissipative (contractive) operators. By carrying the complete infor-
mation on the spectral properties of the dissipative operator, we can say that
characteristic function plays the primary role in this theory. The spectral
analysis of the dissipative operators can be studied with the help of the charac-
teristic function. Using the theory of Sz.-Nagy-Foiaş, the dissipative operator
can be handled as the model operator [1, 2, 13, 15, 17, 18]. In the centre of this
method, there is an information on the spectral properties of the dissipative
operator. For example, the factorization of the characteristic function may help
us about learning that whether the system of all eigenvectors and associated
vectors is complete or not. To construct the characteristic function directly is
quite hard. However, according to the results of Lax-Phillips, this construc-
tion can be done with the self-adjoint dilation and scattering function (see [14]).
E‰ciency of this approach for dissipative Schrödinger and Sturm-Liouville
operators has been demonstrated, for example, in [1, 2, 17, 18].
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Let L2
r;qðRq;þÞ (where Rq;þ :¼ fqn j n A Zg, Z :¼ f0;G1;G2; . . .g) denote the

Hilbert space (see [3]) consisting of all complex-valued functions x defined on
Rq;þ satisfying ðy

0

rðtÞjxðtÞj2dqt < y

and with the inner product

ðx; yÞ ¼
ðy
0

rðtÞxðtÞyðtÞdqt:

where r is a real-valued function defined on Rq;þ and rðtÞ > 0 for all t A Rq;þ:
In this paper, we consider the dissipative singular q-Sturm-Liouville oper-

ators acting in the Hilbert space L2
r;qðRq;þÞ, that the extensions of a minimal

symmetric operator with deficiency indices ð1; 1Þ (in limit-point case). At first
a self-adjoint dilation of the maximal dissipative operator is constructed and
then its incoming and outgoing spectral representations are prescribed. These
constructions will allow us to determine the scattering function of the dilation
in terms of the Weyl-Titchmarsh function of self-adjoint operator according to
the scheme of Lax and Phillips [14]. With the help of the incoming spectral
representation, we construct a functional model of the maximal dissipative
operator and determine its characteristic function in terms of the scattering
function of self-adjoint dilation (or Weyl-Titchmarsh function of a self-adjoint
q-Sturm-Liouville operator). Finally, using the results found for characteristic
functions, we prove the theorem on completeness of the system of eigenfunctions
and associated functions (or root functions) of the dissipative q-Sturm-Liouville
operator.

2. Dissipative q-Sturm-Liouville operator and self-adjoint dilation
of the dissipative operator

We consider the singular q-Sturm-Liouville expression L as

ðLxÞðtÞ ¼ 1

rðtÞ � 1

q
Dq�1ðpðtÞDqxðtÞÞ þ vðtÞxðtÞ

� �
; t A Rq;þ;ð2:1Þ

where r, p and v are real-valued functions defined on Rq;þ and are q-regular
at zero such that pðtÞ0 0, rðtÞ > 0 for all t A Rq;þ, and Dq is the q-di¤erence
operator defined in (1.1).

Let us consider the linear set Dmax consisting of all vectors x A L2
r;qðRq;þÞ

such that x and ðpDqÞx are q-regular at zero and Lx A L2
r;qðRþÞ. We define the

maximal operator Lmax on Dmax by the equality Lmaxx ¼ Lx:
For each x; y A Dmax we define the q-Wronski determinant (or q-Wronskian)

as follows:

Wq½x; y�ðtÞ ¼ xðtÞDqyðtÞ �DqxðtÞyðtÞ; t A Rq;þ:
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For arbitrary x; y A Dmax, q-Green’s formula (or q-Lagrange’s identity) is given
by ([3, 6])ð t

0

ðLxÞðxÞyðxÞdqx�
ð t

0

xðxÞðLyÞðxÞdqx ¼ ½x; y�ðtÞ � ½x; y�ð0Þ; t A Rq;þ;ð2:2Þ

where ½x; y�ðtÞ denotes the q-Lagrange bracket defined by

½x; y�ðtÞ :¼ pðtÞ½xðtÞDq�1yðtÞ �Dq�1xðtÞyðtÞ�; t A Rq;þ:

It is clear from (2.2) that limit

½x; y�ðyÞ :¼ lim
n!y

½x; y�ðq�nÞ

exists and is finite for all x; y A Dmax. For any function x A Dmax, xð0Þ and
ðpDq�1xÞð0Þ can be defined by

xð0Þ :¼ lim
n!y

xðqnÞ

and

ðpDq�1xÞð0Þ :¼ lim
n!y

ðpDq�1xÞðqnÞ:

These limits exist and are finite (since x and ðpDq�1Þx are q-regular at zero). Let
Dmin be the linear set of all vectors x A Dmax satisfying the conditions

xð0Þ ¼ ðpDq�1xÞð0Þ ¼ 0; ½x; y�ðyÞ ¼ 0;ð2:3Þ
for arbitrary y A Dmax: The operator Lmin; that is the restriction of the operator
Lmax to Dmin is called the minimal operator and the equalities Lmax ¼ L�

min

holds. Further (it follows from (2.3)) Lmin is a closed symmetric operator with
deficiency indices ð1; 1Þ or ð2; 2Þ ([4, 5, 8, 16]).

In this paper, we assume that symmetric operator Lmin has deficiency indices
ð1; 1Þ, so the case of limit-point occurs for expression L or Lmin ([4, 5, 7, 8, 16]).

Let us consider the operator Ta with domain DomðTaÞ consisting of vectors
x A Dmax which satisfy the boundary conditions

ðpDq�1Þxð0Þ � axð0Þ ¼ 0; Im a > 0:ð2:4Þ

Theorem 2.1. The operator Ta is dissipative in space L2
r;qðRq;þÞ:

Proof. Let x A DomðTaÞ. Then we have

ðTax; xÞ � ðx;TaxÞ ¼ ½x; x�ðyÞ � ½x; x�ð0Þ:ð2:5Þ
Since limit-point case holds at y, one gets ½x; x�ðyÞ ¼ 0. Further, we obtain
from the condition (2.4) that

½x; x�ð0Þ ¼ �2 Im ajxð0Þj2:ð2:6Þ
Substituting (2.6) in (2.5) one gets ImðTax; xÞ ¼ Im ajxð0Þj2 and this completes
the proof. r
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According to equality (2.6) for Im a < 0 (Im a ¼ 0 or a ¼ y) Ta is an
accumulative (self-adjoint) operator in L2

r;qðRq;þÞ: Here for a ¼ y, condition
(2.4) should be replaced by xð0Þ ¼ 0:

Let us consider the Hilbert space

H ¼ L2ðR�ÞlL2
r;qðRq;þÞlL2ðRþÞ;

and call it the basic Hilbert space of the dilation.
Let DomðMaÞ be the set of all vectors f ¼ hf�; y; fþi A H, where

f� A W1
2 ðR�Þ, fþ A W1

2 ðRþÞ, and y A DomðMaÞ satisfying the conditions

ðpDq�1Þð0Þ � ayð0Þ ¼ df�ð0Þ; ðpDq�1Þð0Þ � ayð0Þ ¼ dfþð0Þ;ð2:7Þ

where d2 :¼ 2 Im a, d > 0:
Let

Mhf�; y; fþi ¼ i
df�
dx

;Ly; i
dfþ
dv

� �
ð2:8Þ

and Ma f ¼ Mf for f A DomðMaÞ. Then we have the following assertion.

Theorem 2.2. The operator Ma is self-adjoint in space H.

Proof. Let f ¼ hf�; y; fþi, g ¼ hc�; z;cþi A DomðMaÞ: Then with a
direct calculation, we have

ðMa f ; gÞH ¼
ð0

�y
if 0

�c� dxþ ðLy; zÞ þ
ðy
0

if 0
þcþ dzð2:9Þ

¼ if�ð0Þc�ð0Þ � ifþð0Þcþð0Þ � ½y; z�ð0Þ þ ð f ;MagÞH:

Using (2.7) one gets that ðMa f ; gÞH ¼ ð f ;MagÞH, i.e. Ma is symmetric.
It can be seen that the operators Ma and M�

a are generated by the same
di¤erential expression (2.8). The equality (2.9) can be rewritten as

if�ð0Þc�ð0Þ � ifþð0Þcþð0Þ � ½y; z�ð0Þ ¼ 0:ð2:10Þ

On the other hand from (2.7) one gets

yð0Þ ¼ � i

d
ðfþð0Þ � f�ð0ÞÞ; ðpDq�1yÞð0Þ ¼ df�ð0Þ �

ia

d
ðfþð0Þ � f�ð0ÞÞ:ð2:11Þ

Substituting (2.11) in (2.10) we have

if�ð0Þc�ð0Þ � ifþð0Þcþð0Þ ¼ ½y; z�ð0Þð2:12Þ

¼ � i

d
ðfþð0Þ � f�ð0ÞÞðpDq�1zÞð0Þ

� d f�ð0Þ �
ia

d2
ðfþð0Þ � f�ð0ÞÞ

� �
zð0Þ:
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Since fGð0Þ can be arbitrary numbers, a comparison of the coe‰cients of fGð0Þ in
(2.12) shows that g ¼ hc�; z;cþi satisfies the boundary conditions:

ðpDq�1zÞð0Þ � azð0Þ ¼ dc�ð0Þ
and

ðpDq�1zÞð0Þ � azð0Þ ¼ dcþð0Þ:

This implies that M�
a JMa, and this completes the proof. r

The self-adjoint operator Ma generates in H a unitary group YaðsÞ ¼
exp½iMas� ðs A RÞ. Denote by P1 : H ! L2

r;qðRq;þÞ and P2 : L
2
r;qðRq;þÞ ! H

the mappings acting according to the formulas P1 : hf�; y; fþi ! y and P2 : y !
h0; y; 0i, respectively. It is known that the operator family ZaðsÞ ¼ P1YaðsÞP2

ðsb 0Þ is a strongly continuous semigroup of completely nonunitary contraction
on L2

r;qðRq;þÞ ([2, 13, 15, 17]). Let us consider the generator Ba of the
semigroup ZaðsÞ:

Ba y ¼ lim
s!þ0

½ðisÞ�1ðZaðsÞy� yÞ�;

where the domain of Ba consists of all vectors for which this limit exists. The
operator Ba is a maximal dissipative operator and further the operator Ma is
called the self-adjoint dilation of Ba.

Theorem 2.3. The operator Ma is a self-adjoint dilation of Ta:

Proof. We show that Ba ¼ Ta. Let

ðMa � lIÞ�1
P2x ¼ g ¼ hc�; y;cþi;ð2:13Þ

where x; y A L2
r;qðRq;þÞ and Im l < 0. Then ðMa � lIÞg ¼ P2x and the equation

(2.10) is also equivalent to the equation Ly� ly ¼ x and

c�ðxÞ ¼ c�ð0Þe�ilx; cþðvÞ ¼ cþð0Þe�ilv:

Since c� belongs to L2ðR�Þ, c�ð0Þ ¼ 0, and y satisfies the boundary condition

ðpDq�1yÞð0Þ � ayð0Þ ¼ 0:

Moreover, y A DomðTaÞ, and since a point l with Im l < 0 cannot be an eigen-
value of a dissipative operator Ta, y ¼ ðTa � lIÞ�1

x. Further cþð0Þ can be
rewritten as

cþð0Þ ¼ d�1ððpDq�1yÞð0Þ � ayð0ÞÞ:

Thus (2.13) is equivalent to

ðMa � lIÞ�1
P2x ¼ h0; ðTa � lIÞ�1

x; d�1ððpDq�1yÞð0Þ � ayð0ÞÞe�ilvi
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for x A L2
r;qðRq;þÞ and Im l < 0. Then applying the mapping P1 to the last

equality we obtain that

P1ðMa � lIÞ�1
P2x ¼ ðTa � lIÞ�1

x:ð2:14Þ

On the other hand, for Im l < 0, the equality

ðTa � lIÞ�1 ¼ P1ðMa � lIÞ�1
P2 ¼ �iP1

ðy
0

YaðsÞe�ils dsP2ð2:15Þ

¼ �i

ðy
0

ZaðsÞe�ils ds ¼ ðBa � lIÞ�1 ðIm l < 0Þ;

holds. (2.14) and (2.15) completes the proof. r

3. Scattering theory of the dilation, functional model and completeness
of the root functions of the dissipative operators

Let us consider two solutions of the equation ðLxÞðtÞ ¼ lxðtÞ ðt A Rq;þÞ as
jðt; lÞ and cðt; lÞ that satisfy the conditions

jð0; lÞ ¼ 0; ðpDq�1jÞð0; lÞ ¼ 1; cð0; lÞ ¼ 1; ðpDq�1cÞð0; lÞ ¼ 0:ð3:1Þ

The Weyl-Titchmarsh function my of the self-adjoint operator Ty generated by
the boundary condition xð0Þ ¼ 0 is uniquely determined from the condition

cðt; lÞ þmyðlÞjðt; lÞ A L2
r;qðRq;þÞ; Im l0 0:

It is known that the Weyl-Titchmarsh function my is in general not a
meromorphic function on C, but is a holomorphic function with Im l0 0,

Im l Im myðlÞ > 0 and it has the property myðlÞ ¼ myðlÞ ðIm l0 0Þ ([4, 5]).
Further, we let the function my be meromorphic in C: Then my has a
countable number of isolated poles on the real axis, these poles are the eigen-
values of the self-adjoint operator Ty ([4, 5]), and the operator Ty (also every
self-adjoint extension of the symmetric operator Tmin) has a purely discrete
spectrum ([4, 5, 7, 8, 16]).

Due to an important property of the unitary group YaðsÞ ¼ exp½iMas�
ðs A RÞ, we can apply the Lax-Phillips scheme [14] to it. To state more clearly,
it has incoming and outgoing subspaces D� ¼ hL2ðR�Þ; 0; 0i and Dþ ¼
h0; 0;L2ðRþÞi, which satisfy the following properties:

(1) YaðsÞD� HD�, sa 0 and YaðsÞDþ HDþ, sb 0;
(2) 7

sa0
YaðsÞD� ¼ 7

sb0
YaðsÞDþ ¼ f0g;

(3) 6
sb0

YaðsÞD� ¼ 6
sa0

YaðsÞDþ ¼ H;
(4) D� ?Dþ:
Property (4) is obvious. Let us prove property (1) for Dþ (the proof for D�

is similar). Set Rl ¼ ðMa � lIÞ�1: For all l with Im l < 0 and for any f ¼
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h0; 0; jþi A Dþ, we have

Rl f ¼ 0; 0;�ie�ilx

ð x

0

eilsjþðsÞ ds
� �

:

So we have Rl f A Dþ. Hence for g?Dþ, we get that

ðRl f ; gÞH ¼ �i

ðy
0

e�ilsðYaðsÞ f ; gÞH ds ¼ 0; Im l < 0

and hence ðYaðsÞ f ; gÞH ¼ 0 for all sb 0. This implies that YaðsÞDþ HDþ for
sb 0, and therefore (1) is proved.

It is known that the generator of the semigroup VðsÞ of the one-sided shift

in the space L2ðRþÞ is the di¤erential operator i
d

dx
with the boundary condition

jð0Þ ¼ 0. Now let us define the semigroup of isometries Yþ
a ðsÞ ¼ Pþ

1 YaðsÞPþ
1 ,

sb 0, where Pþ
1 : H ! L2ðRþÞ and Pþ

2 : L2ðRþÞ ! Dþ (Pþ
1 : hf�; y; fþi !

fþ, P
þ
2 : f ! h0; 0; fi). On the other side the generator S of the semigroup of

isometries Yþ
a ðsÞ in L2ðRþÞ, is the operator

Sf ¼ Pþ
1 MaP

þ
2 f ¼ Pþ

1 Mah0; 0; fi ¼ Pþ
1 0; 0; i

df

dx

� �
¼ i

df

dx
;

where f A W1
2 ðRþÞ and fð0Þ ¼ 0: Since a semigroup is uniquely determined by

its generator, we get Yþ
a ðsÞ ¼ VðsÞ, and so,

7
sb0

YaðsÞDþ ¼ 0; 0; 7
sb0

VðsÞL2ðRþÞ
* +

¼ f0g;

i.e., property (2) is proved.
As stated in the scheme of the Lax-Phillips scattering theory, the scattering

matrix is defined using the spectral representations theory. Now, we shall con-
tinue with their construction. During this process, we will have proved property
(3) of the incoming and outgoing subspaces.

We first prove the following lemma.

Lemma 3.1. The operator Ta is completely non-self-adjoint ( pure).

Proof. Let us assume the contrary. Let H 0 HL2
r;qðRq;þÞ be a nontrivial

subspace of L2
r;qðRq;þÞ in which Ta has a self-adjoint part T 0

a in it. If
x A DomðT 0

aÞ, then x A DomðT 0�
a Þ, and

ðpDq�1xÞð0Þ � axð0Þ ¼ 0; ðpDq�1xÞð0Þ � axð0Þ ¼ 0:

From this discussion, for the eigenfunctions xðt; lÞ of the operator La that lie in
H 0 and are eigenvectors of L 0

a we have

xð0; lÞ ¼ 0; ðpDq�1xÞð0; lÞ ¼ 0;
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and then by the uniqueness theorem of the Cauchy problem for the equation
ðLxÞðtÞ ¼ lxðtÞ, ðt A Rq;þÞ, we have xðt; lÞ1 0. Since myðlÞ is a meromorphic
function in C, it can be concluded that the resolvent RlðTaÞ of the operator Ta is
a compact operator, and hence the spectrum of T 0

a is purely discrete. Hence by
the theorem on expansion in eigenfunctions of the self-adjoint operator T 0

a, we
have H 0 ¼ f0g, i.e., the operator Ta is simple. The lemma is proved. r

Passing to the proof of property (3), we let

K� ¼ 6
sb0

YaðsÞD�; Kþ ¼ 6
sa0

YaðsÞDþ:

Lemma 3.2. The equality K� þKþ ¼ H holds.

Proof. Indeed, by taking into account the properties (1) of the subspaces
DG it is easy to see that the subspace H 0 ¼ Hm ðK� þKþÞ is invariant under
the group fYaðsÞg and has the form H 0 ¼ h0;H 0; 0i, where H 0 is a subspace of
L2

r;qðRq;þÞ. Therefore, if the subspace H 0 (and hence also H 0) were nontrivial,
then the unitary group fY 0

aðsÞg, restricted to this subspace, would be a unitary
part of the group fYaðsÞg, and hence the restriction of Ta to H 0 would be a self-
adjoint operator acting in H 0. But that is excluded by virtue of Lemma
3.1. The lemma is proved. r

Let us adopt the following notations: oðx; lÞ :¼ cðx; lÞ þmyðlÞjðx; lÞ,

YaðlÞ :¼
myðlÞ � a

myðlÞ � a
:ð3:2Þ

Now consider the vectors CH
l ðx; x; vÞ as

C�
l ðx; x; vÞ ¼ he�ilx; ðmyðlÞ � aÞ�1

doðx; lÞ;YaðlÞe�ilvið3:3Þ

and

Cþ
l ðx; x; vÞ ¼ hYaðlÞe�ilx; ðmyðlÞ � aÞ�1doðx; lÞ; e�ilvi:ð3:4Þ

These vectors do not belong to the space H for real l: But they satisfy the
equation MC ¼ lC and boundary conditions for Ma.

Let FH : f ! ~ffHðlÞ, where

ðFH f ÞðlÞ ¼ ~ffHðlÞ ¼ 1ffiffiffiffiffiffi
2p

p ð f ;CH
l ÞH;

f ¼ ff�; y; fþg, and f�, y and fþ are smooth, compactly supported functions.
For f ¼ ff�; 0; 0g, g ¼ fw�; 0; 0g A D�, the equality

~ff�ðlÞ ¼
1ffiffiffiffiffiffi
2p

p ð f ;C�
l ÞH ¼ 1ffiffiffiffiffiffi

2p
p

ð0

�y
f�ðsÞ expðilsÞ ds
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holds. Hence ~ff�ðlÞ belongs to H2
� . Now let us consider the dense set ~KK� in

K� consisting of all vectors f such that f is a compactly supported function in
D� and f A ~KK� if f ¼ YaðsÞ f0, f0 ¼ ff�; 0; 0g, f� A Cy

0 ðR�Þ (where Cy
0 ðR�Þ

denotes the set of all smooth, compactly supported functions defined on R�,
and s ¼ sf is a nonnegative number). Then if f ; g A K� we have for s > sf and
s > sg that Yað�sÞ f ;Yað�sÞg A D� and their first component belong to Cy

0 ðR�Þ:
Therefore

ð f ; gÞH ¼ ðYað�sÞ f ;Yað�sÞgÞH ¼ ðF�Yað�sÞ f ;F�Yað�sÞgÞL2ð3:5Þ
¼ ðexpð�ilsÞYað�sÞ f ; expð�ilsÞYað�sÞgÞL2 ¼ ðF�f ;F�gÞL2 :

Taking closure in (3.5) we obtain Parseval equality for the space K�. Further
the inversion formula

f ¼ 1ffiffiffiffiffiffi
2p

p
ðy
�y

~ff�ðlÞC�
l dl

follows from the Parseval equality if all integrals are taken as limits in the mean
of the intervals. Finally we have

F�K� ¼ 6
sb0

F�YaðsÞD� ¼ 6
sb0

expð�ilsÞH2
� ¼ L2ðRÞ:

This implies that K� is isometrically identical with L2ðRÞ: Similarly one can
show that Kþ is isometrically identical with L2ðRÞ:

According to (3.2), the function Ya satisfies jYaðlÞj ¼ 1 for l A R. There-
fore, it follows from the explicit formulas for the vectors Cþ

l and C�
l that

C�
l ¼ YaðlÞCþ

l ðl A RÞ:ð3:6Þ

Moreover K� ¼ Kþ. Together with Lemma 3.2, this shows that H ¼ K� ¼
Kþ, and property (3) above has been established for the incoming and outgoing
subspaces.

Hence, F� isometrically maps onto L2ðRÞ with the subspace D� mapped
onto H2

� , and the operators YaðsÞ are transformed by the operators of multi-
plication by eils. This means that F� ðFþÞ is the incoming (outgoing) spectral
representation for the group fYaðsÞg. Using (3.6), we can pass from the Fþ-
representation of a vector f A H to its F�-representation by multiplication of the
function YaðlÞ : ~ff�ðlÞ ¼ YaðlÞ ~ffþðlÞ. Based on [14], the scattering function of
the group fYaðsÞg with respect to the subspaces D� and Dþ, is the coe‰cient by
which the F�-representation of a vector f A H must be multiplied in order to get
the corresponding Fþ-representation: ~ffþðlÞ ¼ YaðlÞ ~ff�ðlÞ, and thus we have
proved the following statement.

Theorem 3.3. The function Ya is the scattering function of the group fYaðsÞg
(of the self-adjoint operator Ma).
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Let K ¼ h0;L2
r;qðRq;þÞ; 0i, so that H ¼ D� lKlDþ. It follows

from the explicit form of the unitary transformation F� that under the
mapping F�

H ! L2ðRÞ; f ! ~ff�ðlÞ ¼ ðF� f ÞðlÞ; D� ! H2
� ; Dþ ! YaH

2
þð3:7Þ

and

K ! H2
þ mYaH

2
þ ; YaðsÞ f ! ðF�YaðsÞF�1

�
~ff�ÞðlÞ ¼ eils ~ff�ðlÞ:ð3:8Þ

The formulas (3.7)–(3.8) show that our operator Ta is a unitary equivalent to the
model dissipative operator with the characteristic function Ya. Since the char-
acteristic functions of unitary equivalent dissipative operators coincide (see [1, 2,
13, 15, 17, 18]), we have proved the next theorem.

Theorem 3.4. The characteristic function of the dissipative operator Ta

coincides with the function Ya defined in (3.2).

It is known that the characteristic function of a dissipative operator carries
complete information about the spectral properties of this operator (see [1, 2,
13, 15, 17, 18]). For example, the absence of a singular factor saðlÞ of the
characteristic function Ya in the factorization YaðlÞ ¼ saðlÞBaðlÞ (where BaðlÞ
is a Blaschke product [15, 17]) guarantees the completeness of the system of
eigenfunctions and associated functions (or root functions) of the dissipative
q-Sturm-Liouville operator Ta ([1, 2, 13, 15, 17, 18]).

Theorem 3.5. Let the function my be meromorphic in C. Then, for all
values of a with Im a > 0, except possibly for a single value a ¼ a0, the char-
acteristic function Ya of the dissipative operator Ta is a Blaschke product, and the
spectrum of Ta is purely discrete and belongs to the open upper half-plane. The
operator Ta ða0 a0Þ has a countable number of isolated eigenvalues with finite
multiplicity and limit points at infinity, and the system of all eigenfunctions and
associated functions (or root functions) of this operator is complete in the space
L2
r;qðRq;þÞ.

Proof. We have Im l Im myðlÞ > 0 for all Im l0 0, and myðlÞ ¼ myðlÞ
for all l A C, except the real poles of myðlÞ: Thus, it follows from (3.2) that
jYaðlÞja 1 for all l A Cþ and jYaðlÞj ¼ 1 for almost all l A R, i.e., YaðlÞ is
an inner function in the upper half-plane, and it is meromorphic in the whole
complex l-plane. Therefore, it can be factored as follows

YaðlÞ ¼ eildBaðlÞ; d ¼ dðaÞb 0;ð3:9Þ

where BaðlÞ is a Blaschke product. Thus, we find that

jYaðlÞj ¼ jeild j jBaðlÞja e�dðaÞ Im l; Im lb 0:ð3:10Þ

13spectral problems of non-self-adjoint q-sturm-liouville operators



Further, for myðlÞ in terms of YaðlÞ, (3.2) gives us that

myðlÞ ¼ aYaðlÞ � a

YaðlÞ � 1
:ð3:11Þ

If dðaÞ > 0 for a given value a ðIm a > 0Þ, then by (3.10) we have

lim
s!þy

YaðisÞ ¼ 0;

which together with (3.11) implies that

lim
s!þy

myðisÞ ¼ �a:

Since myðlÞ is independent of a, dðaÞ can be nonzero at not more than a single
point a ¼ a0 and, further

a0 ¼ � lim
s!þy

myðisÞ:

The theorem is proved. r

It should be noted that all results obtained for dissipative operators can be
immediately transferred to accumulative operators, because a linear operator S
acting in a Hilbert space H is accumulative if and only if �S is dissipative.
Then Theorem 3.5 yields the following result.

Corollary 3.6. Let the function my be meromorphic in C. Then, for all
values of a with Im a < 0, except possibly for a single value a ¼ a1, the spectrum of
accumulative operator Ta is purely discrete and belongs to the open lower half-
plane. The operator Ta ða0 a1Þ has a countable number of isolated eigenvalues
with finite multiplicity and limit points at infinity, and the system of all eigen-
functions and associated functions (or root functions) of this operator is complete in
the space L2

r;qðRq;þÞ.
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