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REDUCTION OF A FAMILY OF IDEALS

Tomasz Rodak

Abstract

In the paper we prove that there exists a simultaneous reduction of one-parameter

family of mn-primary ideals in the ring of germs of holomorphic functions. Moreover,

we generalize the result of A. Płoski [8] on the semicontinuity of the Łojasiewicz

exponent in a multiplicity-constant deformation.

1. Introduction

Let R be a ring and I an ideal. We say that an ideal J is a reduction of I
if it satisfies the following condition:

JH I ; and for some r > 0 we have I rþ1 ¼ JI r:

The notion of reduction is closely related to the notions of Hilbert-Samuel
multiplicity and integral closure of an ideal.

Recall that if ðR;mÞ is a Noetherian local ring of dimension n and I is an
m-primary ideal of R, then the Hilbert-Samuel multiplicity of I is given by the
formula

eðIÞ ¼ lim
k!y

n!

kn
lengthR R=I k:

For the multiplicity theory in local rings see for example [7] or [4].
Let I be an ideal in a ring R. An element x A R is said to be integral over I

if there exists an integer n and elements ak A I k, k ¼ 1; . . . ; n, such that

xn þ a1x
n�1 þ � � � þ an ¼ 0:

The set of all elements of R that are integral over I is called the integral closure
of I , and is denoted I . If I ¼ I then I is called integrally closed. It is well
known that I is an ideal.
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The relationship between the above notions is given in the following
Theorem due to D. Rees:

Theorem 1 (Rees, [4, Cor. 1.2.5, Thm. 11.3.1]). Let ðR;mÞ be a formally
equidimensional Noetherian local ring and let JH I be two m-primary ideals.
Then the following conditions are equivalent:

1. J is a reduction of I ;
2. eðIÞ ¼ eðJÞ;
3. I ¼ J.

If R=m is infinite, dim R ¼ d and I is an m-primary ideal of R then any d
‘‘su‰ciently general’’ elements of I form a reduction of I . More precisely we
have the following result

Theorem 2 ([7, Theorem 14.14]). Let ðR;mÞ be a d-dimensional Noetherian
local ring, and suppose that k ¼ R=m is an infinite field; let I ¼ ðu1; . . . ; usÞ be
an m-primary ideal. Then there exist a finite number of polynomials Da A k½Zij ;
1c ic d; 1c jc s�, 1c ac n such that if yi ¼

P
aijuj, i ¼ 1; . . . ; d and at least

one of Daðaij ; 1c ic d; 1c jc sÞ0 0, then the ideal ðy1; . . . ; ydÞR is a reduction
of I and fy1; . . . ; ydg is a system of parameters of R.

In fact, the above theorem could be generalized to arbitrary ideals in R.
Recall that if ðR;mÞ is a Noetherian local ring, the analytic spread of I (denoted
lðIÞ) is the Krull dimension of the fiber cone of I :

R½It�
mR½It� A

R

m
l

I

mI
l

I 2

mI 2
l � � �

where t is a variable over R.

Theorem 3 ([4, Theorem 8.6.6]). Let ðR;mÞ be a Noetherian local ring with
infinite residue field and I an ideal of analytic spread at most l. There exists a non-
empty Zariski-open subset U of ðI=mIÞ l such that whenever x1; . . . ; xl A I with
ðx1 þmI ; . . . ; xl þmIÞ A U , then ðx1; . . . ; xlÞR is a reduction of I .

Now, let ðOn;mnÞ be the ring of germs of holomorphic functions
ðCn; 0Þ ! C. From Theorem 3 we see that, if I ¼ ð f1; . . . ; fmÞOn and l denotes
the integer lðIÞ, then the idealX

a1j fj; . . . ;
X

alj fj

� �
On;

is a reduction of I for generic coe‰cients aij A C.
If g ¼ ðg1; . . . ; gmÞ : ðCn; 0Þ ! ðCm; 0Þ is an analytic map germ, then we

denote by ðgÞOn the ideal of On generated by g1; . . . ; gm. The aim of this note
is to study the following
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Question 4. Let I :¼ ðF ÞOnþk and It :¼ ðFtÞOn Hmn be a family of
ideals given by a holomorphic map F ¼ FtðxÞ ¼ F ðx; tÞ : ðCn � Ck; 0Þ ! ðCm; 0Þ.
Assume that the analytic spread of It is constant in some neighbourhood of
0 A Ck. Denote this constant value l. Does there exist a linear map p : Cm !
C l such that Jt :¼ ðp � FtÞOn is a reduction of It for t close to 0 A Ck?

By Theorem 3, the answer is immediate if lðIÞ ¼ lðItÞ in some neighbour-
hood of 0 A Ck. It turns out that the above condition is fulfilled in multiplicity-
constant families of mn-primary ideals. This fact is implicitly stated in the proof
of the principle of specialization of integral dependence given by B. Teissier in
[11]. We will here recall this argument.

Proposition 5. Let I be as in Question 4. If It are mn-primary ideals and
the function t 7! eðItÞ is constant, then lðIÞ ¼ lðItÞ ¼ n in some neighbourhood of
0 A Ck. In particular, the answer to Question 4 is positive in this case.

Proof. By [4, Corollary 8.3.9] we have htðIÞc lðIÞc dim R for any ideal
I in Noetherian local ring ðR;mÞ. Thus lðItÞ ¼ n since It are mn-primary.
Let p : Cm ! Cn be a linear map such that ðp � F0ÞOn is a reduction of I0.
Put Jt :¼ ðp � FtÞOn, for all t. We have eðJtÞc eðJ0Þ, since the multiplicity
eð�Þ is upper semicontinuos. Moreover eðItÞc eðJtÞ, because Jt H It. Summing
up

eðI0Þ ¼ eðJ0Þd eðJtÞd eðItÞ ¼ eðI0Þ:
Therefore Jt ¼ It by Rees theorem. From this and [11, Corollaire I.2, p. 132] we
deduce that J ¼ I and consequently lðIÞ ¼ n. r

In the next section we get as a corollary that in a multiplicity-constant family
of ideals the Łojasiewicz exponent is a lower semicontinuos function. A. Płoski
proved this result under the additional restriction m ¼ n.

Example 6. Let F : ðC2 � C; 0Þ ! ðC; 0Þ be given by Fðx; y; tÞ :¼ ðx5; y5;

t5xyÞ. By the main result of [2] we have lððF ÞO3Þ ¼ 3. However, if p : C3 !
C2 is given by pðu; v;wÞ ¼ ðuþ w; vþ wÞ then p � Ft generate a reduction of
ðFtÞO2 for any t. Indeed, if we put It :¼ ðFtÞO2, Jt :¼ ðp � FtÞO2 then I 2t ¼ JtIt.

Observe that the family ðFtÞO2 is not multiplicity-constant. We have

eððFtÞO2Þ ¼
10 t0 0;

25 t ¼ 0:

�
Our main result is given in the next theorem. It is a positive answer for

Question 4 in case of one-parameter families of mn-primary ideals.

Theorem 7. Let F ¼ FtðxÞ ¼ Fðx; tÞ : ðCn � C; 0Þ ! ðCm; 0Þ be a holomor-
phic map. Assume that ðFtÞOn is an mn-primary ideal for all t. Then there exists

203reduction of a family of ideals



a complex linear map p : Cm ! Cn such that for all t the ideal ðp � FtÞOn is a
reduction of ðFtÞOn.

We give the proof of Theorem 7 in Section 5. It is based on some geometric
property of Hilbert-Samuel multiplicity given in Section 3. In Section 4 we recall
the notion of elementary blowing-up.

Acknowledgements. We would like to thank the anonymous referee for
pointing out the connection between the problem considered in the paper and the
notion of analytic spread.

2. Semicontinuity of the Łojasiewicz exponent

Let ðR;mÞ be a local ring and let I be an m-primary ideal. By the
Łojasiewicz exponent LðIÞ of I we define the infimum of

p

q
: mp H I q

� �
:

It was proved in [5] that if F : ðCn; 0Þ ! ðCm; 0Þ is a holomorphic map with an
isolated zero at the origin and I :¼ ðFÞOn, then LðIÞ is the optimal exponent n
in the inequality

jFðxÞjdCjxjn;
where C is some positive constant and x runs through su‰ciently small neigh-
bourhood of 0 A Cn.

Lemma 8. Let ðR;mÞ be a Noetherian local ring. If I is an m-primary
ideal of R and J is a reduction of I then LðIÞ ¼ LðJÞ.

Proof. Obviously LðIÞcLðJÞ. Assume that mp H I q. Since J is a
reduction of I , then also J q is a reduction of I q [4, Prop. 8.1.5]. Thus J q ¼ I q

by Theorem 1, which gives mp H J q. This proves the inequality LðJÞcLðIÞ
and ends the proof. r

Corollary 9 (A. Płoski for m ¼ n, [8]). Let F : ðCn � Ck; 0Þ ! ðCm; 0Þ be
a holomorphic map. Put It :¼ ðFtÞOn. If the function t 7! eðItÞ is constant and
finite then the function t 7! LðItÞ is lower semicontinuos.

Proof. By Proposition 5 and Theorem 2 there exists a linear map
p : Cm ! Cn such that Jt :¼ ðp � FtÞOn is a reduction of It for all t. Thus
LðJtÞ ¼ LðItÞ and eðJtÞ ¼ eðItÞ by Theorem 1 and Lemma 8. Consequently
t 7! eðJtÞ is constant and finite and the assertion follows from the case m ¼ n
proved by A. Płoski. r

More direct proof of this result we will give in our forthcoming paper [10].
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3. Improper intersection multiplicity

Let V , Z be a pair of analytic sets defined in some neighbourhood of p A CN

and assume that p is an isolated point of V VZ. If dimp V þ dimp Z ¼ N
then it is well known how to define the intersection index iðV � Z; pÞ of V and Z
at p (see e.g. [3]). Now, assume that dimp V þ dimp Z < N and Z is smooth
at p. In this case the intersection index of V and Z at p was defined in [1] by
the formula ~iiðV � Z; pÞ ¼ minW ipðV �W ; pÞ, where W goes over all analytic sets
defined in some neighbourhood of p such that

� ZVU HW VU for some neighbourhood U of p,
� p is an isolated point of V VW ,
� dimp V þ dimp W ¼ N.
Let f : ðCn; 0Þ ! ðCm; 0Þ be a holomorphic map with an isolated zero.

Using the above definition one may define (see [9]) the so-called improper
intersection multiplicity of f by the formula

i0ð f Þ :¼ ~iiðgraph f � ðCn � f0gmÞ; ð0; 0ÞÞ:

We recall one more definition. Let V be a germ of an analytic set at
p A Cn. Then the (Whitney) tangent cone of V is the set of all v A Cn such that
there exist fpngHV , ftngHC with pn ! p and tnðpn � pÞ ! v. For the map f
as above by Cf we will denote the tangent cone of the germ of the image of f
at the origin.

The following observation is due to S. Spodzieja.

Theorem 10 ([9]). If p : Cm ! C l is a linear map such that ker pVCf ¼ f0g,
then p � f has an isolated zero in the origin and i0ð f Þ ¼ i0ðp � f Þ. If additionally
l ¼ n then i0ð f Þ ¼ eððp � f ÞOnÞ. Moreover, the number i0ð f Þ depends only on the
ideal generated by the components of f .

In what follows we will write i0ðIÞ :¼ i0ð f Þ, where f ¼ ð f1; . . . ; fmÞ are any
generators of an mn-primary ideal I in On.

Corollary 11. If I is an mn-primary ideal in On, then i0ðIÞ ¼ eðIÞ.

Proof. Let I ¼ ð f1; . . . ; fmÞOn. By Theorems 2 and 10 there exist linear
combinations gi ¼

P
aij fj, i ¼ 1; . . . ; n such that J ¼ ðg1; . . . ; gnÞOn is a reduction

of I , fg1; . . . ; gng is a system of parameters of On and i0ðIÞ ¼ i0ðJÞ ¼ eðJÞ.
From Theorem 1 we get eðIÞ ¼ eðJÞ. This ends the proof. r

Corollary 12. If p : Cm ! C l is a linear map such that ker pVCf ¼ f0g,
then the ideal J generated by p � f is a reduction of I .

Proof. We have JH I and eðJÞ ¼ eðIÞ. This and Theorem 1 give the
assertion. r
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4. Elementary blowing-up

Here we recall the notion of an elementary blowing-up after [6].
Let U HCn be an open and connected neighbourhood of 0 A Cn; let

f ¼ ð f0; . . . ; fmÞ0 0 be a sequence of holomorphic functions on U . Put
S ¼ fx A U : f ðxÞ ¼ 0g and

Eð f Þ ¼ fðx; uÞ A U � Pm : fiðxÞuj ¼ fjðxÞui; i; j ¼ 0; . . . ;mg;
where u ¼ ½u0 : � � � : um� A Pm.

Let Y be the closure of Eð f ÞnðS � PmÞ in U � Pm. The natural projection

p : Y ! U

is called the (elementary) blowing-up of U by means of f0; . . . ; fm. The analytic
subset S is called the centre of the blowing-up and its inverse image p�1ðSÞHY
is called the exceptional set of the blowing-up.

Proposition 13. Under above notations we have:
1. Y is an analytic subset of U � Pm;
2. p is proper, its range is U and the restriction pjYnp�1ðSÞ is a biholomorphism

onto UnS;
3. Y is irreducible;
4. The exceptional set p�1ðSÞ is analytic in U � Pm and it is of pure

dimension n� 1.

Proof. For items 1. and 2. see [6, VII.5.1]. Item 3. follows from our
assumption that U is connected. For the proof of 4., let us consider the analytic
map

F : U � Pm C ðx; uÞ 7! ð f ðxÞ; uÞ A Cmþ1 � Pm:

Let y0; . . . ; ym be coordinates in Cmþ1. If we denote by pmþ1 : Pmþ1 ! Cmþ1 the
blowing-up of Cmþ1 by means of y0; . . . ; ym then for the restriction ~ff ¼ FjY we
get the following commutative diagram of analytic maps:

Y ���!~ff Pmþ1???yp

???ypmþ1

U ���!f Cmþ1

Take ðx0; u0Þ A p�1ð0Þ. Let WHPmþ1 be a neighbourhood of ð0; u0Þ,
h : W ! C an analytic function such that

p�1
mþ1ð0ÞVW ¼ fðy; uÞ A W : hðy; uÞ ¼ 0g:

Let ~WWHY be a neighbourhood of ðx0; u0Þ such that ~ff ð~WWÞHW. Since
~ff �1ðp�1

mþ1ð0ÞÞ ¼ p�1ðSÞ we get

p�1ðSÞV ~WW ¼ fðx; uÞ A ~WW : h � ~ff ðx; uÞ ¼ 0g:
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Thus there exists a neighbourhood DHU � Pm of ðx0; u0Þ and an analytic
set V HD of pure dimension nþm� 1 such that

p�1ðSÞVD ¼ V VY VD:

This gives

dimðx0;u0Þ p
�1ðSÞd dimðx0;u0Þ Y � 1 ¼ n� 1:

Since Y is irreducible and p�1ðSÞWY we get that dimp p
�1ðSÞ ¼ n� 1 for

any p A p�1ðSÞ. This ends the proof. r

5. Proof of Theorem 7

Lemma 14. Let F : ðCn � C; 0Þ ! ðCmþ1; 0Þ, md n be a holomorphic map.
Assume that 0 is an isolated point of F �1

t ð0Þ for jtj < d. Then there exists
d > e > 0 and a complex line V HCmþ1, such that V VCFt

¼ f0g for jtj < e.

Proof. Let F : U ! Cmþ1, where U HCn � C is a connected neighbourhood
of the origin. Put S ¼ fðz; tÞ A U : Fðz; tÞ ¼ 0g and let p : U � Pm IY ! U be
the elementary blowing-up of U by F . By Proposition 13 its exceptional set
E :¼ p�1ðSÞ is an analytic set of pure dimension n. Let E be the set of
irreducible components W of E such that the origin in Cnþ1 is an accumulation
point of pðWÞV ðf0g � CÞ. Then E is finite. Denote by fCFt

CFt
the image of the

cone CFt
in Pm. Observe that

fð0; tÞg � fCFt
CFt

H 6
W AE

W ; jtj < d:

On the other hand, if W A E then W is n-dimensional irreducible set and
W Q f0g � Pm. Consequently

dim W V ðf0g � PmÞc n� 1 < m:

Thus there exists e > 0 and an open set GHPm such that

ðfð0; tÞg � GÞV 6
W AE

W

 !
¼ j; 0 < jtj < e

As a result if V is a line in Cmþ1 corresponding to some point in G then
V VCFt

¼ f0g for 0 < jtj < e. Since G is not a subset of CF0
we get the

assertion. r

Proof of Theorem 7. Induction on m. In the case m ¼ n there is nothing
to prove. Let us assume that the assertion is true for some md n and let
F : ðCn � C; 0Þ ! ðCmþ1; 0Þ be a holomorphic map such that the ideals ðFtÞOn

are mn-primary. By Lemma 14 there exists e > 0 and a linear mapping

p 0 : Cmþ1 ! Cm such that ker p 0 VCFt
¼ f0g for jtj < e. Thus, by Corollary 12

the ideal ðp 0 � FtÞOn is a reduction of ðFtÞOn, for all t A C such that jtj < e. On
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the other hand, by induction hypothesis, there exists a linear map p 00 : Cm ! Cn

such that ðp 00 � p 0 � FtÞOn is a reduction of ðp 0 � FtÞOn for small t. Thus if we put
p :¼ p 00 � p 0 we get the assertion. r
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[ 2 ] Carles Bivià-Ausina, The analytic spread of monomial ideals, Comm. Algebra 31 (2003),

3487–3496.

[ 3 ] Richard N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969),

175–204.

[ 4 ] Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London

Math. Soc. lecture note ser. 336, Cambridge University Press, Cambridge, 2006.

[ 5 ] Monique Lejeune-Jalabert and Bernard Teissier, Clôture intégrale des idéaux et équisin-
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