# NOTE ON THE FILTRATIONS OF THE $K$-THEORY 

Nobuaki Yagita


#### Abstract

Let $X$ be a (colimit of) smooth algebraic variety over a subfield $k$ of $\mathbf{C}$. Let $K_{\text {alg }}^{0}(X)$ (resp. $K_{\text {top }}^{0}(X(\mathbf{C}))$ ) be the algebraic (resp. topological) $K$-theory of $k$ (resp. complex) vector bundles over $X$ (resp. $X(\mathbf{C}))$ ). When $K_{\text {alg }}^{0}(X) \cong K_{\text {top }}^{0}(X(\mathbf{C}))$, we study the differences of its three (gamma, geometrical and topological) filtrations. In particular, we consider in the cases $X=B G$ for algebraic group $G$ over algebraically closed fields $k$, and $X=\mathbf{G}_{k} / T_{k}$ the twisted form of flag varieties $G / T$ for non-algebraically closed field $k$.


## 1. Introduction

Let $X$ be a (colimit of ) smooth algebraic variety over a subfield $k$ of $\mathbf{C}$. We consider the cases that

$$
\begin{equation*}
K_{\text {alg }}^{0}(X) \cong K_{\text {top }}^{0}(X(\mathbf{C})) \tag{1.1}
\end{equation*}
$$

where $K_{\text {alg }}^{0}(X)\left(\right.$ resp. $\left.K_{\text {top }}^{0}(X(\mathbf{C}))\right)$ is the algebraic (resp. topological) $K$-theory generated by algebraic $k$-bundles (complex bundles) over $X$ (resp. $X(\mathbf{C})$ ). In this assumption, we study the typical three filtrations

$$
F_{\gamma}^{i}(X) \subset F_{g e o}^{i}(X) \subset F_{t o p}^{i}(X(\mathbf{C}))
$$

namely, the gamma and the geometric filtrations defined by Grothendieck [Gr], and the topological filtration defined by Atiyah [At]. Namely, we study induced maps of associated rings

$$
g r_{\gamma}^{*}(X) \rightarrow g r_{g e o}^{*}(X) \rightarrow g r_{t o p}^{*}(X(\mathbf{C})) .
$$

Atiyah showed that $g r_{\text {top }}^{*}(X(\mathbf{C}))$ is isomorphic to the infitite term $E_{\infty}^{*, 0}$ of the AHss (Atiyah-Hirzebruch spectral sequence) converging to $K$-theory $K^{*}(X(\mathbf{C}))$. Moreover he showed that $g r_{\text {top }}^{*}(X(\mathbf{C})) \cong g r_{\gamma}^{*}(X)$ if and only if $E_{\infty}^{*, 0}$ is generated by Chern classes in $H^{*}(X(\mathbf{C}))$. We will see that similar facts hold for $g r_{g e o}^{*}(X)$. Namely, $g r_{g e o}^{2 *}(X) \cong A E_{\infty}^{2 *, *, 0}$ of the motivic AHss converging to motivic $K$-theory

[^0]$A K^{*, *^{\prime}}(X)$. Moreover we show that $g r_{\text {geo }}^{*}(X) \cong g r_{\gamma}^{*}(X)$ if and only if $A E_{\infty}^{2 *, *, 0}$ is generated by Chern classes in the Chow ring $C H^{*}(X) \cong H^{2 *, *}(X)$.

Let $G$ be a compact Lie group (e.g., a finite group) and $G_{k}$ be the corresponding algebraic group over an algebraically closed field $k$. Then by Merkurjev and Totaro ([Tol]), we have the isomorphisms

$$
K_{\text {alg }}^{0}\left(B G_{k}\right) \cong R\left(G_{k}\right)^{\wedge} \cong R(G)^{\wedge} \cong K_{\text {top }}^{0}(B G),
$$

where $R\left(G_{k}\right)^{\wedge}$ (resp. $\left.R(G)^{\wedge}\right)$ is the $k$-representation (resp. complex representation) ring completed by the augmentation ideal, and $B G_{k}$ and $B G$ are their classifying spaces.
Atiyah had conjectured in [At] that $F_{\gamma}^{i}(B G)=F_{\text {top }}^{i}(B G)$ for all finite groups. Weiss [Th] showed this does not hold for $G=A_{4}$. Counter examples of $p$ groups were given by Leary-Yagita [Le-Ya] when $G$ is $\operatorname{rank}_{p}(G)=2$ of class 3 ${ }_{\text {with }} p \geq 5$. We will see for the same group $G, F_{\gamma}^{2 p+2}\left(B G_{k}\right) \neq F_{\text {geo }}^{2 p+2}\left(B G_{k}\right)=$ $F_{\text {top }}^{2 p+2}\left(B G_{k}\right)$.

We study these filtrations detailedly for connected groups ( $\left.O_{n}, S O_{n}, \ldots\right)$. In particular we show

Theorem 1.1. (Let $k$ be an algebraically closed field.) For $G=S p i n_{7}$, there is an element $x$ in $K_{\text {alg }}^{0}\left(B G_{k}\right)$ such that

$$
0 \neq x \in g r_{\gamma}^{4}\left(B G_{k}\right), \quad 0 \neq x \in g r_{g e o}^{6}\left(B G_{k}\right), \quad 0 \neq x \in g r_{t o p}^{8}(B G) .
$$

These facts also hold for the extraspecial 2-group $2_{+}^{1+6}$.
Remark. Quite recently B. Totaro published paper [To2]. In $\S 15$ in this paper, he gives examples such that

$$
g r_{g e o}^{*}(B G)_{(p)} \neq g r_{t o p}^{*}(B G)_{(p)}
$$

for all primes $p$.
We consider the different type of examples, which satisfy (1.1). (See also [Ga-Za], [Za].) Here we do not assume that $k$ is algebraically closed. Let us write by $M(X)$ the (pure) motive of $X$, and by $M_{a}=\left(M_{n}\right)$ the Rost motive for a nonzero pure symbol $a \in K_{n+1}^{M}(k) / p$ ([Rol,2], [Su-Jo]). We consider the cases $X$ such that

$$
\begin{equation*}
M(X) \cong M_{n} \otimes A(X) \tag{1.2}
\end{equation*}
$$

where $A(X)$ is a sum of $k$-Tate motives. Then we can see that (1.1) is satisfied by the result from ([Vi-Ya], [Ya6]).

Some cases of flag manifolds $G / P$ satisfy (1.2) ([Ca-Pe-Se-Za], [Ni-Se-Za], [Pe-Se-Za]). We consider the exceptional Lie group $G_{2}$. Let $G_{2, k}$ and $T_{k}$ be the corresponding splitting reductive group and its splitting maximal torus. Let us write by $\mathbf{G}_{2, k}$ the nontrivial $G_{2, k}$-torsor (induced from a Rost cohomological invariant $0 \neq a \in K_{3}^{M}(k) / 2$, [Ga-Me-Se]). (Namely, $\mathbf{G}_{2, k} / T_{k}$ is a twisted form of $G_{2} / T$.) Then for $p=2 \quad X=\mathbf{G}_{2, k} / T_{k}$ satisfies (1.2) ([Bo], [Pe-Se-Za]).

Note that $H^{*}\left(G_{2} / T\right)$ is torsion free, and we have

$$
g r_{g e o}^{*}\left(G_{2, k} / T_{k}\right) \cong g r_{t o p}^{*}\left(G_{2} / T\right) \cong H^{*}\left(G_{2} / T\right)
$$

By using the fact that $\mathrm{CH}^{*}\left(\mathbf{G}_{2, k} / T_{k}\right)$ is generated by Chern classes, we can show
Theorem 1.2. Let $\mathbf{G}_{2, k}$ be the nontrivial $G_{2, k}$-torsor for the Rost cohomological invariant in $K_{3}^{M}(k) / 2$. Then we have

$$
g r_{\gamma}^{2 *}\left(G_{2} / T\right) \cong g r_{g e o}^{2 *}\left(\mathbf{G}_{2, k} / T_{k}\right) \cong C H^{*}\left(\mathbf{G}_{2, k} / T_{k}\right)
$$

From (1.1), the gamma filtration is defined purely topologically. Thus we see that this topological invariant is isomorphic to a purely algebraic geometric object such as the Chow ring of twisted form.

## 2. Filtrations

We first recall the topological filtration defined by Atiyah. Let $Y$ be a topological space (e.g., a $C W$-complex). Let $K^{*}(Y)$ be the complex $K$-theory; the Grothendieck group generated by complex bundles over $Y$. Let $Y^{i}$ be an $i$-dimensional skeleton of $Y$. Define the topological filtration of $K^{*}(Y)$ by

$$
F_{t o p}^{i}(Y)=\operatorname{Ker}\left(K^{*}(Y) \rightarrow K^{*}\left(Y^{i}\right)\right)
$$

and the associated graded algebra $g r_{\text {top }}^{i}(Y)=F_{\text {top }}^{i}(Y) / F_{\text {top }}^{i+1}(Y)$.
We consider the long exact sequence (exact couple)

$$
\cdots \rightarrow K^{*}\left(Y^{i} / Y^{i-1}\right) \rightarrow K^{*}\left(Y^{i}\right) \rightarrow K^{*}\left(Y^{i-1}\right) \stackrel{\delta}{\rightarrow} K^{*+1}\left(Y^{i} / Y^{i-1}\right) \rightarrow \cdots
$$

Here we have $K^{*}\left(Y^{i} / Y^{i-1}\right) \cong K^{*} \otimes H^{*}\left(Y^{i} / Y^{i-1}\right)$, which induces the (well known) AHss

$$
E_{2}^{*, *^{\prime}}(Y) \cong H^{*}(Y) \otimes K^{*} \Rightarrow K^{*}(Y)
$$

By the construction of the spectral sequence, we have

## Lemma 2.1 (Atiyah [At]). $g r_{\text {top }}^{*}(Y) \cong E_{\infty}^{*, 0}(Y)$.

Next we consider the geometric filtration. Let $X$ be a smooth algebraic variety over a subfield $k$ of $\mathbf{C}$. Let $K_{\text {alg }}^{0}(X)$ be the algebraic $K$-theory which is the Grothendiek group generated by $k$-vector bundles over $X$. It is also isomorphic to the Grothendieck group genrated by coherent sheaves over $X$ (we assumed $X$ smooth). This $K$-theory can be written by the motivic $K$-theory $A K^{*, *^{\prime}}(Y)([V o 1,2]$, i.e.,

$$
K_{\text {alg }}^{i}(X)=\bigoplus_{*} A K^{2 *-i, *}(X)
$$

In particular $K_{\text {alg }}^{0}(X)=\oplus_{*} A K^{2 *, *}(X)$.

The geometric filtration $([\mathrm{Gr}])$ is defined as

$$
F_{\text {geo }}^{2 i}(X)=\left\{\left[O_{V}\right] \mid \operatorname{codim}_{X} V \geq i\right\}
$$

(and $\left.F_{\text {geo }}^{2 i-1}(X)=F_{\text {geo }}^{2 i}(X)\right)$ where $O_{V}$ is the structural sheaf of closed subvariety $V$ of $X$.

We recall the algebraic cobordism $M G L^{*, *^{\prime}}(-)[\mathrm{Vo1}]$ and let us write $M G L^{2 *, *}(X)=\Omega^{*}(X)$, in fact, this is isomorphic to the algebraic cobordism defined by Levine and Morel ([Le-Mo1,2], [Vol,2]). Recall

$$
\Omega^{*}(\operatorname{Spec}(k))=\Omega^{*}(p t .) \cong M U^{2 *}(p t .)=M U^{*}
$$

where $M U^{*} \cong \mathbf{Z}\left[x_{1}, x_{2}, \ldots\right],\left|x_{i}\right|=-2 i$ is the complex cobordism ring. Then we have the isomorphism

$$
\Omega^{*}(X) \otimes_{M U^{*}} \mathbf{Z} \cong C H^{*}(X), \quad \Omega^{*}(X) \otimes_{M U^{*}} K^{*} \cong K_{a l g}^{0}(X)
$$

where the $M U^{*}$ module structure of $K^{*}$ is given by Todd genus (see $\S 3$ below). Each element $x \in \Omega^{*}(X)$ is represented by a projective map $x=[f: M \rightarrow X]$ with $\operatorname{codim}_{X} M=i$ and $M$ smooth ([Le-Mo1,2]), namely, $x=f_{*}\left(1_{M}\right)$ for $1_{M} \in$ $\Omega^{0}(M)$ and $f_{*}$ is the Gysin map. Then the geometric filtration is also defined as

$$
F_{\text {geo }}^{2 i}(X)=\left\{f_{*}\left(1_{M}\right) \mid f: M \rightarrow X \text { and } \operatorname{codim}_{X} M \geq i\right\}
$$

since $f_{*}(M)=\left[O_{M}\right]$ in $K_{\text {alg }}^{0}(X)$.
Here we recall the motivic AHss ([Ya3, 4])

$$
A E_{2}^{*, *^{\prime}, *^{\prime \prime}}(X) \cong H^{*, *^{\prime}}\left(X ; K^{*^{\prime \prime}}\right) \Rightarrow A K^{*, *^{\prime}}(X)
$$

(Of course this spectral sequence is not defined using skeleton as the topological case. But we assume the existence of the AHss converging to the motivic $K$-theory $A K^{*, *^{\prime}}(X)$.) Note that

$$
A E_{2}^{2 *, *, *^{\prime \prime}}(X) \cong H^{2 *, *}\left(X ; K^{*^{\prime \prime}}\right) \cong C H^{*}(X) \otimes K^{* \prime \prime}
$$

Hence $A E_{\infty}^{2 *, *, 0}(X)$ is a quotient of $C H^{*}(X)$ by dimensional reason of degree of differential $d_{r}$ (i.e., $d_{r} A E_{r}^{2 *, *, *^{\prime \prime}}(X)=0$ ). Thus we have

Lemma 2.2. $\quad g r_{\text {geo }}^{2 *}(X) \cong A E_{\infty}^{2 *, *, 0}(X)$.
Proof. Let $q: \Omega^{*}(X) \otimes K^{*} \rightarrow K^{*}(X)$. Then

$$
F_{\text {geo }}^{2 i}(X)=q\left\{f_{*}\left(1_{M}\right) \in \Omega^{*}(X) \mid f: M \rightarrow X \text { and } \operatorname{codim}_{X} M \geq i\right\} .
$$

Let $q^{\prime}: \Omega^{*}(X) \rightarrow C H^{*}(X)$ and $q^{\prime \prime}: C H^{*}(X) \rightarrow E_{\infty}^{2 *, *, 0}$. Then $q \mid\left(\Omega^{*}(X) \otimes 1\right)=$ $q^{\prime \prime} q^{\prime}$. Thus we have

$$
F_{\text {geo }}^{2 i}(X) / F_{\text {geo }}^{2 i+2}(X)=q^{\prime \prime} C H^{i}(X)
$$

since $q^{\prime}$ is an epimorphism.
Lemma 2.3. Let $t_{\mathbf{C}}: K_{\text {alg }}^{0}(X) \rightarrow K_{\text {top }}^{0}(X(\mathbf{C}))$ be the realization map. Then $F_{\text {geo }}^{i}(X) \subset\left(t_{\mathbf{C}}^{*}\right)^{-1} F_{\text {top }}^{i}(X(\mathbf{C}))$.

Proof. Let us write $K_{\text {top }}^{0}(X(\mathbf{C}))$ simply by $K(X)$. The Gysin map $f_{*}: K(M) \rightarrow K(X)$ is defined by using Thom isomorphism

$$
K(M) \cong K\left(T h_{X}(M)\right) \rightarrow K(X) .
$$

Let $\operatorname{codim}_{X} M \geq i$. For an $2 i$-skeleton $X^{2 i}$ of $X(\mathbf{C})$, we can show that the map

$$
K\left(T h_{X}(M)\right) \rightarrow K(X) \rightarrow K\left(X^{2 i}\right)
$$

is zero. Because the above composition map is rewritten

$$
K\left(T h_{X}(M)\right) \rightarrow K\left(T h_{X}(M)^{2 i}\right) \rightarrow K\left(X^{2 i}\right) .
$$

Its first map is zero, because $H^{*}\left(T h_{X}(M)\right)=0$ for $*<2 i$ and the exact sequence (exact couple) for $K$-theory for skeletons of $X$ (see the definition of the AHss).

At last, we consider the gamma filtration. Let $\lambda^{i}(x)$ be the exterior power of the vector bundle $x \in K_{\text {alg }}^{0}(X)$ and $\lambda_{t}(x)=\sum \lambda^{i}(x) t^{i}$. Let us denote

$$
\lambda_{t /(1-t)}(x)=\gamma_{i}(x)=\sum \gamma^{i}(x) t^{i} .
$$

The Gamma filtration is defined as

$$
F_{\gamma}^{2 i}(X)=\left\{\gamma^{i_{1}}\left(x_{1}\right) \cdot \ldots \cdot \gamma^{i_{m}}\left(x_{m}\right) \mid i_{1}+\cdots+i_{m} \geq i, x_{j} \in K_{\text {alg }}^{0}(X)\right\} .
$$

Then we can see $F_{\gamma}^{i}(X) \subset F_{g e o}^{i}(X)$ (Proposition 12.5 in [At], Atiyah proved $F_{\gamma}^{i}(X) \subset F_{\text {top }}^{i}(X)$ in $K_{\text {top }}(X)$. However the arguments work also in $K_{\text {alg }}^{0}(X)$ and this fact is well known [Ga-Za]. [Ju].) Let $\varepsilon: K_{\text {alg }}^{0}(X) \rightarrow \mathbf{Z}$ be the augmentation map and $c_{i}(x) \in H^{2 i, i}(X)$ the Chern class. Recall $q^{\prime \prime}: C H^{*}(X) \rightarrow E_{\infty}^{2 *, *, 0}$ be the quotient map. Then (p. 63 in [At]) we have

$$
q^{\prime \prime}\left(c_{n}(x)\right)=\left[\gamma^{n}(x-\varepsilon(x))\right] .
$$

Lemma 2.4 (Atiyah). The condition $F_{\gamma}^{2 *}(Y)=F_{\text {top }}^{2 *}(Y) \quad$ (resp. $\quad F_{\gamma}^{2 *}(X)=$ $\left.F_{g e o}^{2 *}(X)\right)$ is equivalent to that $E_{\infty}^{2 *, 0}(Y)$ (resp. $A E_{\infty}^{2 *, *, 0}(X)$ ) is (multiplicatively) generated by Chern classes in $H^{2 *}(Y)\left(\right.$ resp. $\left.C H^{*}(X)\right)$.

## 3. Morava $K$-theory ( $K$-theory localized at $p$ )

In this paper, we assume that $p$ is a fixed prime number and consider only cohomology theories (Chow rings) localized at this prime $p$. Namely, for the notation $A^{*}(X)$ means $A^{*}(X)_{(p)}$ in this paper. In particular, $\mathbf{Z}$ always means $\mathbf{Z}_{(p)}$ and $M U^{*}(X)$ means $M U^{*}(X)_{(p)}$ throughout this paper.

Let $A M U^{*, *^{\prime}}(X)=M G L^{*, *^{\prime}}(X)$ and recall $M U^{*}=\mathbf{Z}\left[x_{1}, \ldots, x_{n}, \ldots\right], \operatorname{deg}\left(x_{i}\right)$ $=(-2 i,-i)$. Given a sequence $S=\left(x_{i_{1}}, x_{i_{2}}, \ldots\right)$ of generators, we can construct generalized cohomology theory (in the $\mathbf{A}^{1}$-homotopy category) such that

$$
t_{\mathbf{C}}: A M U(S)^{*, *^{\prime}}(X) \rightarrow M U(S)^{*}(X(\mathbf{C})) \text { with } M U(S)^{*}=M U^{*} /(S)
$$

In particular letting $x_{p^{n}-1}=v_{n}$ and $S=\left(x_{i} \mid i \neq p^{n}-1\right)$, we have the motivic $B P$-theory ([Ya3,5])

$$
A B P^{*, *^{\prime}}(X) \text { with } M U^{*} /(S) \cong B P^{*}=\mathbf{Z}\left[v_{1}, v_{2}, \ldots\right] .
$$

Then we have the isomorphisms ([Ya3])

$$
\begin{aligned}
& A B P^{*, *^{\prime}}(X) \cong M G L^{*, *^{\prime}}(X) \otimes_{M U^{*}} B P^{*} \\
& M G L^{*, *^{\prime}}(X) \cong A B P^{*, *^{\prime}}(X) \otimes_{B P^{*}} M U^{*}
\end{aligned}
$$

Similarly, we can construct the motivic connective Morava $K$-theory such that

$$
\operatorname{Ak}(n)^{*, *^{\prime}}(X) \text { with } k(n)^{*}=\mathbf{Z} / p\left[v_{n}\right]
$$

and the integral connected $K$-theory $A \tilde{k}(n)^{*, *^{\prime}}(X)$ with $\tilde{k}(n)=\mathbf{Z}\left[v_{n}\right]$. Moreover let the (usual) motivic Morava $K$-theory

$$
A K(n)^{*, *^{\prime}}(X)=A k(n)^{*, *^{\prime}}(X)\left[v_{n}^{-1}\right], \quad A \tilde{K}(n)^{*, *^{\prime}}(X)=A \tilde{k}(n)^{*, *^{\prime}}(X)\left[v_{n}^{-1}\right] .
$$

By the Landweber exact functor theorem ([Ra], [Ha]), it is well known that

$$
A K^{*, *^{\prime}}(X) \cong\left(A M U^{*, *^{\prime}}(X) \otimes_{M U^{*}} \mathbf{Z}\right) \otimes \mathbf{Z}\left[B, B^{-1}\right]
$$

where the $M U^{*}$-module structure of $\mathbf{Z}$ is given by the Todd genus, and $B$ is the Bott periodicity with $\operatorname{deg}(B)=(-2,-1)$. Since the Todd genus of $v_{1}$ (resp. $v_{i}, i>1$ ) is 1 (resp. 0 ), we can write

$$
A K^{*, *^{\prime}}(X) \cong A B P^{*, *^{\prime}}(X) \otimes_{B P^{*}} \mathbf{Z}\left[B, B^{-1}\right] \quad \text { identifying } B^{p-1}=v_{1} .
$$

Then we have
Lemma 3.1. There is a natural isomorphism

$$
A \tilde{K}^{*, *^{\prime}}(X) \cong A \tilde{K}(1)^{*, *^{\prime}}(X) \otimes_{\tilde{K}(1)^{*}} \mathbf{Z}\left[B, B^{-1}\right] \quad \text { identifying } v_{1}=B^{p-1}
$$

Proof. Recall that we have the natural map (by the construction of $A M U(S))$

$$
\rho: A B P^{*, *^{\prime}}(X) \otimes_{B P^{*}} \mathbf{Z}\left[B, B^{-1}\right] \rightarrow A \tilde{K}(1)^{*, *^{\prime}}(X) \otimes_{\tilde{K}(1)^{*}} \mathbf{Z}\left[B, B^{-1}\right] .
$$

Of course, the functor

$$
A \mapsto A \otimes_{\tilde{K}(1)^{*}} \mathbf{Z}\left[B, B^{-1}\right] \cong A \otimes \mathbf{Z}\left\{1, B, \ldots, B^{p-2}\right\}
$$

is exact, and we have the spectral sequence

$$
E_{2}^{*, *^{\prime}, *^{\prime \prime}}(A \tilde{K}(1)) \otimes_{\tilde{K}(1)^{*}} \mathbf{Z}\left[B, B^{-1}\right] \Rightarrow A \tilde{K}(1)^{*, *^{\prime}}(X) \otimes_{\tilde{K}(1)^{*}} \mathbf{Z}\left[B, B^{-1}\right] .
$$

Since for a $B P^{*}(B P)$ module $A$, the functor

$$
A \mapsto A \otimes_{B P^{*}} \mathbf{Z}\left[B, B^{-1}\right]
$$

is exact from the Landweber exact functor theorem, we have the spectral sequence from the AHss for $A B P^{*, *^{\prime}}(X)$

$$
E_{2}^{*, *^{\prime}, *^{\prime \prime}}(A B P) \otimes_{B P^{*}} \mathbf{Z}\left[B, B^{-1}\right] \Rightarrow A B P^{*, *^{\prime}}(X) \otimes_{B P^{*}} \mathbf{Z}\left[B, B^{-1}\right],
$$

which is compatible with the map $\rho$. The $E_{2}$-term of the both spectral sequences are isomorphic to

$$
H^{*, *^{\prime}}(X ; \mathbf{Z}) \otimes \mathbf{Z}\left[B, B^{-1}\right] .
$$

Therefore the two spectral sequences are isomorphic.
We also note from the arguments in the above proof.
Lemma 3.2. Let $E(A B P)_{r}^{*, *^{\prime}, *^{\prime \prime}}\left(\right.$ resp. $\left.E(A \tilde{K}(1))_{r}^{*, *^{\prime}, *^{\prime \prime}}\right)$ be the AHss coverging to $A B P^{*, *^{\prime}}(X)$ (resp. $A \tilde{K}(1)^{*, *^{\prime}}(X)$ ). Then we have

$$
\left.E(A B P)_{r}^{*, *^{\prime}, *^{\prime \prime}} \otimes_{B P^{*}} \tilde{K}(1)^{*} \cong E(A \tilde{K}(1))_{r}^{*^{*}, *^{\prime}, *^{\prime \prime}}\right)
$$

From above lemmas, it is sufficient to consider the Morava $K$-theory $A \tilde{K}(1)^{*, *^{\prime}}(X)$ when we want to study $A K^{*, *^{\prime}}(X)$. Hereafter of this paper, we only consider the theories $A \tilde{K}(1)^{*, *^{\prime}}(X)$ and $A \tilde{k}(1)^{*, *^{\prime}}(X)$ instead of $A K^{*, *^{\prime}}(X)$ or $K_{\text {alg }}^{*}(X)$. (We only consider the cohomology theories and Chow rings localied at $p$.)

We assume the following assumption

$$
(*) \quad K_{\text {alg }}^{0}(X) \cong K_{\text {top }}^{0}(X(\mathbf{C})) \quad\left(\text { and } K_{\text {top }}^{1}(X(\mathbf{C}))=0\right)
$$

That is equivalent to

$$
(*) \quad A \tilde{K}(1)^{2 *, *}(X) \cong \tilde{K}(1)^{2 *}(X(\mathbf{C})) \quad\left(\text { and } \tilde{K}(1)^{2 *+1}(X(\mathbf{C}))=0\right) .
$$

From Lemma 2.3, we have

$$
F_{\gamma}(X) \subset F_{g e o}^{i}(X) \subset F_{t o p}^{i}(X(\mathbf{C})) .
$$

Here we note that the gamma filtrations of topogical and algebraic geometrical are same, i.e., $F_{\gamma}^{*}(X) \cong F_{\gamma}^{*}(X(\mathbf{C}))$. So we have the maps of associated graded rings

$$
g r_{\gamma}^{*}(X) \rightarrow g r_{g e o}^{*}(X) \rightarrow g r_{t o p}^{*}(X(\mathbf{C}))
$$

Lemma 3.3. $g r_{\gamma}^{2}(X)=g r_{g e o}^{2}(X)$.
Proof. If $0 \neq x \in g r_{\gamma}^{2}(X)$, then $x=c_{1}(\xi) \in A \tilde{K}(1)^{2 *, *}(X)$ for some bundle $\xi$. In $C H^{*}(X)$, we know $c_{1}(\xi)=c_{1}(\operatorname{det}(\xi))$ which is determined by the line bundle $\operatorname{det}(\xi)$. Line bundles are determined by $\operatorname{Pic}(X)=C H^{1}(X)$. So $0 \neq x \in$ $C H^{1}(X)$.

Lemma 3.4. If an element $y \in A \tilde{K}(1)^{2 *, *}(X)$ is represented by $0 \neq y$ (resp. $\left.y^{\prime \prime}, y^{\prime \prime \prime}\right)$ in $g r_{\gamma}^{i}(X)\left(\right.$ resp. $\left.g r_{\text {geo }}^{j}(X), g r_{\text {top }}^{k}(X(\mathbf{C}))\right)$, then

$$
i \leq j \leq k, \quad \text { and } \quad i=k=j \bmod (2(p-1)) .
$$

Proof. The element $y$ is represented

$$
y=v_{1}^{s} y^{\prime} \in A \tilde{K}(1)^{2 *, *}(X) / F_{\gamma}^{2 i+1} \quad y=v_{1}^{t} y^{\prime \prime} \in A \tilde{K}(1)^{2 *, *}(X) / F_{\text {geo }}^{2 j+1}
$$

for some $s, t \in \mathbf{Z}$.
Remark. The above fact does not hold for $y \in K_{\text {top }}^{0}(X)$ (which is a sum of $\left.\tilde{K}(1)^{2 *, *}(X), 0 \leq * \leq p-2\right)$. Let us write

$$
y=b^{k} y_{k}+b^{k+1} y_{k+1}+\cdots+b^{k+p-2} y_{k+p-2}
$$

with $b^{i} \in \tilde{K}(1)^{-2 i}$ and $y_{i} \in F_{\text {top }}^{2 i}(Y)$. Suppose $j<k$. Then this means that there is $s$ such that $0 \neq y_{s} \in \operatorname{grgeo}{ }_{\text {ge }}^{j}(X)$ with $s-j=0 \bmod (2 p-2)$. Of course if $s \neq k$, then $k-j \neq 0 \bmod (2 p-2)$.

To study the difference of $F_{\text {geo }}^{*}(X)$ and $F_{\text {top }}^{*}(X(\mathbf{C}))$, we consider AHss $E_{r}^{*, *^{\prime}}(B P)$ converging to $B P^{*}(X)$. Suppose that

$$
\left[v_{1} \otimes x\right] \in B P^{*^{\prime}} \otimes H^{*}(X(\mathbf{C})) \cong E(B P)_{2}^{*, *^{\prime}}
$$

is an permanent cycle, but $[x] \in H^{*}(X(\mathbf{C}))$ itself is not (i.e., $d_{r}(x) \neq 0$ for some $r$ ). Let $x^{\prime} \in B P^{*}(X(\mathbf{C}))$ be a corresponding element for $\left[v_{1} \otimes x\right]$ in $E_{\infty}^{*, *^{\prime}}$

Lemma 3.5. Let $x \in H^{2 *}(X(\mathbf{C}))$ and $x^{\prime} \in B P^{*^{\prime}}(X(\mathbf{C}))$ be elements with the assumption above. Suppose that

$$
0 \neq x^{\prime} \in B P^{*^{\prime}}(X(\mathbf{C})) \otimes_{B P^{*}} \mathbf{Z}\left[v_{1}, v_{1}^{-1}\right] \cong \tilde{K}(1)^{*}(X(\mathbf{C}))
$$

and that $x^{\prime} \in B P^{*^{\prime}}(X(\mathbf{C})) \otimes_{B P^{*}} \mathbf{Z}$ is in the image of the Totaro cycle map

$$
C H^{*^{\prime}}(X) \rightarrow B P^{2 *^{\prime}}(X(\mathbf{C})) \otimes_{B P^{*}} \mathbf{Z}
$$

Then $0 \neq x^{\prime} \in \operatorname{gr}_{\text {top }}^{2 *}(X(\mathbf{C}))$, but $\left.0 \neq x^{\prime} \in g r_{\text {geo }}^{2(*-p+1)}(X)\right)$.
Proof. In this case $*^{\prime}=*-(p-1)$ in the above arguments. Let $x \in$ $H^{2 i}(X(\mathbf{C}))$. In fact $x^{\prime} \in \operatorname{Im}\left(C H^{i-p+1}(X)\right)$ and $0 \neq x^{\prime} \in g r_{\text {geo }}^{2(i-p+1)}(X(\mathbf{C}))$, but $0 \neq x^{\prime}=\left[v_{1} \otimes x\right] \in g r_{\text {top }}^{2 i}(X(\mathbf{C}))$.

Next we consider the cases $g r_{\gamma}^{*}(X) \cong g r_{\text {top }}(X(\mathbf{C}))$. From the Atiyah theorem (Lemma 2.4), the following lemma is immediate.

Lemma 3.6. Suppose (*) and suppose that the infinity term $E_{\infty}^{2 *, 0}(\tilde{K}(1))$ (of the AHss for $\tilde{K}(1)^{*}(X(\mathbf{C}))$ ) is generated by Chern classes in $H^{*}(X)$ for all $* \geq N$. Then for all $* \geq N$, we have

$$
g r_{\gamma}^{2 *}(X) \cong E_{\infty}^{2 *, 0}\left(\tilde{K}(1)^{*}(X(\mathbf{C}))\right) \quad \text { for all } * \geq N
$$

Lemma 3.7 (Lemma 2.8 in [Ya4]). Suppose (*) and that $H^{*}(X(\mathbf{C}))$ is generated by Chern classes. Then we have

$$
C H^{*}(X) \cong H^{*}(X(\mathbf{C})) \quad \text { for } * \leq p-1
$$

Moreover if $X(\mathbf{C})$ is simply connected (resp. 3-connected), then we have an isomorphisms for $* \leq p$ (resp. $* \leq p+1)$

$$
C H^{*}(X) \otimes \mathbf{Z}_{p} \cong H^{2 *}\left(X(\mathbf{C}) ; \mathbf{Z}_{p}\right)
$$

Proof. By the assumption, we see

$$
g r_{\gamma}^{2 *}(X) \cong g r_{g e o}^{2 *}(X) \cong g r_{t o p}^{2 *}(X(\mathbf{C}))
$$

To compute the last graded ring, we consider AHss

$$
E_{2}^{*, *^{\prime}}(\tilde{K}(1)) \cong H^{*}\left(X ; \tilde{K}(1)^{*^{\prime}}\right) \Rightarrow \tilde{K}(1)^{*}(X(\mathbf{C})) .
$$

Here $\tilde{K}(1)^{*} \cong \mathbf{Z}\left[v_{1}, v_{1}^{-1}\right]$ with $\left|v_{1}\right|=-2 p+2$. It is well known that the first non zero differential is

$$
d_{2 p-1}(x)=v_{1} \otimes Q_{1}(x) \bmod (p)
$$

So each element in $H^{2 *}(X(\mathbf{C}))$ is not targent of any differential $d_{r}$ when $* \leq$ $p-1$. (Of course $d_{r}(x)=0$ for Chern classes $x$.) Hence we have $g_{t o p}^{2 *}(X(\mathbf{C}))$ $\cong H^{2 *}(X(\mathbf{C}))$ for $* \leq p-1$.

Similarly, considering AHss converging to $A \tilde{K}(1)^{*, *^{\prime}}(X)$, we have the isomorphism $g r_{\text {geo }}^{2 *}(X) \cong C H^{*}(X)$ for $* \leq p-1$. Here we use the fact $E_{2}^{2 *, *, 0}(A \tilde{K}(1))$ $\cong C H^{*}(X)$. Thus the isomorphism of the geometric and toplogical filtrations, gives the first statements.

From the isomorphism

$$
H^{1,1}(X ; \mathbf{Z} / p) \cong H^{1}(X(\mathbf{C}) ; \mathbf{Z} / p)=0
$$

we see that $H^{1,1}(X ; \mathbf{Z})$ is $p$-divisible. Since the image of the differential of $p$-divisible elements are also $p$-divisible,

$$
\begin{aligned}
H^{2 p}(X(\mathbf{C})) & \cong g r_{\text {top }}^{2 p}(X) \\
& \cong g r_{\text {geo }}^{2 p}(X) \cong C H^{2 p}(X) /(p-\text { divisible })
\end{aligned}
$$

Hence we have the second isomorphism. (In 3-connected cases, the isomorphism is seen similarly for $* \leq p+1$.)

Remark. The first statement in the above lemma is also proved by the Riemann-Roch formula without denominators, namely, the composition map

$$
C H^{i}(X) \rightarrow g r_{g e o}^{i}(X) \xrightarrow{c_{i}} C H^{i}(X)
$$

is multiplication by $(-1)^{i-1}(i-1)$ !. Hence we get $C H^{i}(X) \cong g r_{\text {geo }}^{i}(X)$ for $i \leq p$. Moreover we know that $C H^{i}(X)$ is represented by the $i$-th Chern class $c_{i}(\xi)$ for some bundle $\xi$.

Remark. Lemma 2.8 in [Ya4] was not correct (assumed $g r g r o o_{*}(X)=$ $g r_{\text {top }}(X(\mathbf{C}))$ there $)$. Hence the assumption of Lemma 2.8 in [Ya4] is not sufficient, and it should be changed as above Lemma 3.7.

## 4. Classifying spaces $B G$ for finite groups

Let $G$ be a compact Lie group (e.g., a finite group) and $G_{k}$ be the corresponding algebraic group over an algebraically closed field $k$ in $\mathbf{C}$. Then by Merkurjev and Totaro ([Tol]), we have the isomorphisms

$$
\begin{equation*}
K_{a l g}^{0}\left(B G_{k}\right) \cong R\left(G_{k}\right)^{\wedge} \cong R(G)^{\wedge} \cong K_{t o p}^{0}(B G) \tag{1.1}
\end{equation*}
$$

where $R\left(G_{k}\right)^{\wedge}$ (resp. $\left.R(G)^{\wedge}\right)$ is the $k$-representation (resp. complex representation) ring completed by the augmentation ideal and $K_{\text {alg }}^{0}\left(B G_{k}\right)$ (resp. $\left.K_{\text {top }}^{0}(B G)\right)$ is the $K$-theory generated by $k$-bundles (resp. complex bundles) of the classifying space $B G_{k}$ (resp. $B G$ ).

When $k$ is algebraically closed, we write $B G_{k}$ by $B G$ simply. For Section $4-6$, we assume $k$ is algebraically closed.

In this section, we consider cases that $G$ are finite groups. At first, we consider the case $G=\mathbf{Z} / p^{r}$. Then $H^{*}(B G) \cong \mathbf{Z}[y] /\left(p^{r} y\right),|y|=2$ and $y_{1}=c_{1}(e)$ for a nonzero linear representation $e$. So all three filtrations are the same. The similar fact holds for its product.

Theorem $4.1\left(p=2, r=1\right.$ case by Atiyah [At]). Let $q=p^{r}$ and $G=$ $\oplus^{n} \mathbf{Z} / q$. Then

$$
g r_{t o p}^{*}(B G) \cong \mathbf{Z}\left[y_{1}, \ldots, y_{n}\right] /\left(q y_{i}, y_{i}^{q} y_{j}-y_{i} y_{j}^{q}\right)
$$

Hence the three filtrations are the same.
Proof. Let $Q_{0}^{\prime}=\beta_{q}$ be the higher Bockstein. The integral cohomology is isomorphic to a subring of the $\bmod q$ cohomology

$$
H^{*}(B G) \subset H^{*}(B G ; \mathbf{Z} / q), \quad \text { when } *>0
$$

Here $H^{*}(B G ; \mathbf{Z} / q) \cong \mathbf{Z} / q\left[y_{1}, \ldots, y_{n}\right] \otimes \Lambda\left(x_{1}, \ldots, x_{n}\right)$ with $Q_{0}^{\prime}\left(x_{i}\right)=y_{i}$, and we know

$$
H^{*}(B G) \cong \mathbf{Z} / q\left[y_{1}, \ldots, y_{n}\right]\left\{Q_{0}^{\prime}\left(x_{i_{1}} \cdots x_{i_{s}}\right) \mid 1 \leq i_{1}<\cdots, i_{s} \leq n\right\}
$$

with $Q_{0}^{\prime}\left(x_{i_{1}} \cdots x_{i_{s}}\right)=\sum_{k}(-1)^{k-1} y_{i_{k}} x_{i_{1}} \cdots \hat{x}_{i_{k}} \cdots x_{i_{s}}$.
We consider the AHss converging to $\tilde{K}(1)^{*}(B G)$. We define the weight degree for elements in this AHss by

$$
w\left(v_{1}\right)=0, \quad w\left(y_{i}\right)=0, \quad w\left(x_{i}\right)=1
$$

so that $w\left(Q_{0}^{\prime}\left(x_{i_{1}} \cdots x_{i_{s}}\right)\right)=s-1$. We will prove

$$
\begin{align*}
(\text { weight }=0) \cap E_{2 q}^{*, *^{\prime}} & \cong \mathbf{Z} / q\left[y_{1}, \ldots, y_{n}\right] /\left(y_{i}^{q} y_{j}-y_{i} y_{j}^{q}\right) \quad \text { for } *>0,  \tag{1}\\
& (\text { weight }=1) \cap E_{2 q}^{* *^{\prime}}=0 . \tag{2}
\end{align*}
$$

Then we can prove this theorem by the following arguments.
We consider the AHss converging to the motivic $A \tilde{K}(1)^{*}(B G)$. The weight $w(x)$ of an element $x \in H^{*, *^{\prime}}(X: \mathbf{Z} / q)$ is defined as $2 *^{\prime}-*$. Since $x_{i} \in H^{1,1}(B G ; \mathbf{Z} / q)$ and $y_{i} \in H^{2,1}(B G ; \mathbf{Z} / q)$, their weights are in fact $w\left(x_{i}\right)=1$ and $w\left(y_{i}\right)=0$. The degree of the motivic AHss is

$$
\operatorname{deg}\left(d_{2 r-1}\right)=(2 r-1, r-1,-2(r-1)) \quad \text { with }(r-1)=0 \bmod (p-1),
$$

namely, $w\left(d_{2 r-1}\right)=-1$ which means

$$
d_{2 r-1}(\text { weight }=s)=(\text { weight }=s-1) .
$$

From (2), $($ weight $=0)$-parts are not a target of any diffrential $d_{2 r-1}$ for $r>q$. By the naturality of realization map from the motivic AHss to the usual AHss, we get the same fact for the AHss for $\tilde{K}(1)^{*}(B G)$. Since $\tilde{K}(1)^{*}(B G)$ is generated by only weght $=0$ elements, we have the theorem.

The first nonzero differential is known $d_{2 q-1}\left(x_{i}\right)=v_{1}^{1+p+\cdots+p^{r-1}} y_{i}^{q} \quad[\mathrm{Ya} 3]$. Hereafter let $v_{1}=1$ for ease of notations. We see (1) from

$$
d_{2 q-1}\left(Q_{0}^{\prime}\left(x_{1} x_{2}\right)\right)=d_{2 q-1}\left(y_{1} x_{2}-y_{2} x_{1}\right)=y_{1} y_{2}^{q}-y_{1}^{q} y_{2} .
$$

Now we prove (2). Let $x \in \operatorname{Ker}\left(d_{2 s-1}\right)$ and $x=\sum a_{i j} Q_{0}^{\prime}\left(x_{i} x_{j}\right)$. Then (since $d_{r}$ is a derivation)

$$
d_{2 q-1}(x)=\sum a_{i j}\left(y_{i} y_{j}^{q}-y_{i}^{q} y_{j}\right)=0 \quad \text { in } \mathbf{Z} / q\left[y_{1}, \ldots, y_{n}\right] .
$$

Here we consider them in $\bmod \left(x_{i}, y_{i} \mid i \geq 4\right)$. Then we see $a_{12}=a_{12}^{\prime} y_{3}$ and we see (by dividing $y_{1} y_{2} y_{3}$ )

$$
a_{12}^{\prime}\left(y_{1}^{q-1}-y_{2}^{q-1}\right)+a_{23}^{\prime}\left(y_{2}^{q-1}-y_{3}^{q-1}\right)+a_{31}^{\prime}\left(y_{3}^{q-1}-y_{1}^{q-1}\right)=0 .
$$

This implies that $a_{12}^{\prime} \in \operatorname{ideal}\left(y_{1}^{q-1}, y_{2}^{q-1}, y_{3}^{q-1}\right)$. Moreover we see that $a_{12}$ contains $y_{3}^{q}$. Similarly $a_{23}, a_{13}$ contains $y_{1}^{q}$ and $y_{2}^{q}$ respectively.

On the other hand, we see

$$
\begin{aligned}
d_{2 q-1}\left(Q_{0}^{\prime}\left(x_{1} x_{2} x_{3}\right)\right) & =d_{2 q-1}\left(\sum y_{1} x_{2} x_{3}\right) \\
& =\sum y_{1} y_{2}^{q} x_{3}-\sum y_{1} x_{2} y_{3}^{q}=\sum y_{1} y_{2}^{q} x_{3}-\sum y_{3} x_{1} y_{2}^{q} \\
& =\sum y_{2}^{q}\left(y_{1} x_{3}-y_{3} x_{1}\right)=-\sum y_{1}^{q} Q_{0}^{\prime}\left(x_{2} x_{3}\right)
\end{aligned}
$$

Taking off $a^{\prime \prime} d_{2 r-1} Q_{0}^{\prime}\left(x_{1} x_{2} x_{3}\right)$ for some adequate $a^{\prime \prime} \in \mathbf{Z} / q\left[y_{1}, \ldots, y_{n}\right]$, we can prove (2).

Recall that a group $G$ is called an extraspecial $p$-group if its center $Z(G) \cong \mathbf{Z} / p$ and there is a central extension

$$
0 \rightarrow \mathbf{Z} / p \rightarrow G \rightarrow \bigoplus^{2 n} \mathbf{Z} / p \rightarrow 0
$$

For each prime $p$, such groups have only two types, namely, $p_{+}^{1+2 n}, p_{-}^{1+2 n}$. (e.g., $2_{+}^{1+2} \cong D_{8}$ the dihedral group (of order 8 ), $2_{-}^{1+2} \cong Q_{8}$ the quaternion group). We here only write down the case $p_{+}^{1+2}$ for $p \geq 3$. The cohomology is known ([Ya1,4])

$$
H^{\text {even }}(B G) \cong(Y \oplus B) \otimes \mathbf{Z}\left[c_{p}\right] /\left(p^{2} c_{p}\right)
$$

where $Y=\mathbf{Z}\left[y_{1}, y_{2}\right] /\left(p y_{i}, y_{1} y_{2}^{p}-y_{1}^{p} y_{2}\right), B=\mathbf{Z} / p\left\{c_{2}, \ldots, c_{p-1}\right\}$ and $y_{i}=c_{1}\left(e_{i}\right)$ and $c_{i}=c_{i}(\xi)$ for some linear representations $e_{i}$ and $p$-dimensional representation $\xi$. Hence the even dimensional part of this cohomology is generated by Chern classes and all three filtrations are the same. The odd degree part is

$$
H^{\text {odd }}(B G) \cong Y \otimes \mathbf{Z} / p\left[c_{p}\right]\left\{a_{1}, a_{2}\right\} /\left(y_{2} a_{1}-y_{1} a_{2}, y_{2}^{p} a_{1}-y_{1}^{p} a_{2}\right) \quad\left|a_{i}\right|=3 .
$$

Theorem 4.2. Let $G=p_{+}^{1+2}$ and $p \geq 3$. Then

$$
g r_{t o p}^{*}(B G) \cong Y \oplus\left(\mathbf{Z}\left\{c_{p}\right\} \oplus B\right) \otimes \mathbf{Z}\left[c_{p}\right] /\left(p^{2} c_{p}\right)
$$

Proof. We know the Milnor cohomology operation

$$
v_{1}^{-1} d_{2 p-1}=Q_{1}: H^{\text {odd }}(B G) \rightarrow H^{\text {even }}(B G)
$$

is injective and $Q_{1}\left(a_{i}\right)=y_{i} c_{p}$. Hence we see

$$
\begin{aligned}
\operatorname{gr} \tilde{K}(1)^{*}(B G) & \cong E_{\infty}^{*, *^{\prime}} \cong \tilde{K}(1)^{*} \otimes H^{\text {even }}(B G) /\left(Q_{1} H^{\text {odd }}(B G)\right) \\
& \cong \tilde{K}(1)^{*} \otimes H^{\text {even }}(B G) /\left(y_{i} c_{p}\right)
\end{aligned}
$$

When $p \geq 5$, the groups of $\operatorname{rank}_{p} G=2$ are classified by Blackburn. When groups are of class 2 (i.e., $[G,[G, G]]=1$ ), cohomology rings are generated by Chern classes ([Le-Ya], [Ya1]), and hence all three filtrations are the same. Define the class 3 -group (i.e., $[G,[G, G]] \neq 1$ ) by

$$
G(4,1)=\left\langle a, b, c \mid a^{p}=b^{p}=c^{p^{2}}=[b, c]=1,\left[a, b^{-1}\right]=c^{p},[a, c]=b\right\rangle .
$$

Let $G=G(4,1)$. Then there is an element $x_{p+1} \in H^{2 p+2}(B G)$ [Le-Ya], [Ya] such that it is a permanent cycle in AHss for $\tilde{K}(1)^{*}(B G)$ and $x_{p+1}$ is not represented by Chern class. But all elemnts in $H^{\text {even }}(B G)$ is represented by transfers of Chern classes [Ya1]. Of course Chow rings have the transfer map. Hence we have

Theorem 4.3. Let $p \geq 5$ and $G=G(4,1)$. Then $g r_{\text {top }}^{*}(B G) \cong g r_{\text {geo }}^{*}(B G)$ but gr $r_{\gamma}^{i}(B G) \not \equiv g r_{\text {geo }}^{i}(B G)$ for $i=4,2 p+2$.

Proof. The first isomorphism follows from that all elements in $H^{\text {even }}(B G)$ is represented by transfer of Chern classes. The second statement follows from that
$x_{p+1}$ is not represented by Chern classes and the element $x_{p+1} \in E_{\infty}^{2 p+2,0}$ represents a nonzero element in $g r_{\gamma}^{4}(B G)$ from Lemma 3.4.

## 5. Connected groups with $p=2$

Throughout this section, let $p=2$. At first we consider the case $G=O_{n}$. The mod 2 cohomology of the classifying space $B O_{n}$ of the $n$-th orthogonal group is

$$
H^{*}\left(B O_{n} ; \mathbf{Z} / 2\right) \cong H^{*}\left((B \mathbf{Z} / 2)^{n} ; \mathbf{Z} / 2\right)^{S_{n}} \cong \mathbf{Z} / 2\left[w_{1}, \ldots, w_{n}\right]
$$

where $S_{n}$ is the $n$-th symmetry group, $w_{i}$ is the Stiefel-Whiteney class which restricts the elementary symmetric polynomial in $\mathbf{Z} / 2\left[x_{1}, \ldots, x_{n}\right]$. Each element $w_{i}^{2}$ is represented by Chern class $c_{i}$ of the induced representation $O_{n} \subset U_{n}$. Let us write $w_{i}^{2}$ by $c_{i}$.

Recall the Milnor operation $Q_{i}$ which is defined $Q_{0}=\beta$ and $Q_{i}=\left[Q_{i-1}, P^{p^{i-1}}\right]$. Let us write by $Q(i)$ the exteria algebra $\Lambda\left(Q_{0}, \ldots, Q_{i}\right)$. W. S. Wilson ([Wi], [Ko-Ya]) found a good $Q(i)$-module decomposition for $B O_{n}$, namely,

$$
H^{*}\left(B O_{n} ; \mathbf{Z} / 2\right)=\bigoplus_{i=-1} Q(i) G_{i} \quad \text { with } Q_{0} \cdots Q_{i} G_{i} \in \mathbf{Z} / 2\left[c_{1}, \ldots, c_{n}\right]
$$

Let us write by $P(n)^{*}=B P^{*} /\left(p, \ldots, v_{i-1}\right)$. The $B P^{*}$-theory is then computed

$$
\operatorname{gr} B P^{*}(B G) / p \cong \oplus P(i+1)^{*} Q_{0} \cdots Q_{i} G_{i} .
$$

Hence we have $K(1)^{*}(B G) \cong K(1)^{*}\left(G_{-1} \oplus Q_{0} G_{0}\right)$.
Moreover, by Wilson, it is known that

$$
B P^{*}\left(B O_{n}\right) \cong B P^{*}\left[\left[c_{1}, \ldots, c_{n}\right]\right] /\left(c_{1}-c_{1}^{*}, \ldots, c_{n}-c_{n}^{*}\right)
$$

where $c_{i}^{*}$ is the conjugation of $c_{i}$. Hence $\tilde{K}(1)^{*}(B G)$ is generated by Chern classes from $H^{*}(B G)$. Thus from Lemma 2.4, all filtrations are same.

Here $G_{k-1}$ is quite complicated (see for details [Wi]), namely, it is generated by symmetric functions

$$
\sum x_{1}^{2 i_{1}+1} \cdots x_{k}^{2 i_{k}+1} x_{k+1}^{2 j_{1}} \cdots x_{k+q}^{2 j_{q}}, \quad k+q \leq n
$$

with $0 \leq i_{1} \leq \cdots \leq i_{k}$ and $0 \leq j_{1} \leq \cdots \leq j_{q}$; and if the number of $j$ equal to $j_{u}$ is odd, then there is some $s \leq k$ such that $2 i_{s}+2^{s}<2 j_{u}<2 i_{s}+2^{s+1}$.

Thus when $k \leq 1$, there is not above $j_{u}$, that means numbers of $j=j_{u}$ are always even.

Theorem 5.1. Let $G=O_{n}$. Then all three fitrations are the same, and $g r_{\text {top }}^{*}(B G) \cong A \oplus B / 2$ with $\left(y_{i}=x_{i}^{2}\right.$ so that $\left.\sum y_{1}=c_{1}\right)$

$$
A=\mathbf{Z}\left\{\sum\left(y_{1} y_{2}\right)^{j_{1}} \cdots\left(y_{2 s-1} y_{2 s}\right)^{j_{s}}\right\} \quad B=\mathbf{Z}\left\{\sum y_{1}^{i}\left(y_{2} y_{3}\right)^{j_{1}} \cdots\left(y_{2 s} y_{2 s+1}\right)^{j_{s}}\right\} .
$$

(Note $A / 2=G_{-1}$ and $B / 2=Q_{0} G_{0}$.)

Example. When $G=O_{2}$, we have the isomorphism

$$
g r_{t o p}^{*}(B G) \cong \mathbf{Z}\left[c_{2}\right] \oplus \mathbf{Z} / 2\left[c_{1}\right] .
$$

When $G=S O_{\text {odd }}$, (since $S O_{\text {odd }} \times \mathbf{Z} / 2 \cong O_{\text {odd }}$ ), the situations are same. Let $G=S O_{2 n}$. Then from Field, we have ([Fi], [Ma-Vi], [In-Ya])

$$
\begin{gathered}
C H^{*}(B G) \cong \mathbf{Z}\left[c_{2}, \ldots c_{2 n}\right]\left\{y_{2 n}\right\} \oplus C H^{*}\left(B O_{2 n}\right) /\left(c_{1}\right), \\
B P^{*}(B G) \cong B P^{*}\left[c_{2}, \ldots, c_{2 n}\right]\left\{y_{2 n}\right\} \oplus B P^{*}\left(B O_{2 n}\right) /\left(F_{1}\right)
\end{gathered}
$$

where $F_{1}=\operatorname{Ker}\left(B d e t^{*}\right)$ and $y_{2 n}^{2}=(-1)^{n} 2^{2 n-2} c_{2 n}$. Hence

$$
y_{2 n}=(-1)^{*} 2^{n-1} w_{2 n} \in H^{*}(B G)_{(2)}
$$

Theorem 5.2. Let $G=S O_{2 n}$ and $n \geq 3$. Then

$$
g r_{\text {top }}^{*}(B G)=g r_{\text {geo }}^{*}(B G) \cong \mathbf{Z}\left[c_{2}, c_{4}, \ldots, c_{2 n}\right]\left\{y_{2 n}\right\} \oplus g r_{\text {top }}^{*}\left(B O_{2 n}\right) /\left(c_{1}\right)
$$

However we have $g r_{\gamma}^{2 n}(B G) \nRightarrow g r_{g e o}^{2 n}(B G)$.
We note when $G=S O_{4}$, all the three filtrations are same, since $y_{4}$ is represented by Chern classes. By Field, it is shown that just $(n-1)!y_{2 n}$ (for $n>2$ ) is represented by Chern classes (Theorem 8, Corollary 2 in [Fi]). Thus we have

Proposition 5.3. Let $G=S O_{2(p+1)}$ and $p \neq 2$. Then

$$
g r_{\gamma}^{*}(B G) \cong \mathbf{Z}_{(p)}\left[c_{2}, \ldots, c_{2 p+2}\right] \otimes\left(\mathbf{Z}_{(p)}\left\{1, y^{\prime}\right\} \oplus \mathbf{Z} / p\{y\}\right)
$$

with $\left|y^{\prime}\right|=2(p+1)$ and $|y|=4$.
Next, we consider the exceptional Lie group $G_{2}$. Let $G=G_{2}$. Its $\bmod (2)$ cohomology is well known

$$
H^{*}(B G ; \mathbf{Z} / 2) \cong \mathbf{Z} / 2\left[w_{4}, w_{6}, w_{7}\right]
$$

and integral cohomology is

$$
H^{*}(B G) \cong \mathbf{Z}\left[w_{4}, c_{6}\right] \otimes\left(\mathbf{Z}\{1\} \oplus \mathbf{Z} / 2\left[w_{7}\right]\left\{w_{7}\right\}\right)
$$

We can compute the AHss for $B P^{*}(B G)$ ([Ko-Ya], [Sc-Ya])

$$
\operatorname{gr} B P^{*}(B G) \cong \mathbf{Z}\left[c_{4}, c_{6}\right] \otimes\left(B P^{*}\left\{1,2 w_{4}\right\} \oplus P(3)^{*}\left[c_{7}\right]\left\{c_{7}\right\}\right)
$$

Here we can show the element $\left\{2 w_{4}\right\}$ is represented by a Chern class $c_{2}^{\prime}$. We see $\left.\tilde{K}(1)^{*}(B G) \cong \tilde{K}(1)^{*}\left[c_{4}, c_{6}\right] \otimes\left\{1,2 w_{4}\right\}\right)$, and ([Ya3], [Gu])

$$
C H^{*}(B G) \cong B P^{*}(B G) \otimes_{B P^{*}} \mathbf{Z} \cong \mathbf{Z}\left[c_{2}^{\prime}, c_{4}, c_{6}, c_{7}\right] /\left(\left(c_{2}^{\prime}\right)^{2}-4 c_{4}, 2 c_{7}\right)
$$

Theorem 5.4. Let $G=G_{2}$. Then all three filtrations are the same

$$
g r_{t o p}^{*}(B G) \cong C H^{*}(B G) /\left(c_{7}\right) \cong \mathbf{Z}\left[c_{2}^{\prime}, c_{4}, c_{6}\right] /\left(\left(c_{2}^{\prime}\right)^{2}-4 c_{4}\right) .
$$

Next we study the case $G=\operatorname{Spin}_{7}$. Its $\bmod (2)$ cohomology is

$$
H^{*}(B G ; \mathbf{Z} / 2) \cong \mathbf{Z} / 2\left[w_{4}, w_{6}, w_{7}, w_{8}\right]
$$

The infinity term of the AHss for $B P^{*}(B G)$ is still computed

$$
\begin{aligned}
\operatorname{gr} B P^{*}(B G) \cong & \cong\left[c_{4}, c_{6}\right] \otimes\left(B P^{*}\left[c_{8}\right]\left\{1,2 w_{4}, 2 w_{8}, 2 w_{4} w_{8}, v_{1} w_{8}\right\}\right. \\
& \left.\oplus P(3)^{*}\left[c_{7}\right]\left\{c_{7}\right\} \oplus P(4)^{*}\left[c_{7}, c_{8}\right]\left\{c_{7} c_{8}\right\}\right) .
\end{aligned}
$$

Hence we see

$$
\operatorname{gr} \tilde{K}(1)^{*}(B G) \cong \tilde{K}(1)^{*}\left[c_{4}, c_{6}, c_{8}\right]\left\{1,2 w_{4}, 2 w_{8}, 2 w_{4} w_{8}, v_{1} w_{8}\right\} .
$$

Here it is known that $2 w_{4}, 2 w_{8}, 2 w_{4} w_{8}$ are represented by Chern classes. Write them by $c_{2}^{\prime}, c_{4}^{\prime}$, $c_{6}^{\prime}$. But it is proved (Theorem 6.2 in $[\mathrm{Sc}-\mathrm{Ya}]$ ) that $v_{1} w_{8}$ is not represented by (transfer) of Chern classes while it is in the image of cycle map. Let $c l(\xi)=\left[v_{1} w_{8}\right] \quad([\mathrm{Gu}]$, Lemma 9.6 in [Ya], §9 in [Ka-Te-Ya]). Totraro's conjecture also holds this case

$$
\begin{aligned}
C H^{*}(B G) & \cong B P^{*}(B G) \otimes_{B P^{*}} \mathbf{Z} \\
& \cong \mathbf{Z}\left[c_{4}, c_{6}, c_{8}\right] \otimes\left(\mathbf{Z}\left\{1, c_{2}^{\prime}, c_{4}^{\prime}, c_{6}^{\prime}\right\} \oplus \mathbf{Z} / 2\{\xi\} \oplus \mathbf{Z} / 2\left[c_{7}\right]\left\{c_{7}\right\}\right)
\end{aligned}
$$

with $|\xi|=6$. Moreover, we can prove
Lemma 5.5. Let $G=$ Spin7. Any element $x \in B P^{*}(B G)$ such that

$$
0 \neq x=\left[v_{1} w_{8}\right] a \in B P^{*}(B P) \quad \text { with } a \in \mathbf{Z}\left[c_{4}, c_{6}, c_{8}\right],
$$

can not be generated by Chern classes of BP*-theory.
Proof. Let $N=Z(G) \cong \mathbf{Z} / 2$ be the center of $G$ and $N \oplus A$ is a maximal elementary abelian 2-subgroup of $G$, so $A \cong(\mathbf{Z} / 2)^{3}$. A representation $\xi$ of $G$ is said to be a spin representation, if $\xi \mid N \neq 0$. For a nonspin representation $\eta$, we know the total Chern class

$$
\left.c(\eta)\right|_{N \oplus A}=\left.c(\eta)\right|_{A} \in B P^{*}\left[c_{4}, c_{6}, c_{7}\right] .
$$

For a spin representation $\chi$, we have

$$
\left.(\chi)\right|_{N}=(1+u)^{s} \in B P^{*}(B N) \cong B P^{*}[u] /([2](u)) \quad|u|=2
$$

where $[2](u)=2 u+v_{1} u^{2}+\cdots$ is the 2-th product of the $B P^{*}$-formal group laws. Here we note $s=8 s^{\prime}$ since $\left.c_{8}\right|_{N}=u^{8}$. It is known that $\left.v_{1} w_{8}\right|_{N}=v_{1} u^{4}[\mathrm{Sc-Ya}]$. Then

$$
\left.c(\chi)\right|_{N}=\left(1+8 u+28 u^{2}+\cdots+u^{8}\right)^{s^{\prime}} .
$$

Here we can compute in $B P^{*}(B N)$ by using [2] $(u)=0$

$$
8 u=4 v_{1} u^{2}=2 v_{1}^{2} u^{3}=v_{1}^{3} u^{4}, \quad 28 u^{2}=14 v_{1} u^{3}=7 v_{1}^{2} u^{4}, \ldots
$$

Thus we see that $v_{1} u^{4}$ is not represented by the restriction of Chern classes. (However $v_{1}^{2} u^{4}$ has its possibility, in fact $\left|v_{1} w_{8}\right|=4$ and it is represented by the Chern class $c_{2}$.)

Of course $c(\chi \oplus \eta)=c(\chi) c(\eta)$, we get the lemma.
Theorem 5.6. Let $G=\operatorname{Spin}_{7}$. Then

$$
\begin{gathered}
g r_{t o p}^{*}(B G) \cong \mathbf{Z}\left[c_{4}, c_{6}, w_{8}\right]\left\{1, c_{2}^{\prime}\right\} \\
g r_{\alpha}^{*}(B G) \cong \mathbf{Z}\left[c_{4}, c_{6}, c_{8}\right]\left(\mathbf{Z}\left\{1, c_{2}^{\prime}, c_{4}^{\prime}, c_{6}^{\prime}\right\} \oplus \mathbf{Z} / 2\{\xi\}\right)
\end{gathered}
$$

where $\operatorname{deg}(\xi)=6($ resp. $=4)$ if $\alpha=$ geo (if $\alpha=\gamma$ ).
Remark. $\tilde{K}(1)^{*}(B G)$ is generated as a $\tilde{K}(1)^{*}\left[c_{4}, c_{6}, c_{8}\right]$-module by

$$
\left\{1,2 w_{4}, 2 w_{8}, 2 w_{4} w_{8}, v_{1} w_{8}\right\} .
$$

Since $v_{1}^{-1} \in \tilde{K}(1)^{*}$, we have $w_{8} \in \tilde{K}(1)^{*}(B G)$. Hence $\tilde{K}(1)^{*}(B G)$ is generatd as a $K(1)^{*}\left[c_{4}, c_{6}, c_{8}\right]$-algebra by $\left\{1,2 w_{4}, w_{8}\right\}$.

Remark. The graded ring $g r_{\text {top }}^{*}(B G)$ is also written as $g r_{\alpha}^{*}(B G)$ in the right hand side ring of the second isomorphism in the above theorem, with identifying $\xi=w_{8}, c_{4}^{\prime}=2 w_{8}, c_{6}^{\prime}=c_{2}^{\prime} w_{8}$.

Recall that $2_{+}^{1+2 n}$ is the extraspecial 2-group, which is isomorphic to the central product of $n$-copies of the dihedral group $D_{8}$ of order 8. Let $G=2_{+}^{1+6}$. There is an inclusion $i: G \subset \operatorname{Spin}_{7}$ and its induced map $i^{*}: H^{*}\left(B \operatorname{Spin}_{7} ; \mathbf{Z} / 2\right) \rightarrow$ $H^{*}(B G ; \mathbf{Z} / 2)$ is also injective by Quillen $[\mathrm{Qu}]$. Let $j: \mathbf{Z} / 2 \cong Z(G) \subset G$. Then it is know $[\mathrm{Qu}]$, $[\mathrm{Sc}-\mathrm{Ya}] j^{*} i^{*}\left(w_{8}\right)=u^{4} \in \mathbf{Z}[u] /(2 u) \subset H^{*}(B Z(G))$. Hence we have in $\tilde{K}(1)^{*}$-theory

$$
j^{*} i^{*}\left(v_{1} w_{8}\right)=v_{1} u^{4} \neq 0 \in \tilde{K}(1)^{*}(B Z(G)) \cong \tilde{K}(1)^{*}[u] /\left(2 u-v_{1} u^{2}\right)
$$

This element $v_{1} \otimes w_{8}$ is not generated by Chern classes also in $H^{*}(B G)$. Hence we have

Corollary 5.7. Let $G=2_{+}^{1+6}$. Then there is an element $x \in A \tilde{K}(1)^{*}(B G)$ such that

$$
0 \neq x \in g r_{\gamma}^{4}(B G), \quad x=\xi \in g r_{g e o}^{6}(B G), \quad \text { and } \quad x=w_{8} \in g r_{\text {top }}^{8}(B G) .
$$

## 6. Connected groups for $p$ odd

In this section, we assume $p \geq 3$. At first we consider the case $G=P G L_{p}$. Its $\bmod p$ cohomolgy is given by Vistoli and Kameko-Yagita ([Vi], [Ka-Ya]), namely, there is a short exact sequence

$$
0 \rightarrow M / p \rightarrow H^{*}(B G ; \mathbf{Z} / p) \rightarrow N \rightarrow 0
$$

where $M \cong \mathbf{Z}\left[x_{4}, x_{6}, \ldots, x_{2 p}\right]$ additively (but not as rings), and $N \cong N^{\prime} \otimes$ $\Lambda\left(Q_{0}, Q_{1}\right)\left\{u_{2}\right\},\left|u_{2}\right|=2$ for some $\mathbf{Z} / p$-module $N^{\prime} . \quad\left(H^{\text {even }}(B G)_{(p)}\right.$ is not generated by Chern classes (in facts $Q_{0} Q_{1}\left(u_{2}\right)$ is not represented by a Chern class).

The $B P$-theory $B P^{*}(B G)$ is also studied. There is a short exact sequence

$$
0 \rightarrow B P^{*} \otimes M \rightarrow \operatorname{gr} B P^{*}(B G) \rightarrow N^{\prime \prime} \rightarrow 0
$$

where $\operatorname{gr} N^{\prime \prime} \cong P(3)^{*} \otimes N^{\prime}\left\{Q_{0} Q_{1}(u)\right\}_{\dot{\tilde{R}}}$. In particular, $Q_{0} Q_{1}\left(u_{2}\right)$ is $v_{1}$-torsion, and hence its becomes zero in $\tilde{K}(1)^{*}(B G)$. Therefore we see additively $g r^{*} \tilde{K}(1)^{0}(B G) \cong M$. Totaro's conjecture also holds this case. Thus we have

Theorem 6.1. Let $G=P G L_{p}$. Then

$$
g r_{t o p}^{*}(B G) \cong g r_{g e o}^{*}(B G)(\cong M \text { additively }) .
$$

When $p=3$, the ring structure of $M$ is known

$$
\text { (*) } M / 3 \cong \mathbf{Z} / 3\left[c_{2}, c_{3}^{\prime}, c_{6}\right] /\left(c_{2}^{3}=\left(c_{3}^{\prime}\right)^{2}\right)
$$

where $c_{2}, c_{3}^{\prime}, c_{6}$ are Chern classes for some representations. Hence

$$
M_{(3)} \cong g r_{\gamma}^{*}\left(B P L_{3}\right)_{(3)} \cong g r_{g e o}^{*}\left(B P L_{3}\right)_{(3)} .
$$

The fact (*) is explicitly written

$$
c_{2}=c_{2}\left(s l_{3}\right), \quad c_{3}^{\prime}=c_{3}\left(\operatorname{Sym}^{3}(E)\right), \quad c_{6}=c_{6}\left(s l_{3}\right)
$$

in the notation in Theorem 1.1 and Proposition 1.2 in [Ve] by Vezzosi and Theorem 3.7 (a) in Vistoli [Vit]. Vistoli gives corrected generators and relations (for example, $\chi=0$ for $\chi$ in [Ve]).

However, for $p \geq 5$, it seems unknown that $M$ above is generated by Chern classes or not.

For exceptional Lie groups, we can compute $B P^{*}(B G)$ except for $(G, p)=$ $\left(E_{8}, p=3\right)$. So we know $g r_{\text {top }}^{*}(B G)$, but it seems not so easy to compute $C H^{*}(B G)$ now, and $g r_{\text {geo }}^{*}(B G)$ seems unknown. For example, when $G=F_{4}$ we can compute $B P^{*}(B G)$. The $\bmod (3)$ cohomology is generated by $x_{4}, x_{8}, x_{9}$, $x_{20}, x_{21}, \ldots$ (by Toda). The $B P$-theory is computed

$$
\text { gr } B P^{*}(B G) \cong B P^{*}\left[c_{18}, c_{24}\right]\left\{1,3 x_{4}\right\} \oplus B P^{*} \otimes E \oplus P(3)^{*}\left[x_{26}\right]\left\{x_{26}\right\}
$$

where $E=\mathbf{Z}\left[x_{4}, x_{8}\right]\left\{a b \mid a, b \in\left\{x_{4}, x_{8}, x_{20}\right\}\right\}$. Hence we have

$$
\operatorname{gr} \tilde{K}(1)^{*}(B G) \cong \tilde{K}(1)^{*} \otimes\left(\mathbf{Z}\left[c_{18}, c_{24}\right]\left\{1,3 x_{4}\right\} \oplus E\right)
$$

It is now unknown whether the element $x_{8}^{2} \in E$ (or $x_{8} x_{4}^{2} \in E$ ) is in the image of the cycle map (see (2.4) and the proof of Lemma 3.1 in [Ya2]). If it is so, then $g r_{\text {geo }}^{*}(B G) \cong g r_{\text {top }}^{*}(B G)$, otherwise $g r_{\text {geo }}^{i}(B G) \nsupseteq g r_{\text {top }}^{i}(B G)$ for $i=12,16$.

## 7. Rost motives

In this section, we do not assume that $k$ is algebraically closed. At first, we recall the (generalized) Rost motive ([Ro1,2]). Let $M(X)$ be the motive of (smooth) variety $X$. For a non zero symbol $a=\left\{a_{0}, \ldots, a_{n}\right\}$ in the $\bmod 2$ Milnor $K$-theory $K_{n+1}^{M}(k) / 2$, let $\phi_{a}=\left\langle\left\langle a_{0}, \ldots, a_{n}\right\rangle\right\rangle$ be the $(n+1)$-fold Pfister form. Let $X_{\phi_{a}}$ be the projective quadric of dimension $2^{n+1}-2$ defined by $\phi_{a}$. The Rost motive $M_{a}\left(=M_{\phi_{a}}\right)$ is a direct summand of the motive $M\left(X_{\phi_{a}}\right)$ representing $X_{\phi_{a}}$ so that $M\left(X_{\phi_{a}}\right) \cong M_{a} \otimes M\left(\mathbf{P}^{2^{n}-1}\right)$.

Moreover for an odd prime $p$ and nonzero symbol $0 \neq a \in K_{n+1}^{M} / p$, we can define ([Ro2], [Vo4,5], [Su-Jo]) the generalized Rost motive $M_{a}$, which is irreducible and is split over $K / k$ if and only if $\left.a\right|_{K}=0$ (as the case $p=2$ ).

The Chow group of the Rost motive is well known. Let $\bar{k}$ be an algebraic closure of $k,\left.X\right|_{\bar{k}}=X \otimes_{k} \bar{k}$, and $i_{\bar{k}}: C H^{*}(X) \rightarrow C H^{*}\left(\left.X\right|_{\bar{k}}\right)$ the restriction map.

Lemma 7.1 (Rost [Ro1,2], [Vo4], [Vi-Ya], [Ya5,6]). The Chow group $\mathrm{CH}^{*}\left(\mathrm{M}_{a}\right)$ is only dependent on $n$. There are isomorphisms

$$
\begin{gathered}
C H^{*}\left(M_{a}\right) \cong \mathbf{Z}\{1\} \oplus\left(\mathbf{Z}\left\{c_{0}\right\} \oplus \mathbf{Z} / p\left\{c_{1}, \ldots, c_{n-1}\right\}\right)[y] /\left(c_{i} y^{p-1}\right) \\
\text { and } \quad C H^{*}\left(\left.M_{a}\right|_{\bar{k}}\right) \cong \mathbf{Z}[y] /\left(y^{p}\right)
\end{gathered}
$$

where $2 \operatorname{deg}(y)=|y|=2\left(p^{n-1}+\cdots+p+1\right)$ and $\left|c_{i}\right|=|y|+2-2 p^{i}$. Moreover the restriction map is given by $i_{\bar{k}}\left(c_{0}\right)=p y$ and $i_{\bar{k}}\left(c_{i}\right)=0$ for $i>0$.

Remark. The element $y$ does not exist in $C H^{*}\left(M_{a}\right)$ while $c_{i} y$ exists. Usually $C H^{*}\left(M_{a}\right)$ is defined only additively, however when $C H^{*}\left(M_{a}\right)$ has the natural ring structure (e.g., $p=2$ ), the multiplications are given by $c_{i} \cdot c_{j}=0$ for all $0 \leq i, j \leq n-1$.

For the simplicity of notation, hereafter we always write by $\Omega^{*}(X)$ the $B P^{*}$-version of the algebraic cobordism

$$
\Omega^{*}(X) \otimes_{M U^{*}} B P^{*} \cong A B P^{2 *, *}(X)
$$

Hence we mean $\Omega^{*}=B P^{*}$ hereafter.
Let $I_{n}$ be the ideal in $\Omega^{*}$ generated by $v_{0}, \ldots, v_{n-1}$, i.e.,

$$
I_{n}=\left(p=v_{0}, v_{1}, \ldots, v_{n-1}\right) \subset \Omega^{*}
$$

Then it is well known that $I_{n}$ and $I_{\infty}$ are the only prime ideals stable under the Landweber-Novikov cohomology operations ([Ra]) in $\Omega^{*}$.

The category of cobordism motives is defined and studied in [Vi-Ya]. In particular, we can define the algebraic cobordism of motives. The following is the main result in [Vi-Ya] (in [Ya5] for odd primes).

Lemma 7.2 ([Vi-Ya], [Ya5]). The restriction map

$$
i_{\bar{k}}: \Omega^{*}\left(M_{a}\right) \rightarrow \Omega^{*}\left(\left.M_{a}\right|_{\bar{k}}\right) \cong \Omega^{*}[y] /\left(y^{p}\right)
$$

is injective and there is an $\Omega^{*}$-module isomorphism

$$
\Omega^{*}\left(M_{a}\right) \cong \Omega^{*}\{1\} \oplus I_{n}\left\{y, \ldots, y^{p-1}\right\} \subset \Omega^{*}[y] /\left(y^{p}\right)
$$

such that $v_{i} y=c_{i}$ in $\Omega^{*}\left(M_{a}\right) \otimes_{\Omega^{*}} \mathbf{Z} \cong C H^{*}\left(M_{a}\right)$.
We consider the following assumption for $X$.
Assumption (*). There is an isomorphism of motives

$$
M(X) \cong M_{n} \otimes A(X) \quad \text { with } A(X) \cong \bigoplus_{s} \mathbf{T}^{i_{s}}
$$

where $\mathbf{T}$ is the $k$-Tate module.
Lemma 7.3. Suppose Assumption (*). Then

$$
K_{a l g}^{0}(X) \cong K_{a l g}^{0}\left(\left.X\right|_{\bar{k}}\right) \cong K_{t o p}^{0}(X(\mathbf{C}))
$$

Proof. Since $M\left(\left.X\right|_{\bar{k}}\right)$ is a sum of $\bar{k}$-Tate modules, we have the isomorphism $K_{\text {alg }}^{0}\left(\left.X\right|_{\bar{k}}\right) \cong K_{\text {top }}^{0}(X(\mathbf{C}))$ from

$$
K_{\text {alg }}^{0}(\mathbf{T}) \cong K_{\text {alg }}^{0}\left(\left.S^{2,1}\right|_{\bar{k}}\right) \cong K_{\text {top }}^{0}\left(S^{2}\right)
$$

For the first isomorphism, we only need to show $K_{\text {alg }}^{0}\left(M_{n}\right) \cong K_{\text {alg }}^{0}\left(\left.M_{n}\right|_{\bar{k}}\right)$. Recall

$$
\Omega^{*}\left(M_{n}\right) \cong B P^{*} \oplus \operatorname{Ideal}\left(p, v_{1}, \ldots, v_{n-1}\right)[y] /\left(y^{p}\right)
$$

by $c_{i} \mapsto v_{i} y$. Hence $v_{i} c_{1}=v_{1} c_{i}$. Therefore for $i>1$, we see $c_{i}=0$ in $A \tilde{K}(1)^{2 *, *}\left(M_{n}\right)$ where $v_{i}=0$. So we have

$$
\begin{aligned}
A \tilde{K}(1)^{2 *, *}\left(M_{n}\right) & \cong \tilde{K}(1)^{*}\{1\} \oplus \tilde{K}(1)^{*}\left\{c_{0}, c_{1}\right\}[y] /\left(v_{1} c_{0}=p c_{1}, y^{p-1}\right) \\
& \cong \tilde{K}(1)^{*}\{1\} \oplus \tilde{K}(1)^{*}\left\{c_{1}\right\}[y] /\left(y^{p-1}\right) \\
& \cong \tilde{K}(1)^{*}\{1\} \oplus \tilde{K}(1)^{*}\left\{v_{1} y\right\}[y] /\left(y^{p-1}\right) \\
& \cong \tilde{K}(1)^{*}[y] /\left(y^{p}\right) \cong A \tilde{K}(1)^{2 *, *}\left(\left.M_{n}\right|_{\tilde{k}}\right) .
\end{aligned}
$$

## 8. Flag manifolds $G / T$

Now we consider the flag variety $G / T$. Let $G$ be a simply connected Lie group and $T$ the maximal torus. Moreover we assume that its cohomology is

$$
H^{*}(G ; \mathbf{Z} / p) \cong \mathbf{Z} / p[y] /\left(y^{p}\right) \otimes \Lambda\left(x_{1}, \ldots, x_{\ell}\right)
$$

with $|y|=2(p+1)$ and $\left|x_{i}\right|=o d d$. Then it is well known that the cohomology of $G / T$ is torsion free ([Tod]) and

$$
H^{*}(G / T) \cong \mathbf{Z}\left[y, t_{1}, \ldots, t_{\ell}\right] /\left(f_{y}, b_{1}, \ldots, b_{\ell}\right)
$$

where $f_{y}=y^{p}$ mod $\operatorname{Ideal}\left(t_{i}\right)$ and $\left(b_{1}, \ldots, b_{\ell}\right)$ is a regular sequence in $\mathbf{Z}\left[t_{1}, \ldots, t_{\ell}\right]$.

Let $k$ be a subfield of $\mathbf{C}$ which contains primitive $p$-th root of the unity. Let us denote by $G_{k}$ the split reductive group over $k$ which corresponds $G$. By definition, a $G_{k}$-torsor $\mathbf{G}_{k}$ over $k$ is a variety over $k$ with a free $G_{k}$-action such that the quotient variety is $\operatorname{Spec}(k)$. A $G_{k}$-torsor over $k$ is called trivial, if it is isomorphic to $G_{k}$ or equivalently it has a $k$-rational point. In this paper by $\mathbf{G}_{k}$, we mean a nontrivial torsor at any finite extension $K / k$ coprime to $p$.

Let $H$ be a subgroup of $G$. Given a torsor $\mathbf{G}_{k}$ over $k$, we can form the twisted form of $G / H$ by

$$
\left(\mathbf{G}_{k} \times G_{k} / H_{k}\right) / G_{k} \cong \mathbf{G}_{k} / H_{k}
$$

Letting $X=G / T$, we consider cases such that Assumption (*) in $\S 7$ hold. By [Pe-Se-Za], exceptional Lie groups $\left(G_{2}, p=2\right)$ and $\left(F_{4}, p=3\right)$ are such cases. The filtrations of $K$-theory of such spaces are also studied by Garibardi and Zainouline ( $[\mathrm{Ga}-\mathrm{Za}],[\mathrm{Za}],[\mathrm{Ju}])$ as the twisted gamma filtrations.

At first, we consider the case $(G, p)=\left(G_{2}, 2\right)$. We recall the cohomology from Toda-Watanabe [To-Wa],

$$
H^{*}(G / T ; \mathbf{Z}) \cong \mathbf{Z}\left[t_{1}, t_{2}, y\right] /\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}, t_{2}^{3}-2 y, y^{2}\right)
$$

with $\left|t_{i}\right|=2$ and $|y|=6$. Let $P$ be the maximal parabolic subgroup such that $G / P$ is isomorphic to a quadric. Then we have $H^{*}(P / T) \cong \mathbf{Z}\left\{1, t_{1}\right\}$ (see [To-Wa], [Ya6])

$$
H^{*}(G / P ; \mathbf{Z}) \cong \mathbf{Z}\left[t_{2}, y\right] /\left(t_{2}^{3}-2 y, y^{2}\right) \cong \mathbf{Z}\{1, y\} \otimes\left\{1, t_{2}, t_{2}^{2}\right\}
$$

Of course this is isomorphic to $g r_{\text {top }}^{*}(G / P)$.
Since $G / P$ is a quadric, we have the decomposition ([Bo], §7 in [Pe-Se-Za])

$$
M\left(\mathbf{G}_{k} / P_{k}\right) \cong M_{2} \oplus M_{2}(1) \oplus M_{2}(2) .
$$

Theorem 8.1 (Theorem 5.2 in [Ya6]). There is a ring isomorphism

$$
\begin{aligned}
g r_{\gamma}^{*}(G / P) & \cong g r_{\text {geo }}^{*}\left(\mathbf{G}_{k} / P_{k}\right) \cong C H^{*}\left(\mathbf{G}_{k} / P_{k}\right) \\
& \cong \mathbf{Z}_{(2)}\left[t_{2}, u\right] /\left(t_{2}^{6}, 2 u, t_{2}^{3} u, u^{2}\right) \cong \mathbf{Z}_{(2)}\left[t_{2}\right] /\left(t_{2}^{6}\right) \oplus \mathbf{Z} / 2\left[t_{2}\right] /\left(t_{2}^{3}\right)\{u\}
\end{aligned}
$$

with $\left|t_{2}\right|=2,|u|=4$.
Proof. Recall that from Lemma 7.2,

$$
\Omega^{*}\left(M_{2}\right) \cong \Omega^{*}\{1,2 y, v y\} \subset \Omega^{*}\{1, y\} .
$$

From the decomposition of the motive, we have the $\Omega^{*}$-module isomorphism

$$
\Omega^{*}\left(\mathbf{G}_{k} / P_{k}\right) \cong \Omega^{*}\left\{1, v_{1} y, 2 y\right\} \otimes\left\{1, t_{2}, t_{2}^{2}\right\} \subset \Omega^{*}\left(G_{k} / P_{k}\right)
$$

Since $C H^{*}(X) \cong \Omega^{*}(X) \otimes_{\Omega^{*}} \mathbf{Z}$, we have the isomorphism

$$
C H^{*}\left(\mathbf{G}_{k} / P_{k}\right) \cong \mathbf{Z}\{1,2 y\}\left\{1, t_{2}, t_{2}^{2}\right\} \oplus \mathbf{Z} / 2\left\{v_{1} y\right\}\left\{1, t_{2}, t_{2}^{2}\right\}
$$

(Note $\left.2 v_{1} y=v_{1}(2 y) \in \boldsymbol{\Omega}^{<0} \boldsymbol{\Omega}^{*}\left(\mathbf{G}_{k} / P_{k}\right).\right)$

Here the multiplications are given as follows. Since $2 y=t_{2}^{3} \bmod \left(\Omega^{<0}\right)$ in $\Omega^{*}\left(G_{k} / T_{k}\right)$, we can take $2 y=t_{2}^{3} \in C H^{*}\left(\mathbf{G} / P_{k}\right)$ so that

$$
\mathbf{Z}\{1,2 y\}\left\{1, t_{2}, t_{2}^{2}\right\}=\mathbf{Z}\left[t_{2}\right] /\left(t_{2}^{6}\right) \subset C H^{*}\left(\mathbf{G} / P_{k}\right) .
$$

Let us write $u=v_{1} y$ in $C H^{*}\left(\mathbf{G}_{k} / T_{k}\right)$. Then $t_{2}^{3} u=2 y v_{1} y=0$ and $u^{2}=v_{1}^{2} y^{2}=0$ in $\Omega^{*}\left(\mathbf{G}_{k} / T_{k}\right) \otimes_{\Omega^{*}} \mathbf{Z}$. Hence we have the second isomorphism in the theorem.

Since $|u|=4$, the element $u$ is represented by Chern classes, we see the first isomorphism.

Remark. The space $\mathbf{G}_{k} / T_{k}$ is isomorphic to the quadric defined by the maximal neighbor of the 3-Pfister form. Hence its Chow ring is computed in [Ya6].

It is well known that the representations (over $\mathbf{C})$ ) are written as

$$
R(G / T) \cong R(T) / R(G)
$$

Therefore each element which is represented by Chern classes is written as an element in $\Omega^{*}\left(\mathbf{G}_{k} / T_{k}\right)$

$$
c(\xi)=\prod\left(1+\lambda_{1} t_{1}+\lambda_{2} t_{2}\right) \in \Omega^{*}\left[t_{1}, t_{2}\right] \quad \lambda_{i} \in \mathbf{Z} / 2
$$

modulo $\left(\left(t_{1}, t_{2}\right) \Omega^{<0} \Omega^{*}\left(G_{k} / T_{k}\right)\right)$. By the similar arguments, we have (see Theorem 5.3 in [Ya6])

Theorem 8.2. There are ring isomorphisms

$$
g r_{\gamma}^{*}(G / T) \cong C H^{*}\left(\mathbf{G}_{k} / T_{k}\right) \cong \mathbf{Z}\left[t_{1}, t_{2}\right] /\left(t_{2}^{6}, 2 u, t_{2}^{3} u, u^{2}\right)
$$

where $u=t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}$.
Proof. The Chow ring is isomorphic to

$$
\text { (*) } \begin{aligned}
C H^{*}\left(\mathbf{G}_{k} / T_{k}\right) & \cong C H^{*}\left(\mathbf{G}_{k} / P_{k}\right)\left\{1, t_{1}\right\} \\
& \cong\left(\mathbf{Z}\{1,2 y\} \oplus \mathbf{Z} / 2\left\{v_{1} y\right\}\right)\left\{1, t_{2}, t_{2}^{2}\right\}\left\{1, t_{1}\right\} .
\end{aligned}
$$

Here $2 y=t_{2}^{3}$. Since $v_{1} y \in\left(t_{1}, t_{2}\right)$ and $v_{1} y=0 \in C H^{*}\left(G_{k} / T_{k}\right)$, we see

$$
v_{1} y=\lambda\left(t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}\right) \quad \bmod \left(\left(t_{1}, t_{2}\right) \Omega^{<0} \Omega^{*}\left(G_{k} / T_{k}\right)\right)
$$

for $\lambda \in \mathbf{Z}$. We can take $\lambda=1 \bmod (2)$. Otherwise $v_{1} y=0 \in \Omega^{*}\left(G_{k} / T_{k}\right) / 2$, which is an $\Omega^{*} / 2$-free, and this is a contradiction. Hence we can take $t_{1}^{2}+t_{1} t_{2}+t_{2}^{2}$ as $v_{1} y$. Hence in $C H^{*}\left(\mathbf{G}_{k} / T_{k}\right)$ we have the relation

$$
\left(t_{2}^{3}\right)^{2}=0, \quad\left(t_{2}^{3}\right) u=0, \quad u^{2}=0, \quad 2 u=0
$$

Next we consider the case $(G, p)=\left(F_{4}, 3\right)$. Let $\mathbf{G}_{k}$ be a nontrivial $G_{k}$-torsor at 3 as previous sections. Let $P_{k}$ be a maximal parabolic subgroup of $G_{k}$ given by the first three vertexes

$$
{ }_{0}^{1}-0_{0}^{2} \Rightarrow=0^{3}--4_{0}^{4}
$$

of the Dynkin diagram. Then Nikolenko-Semenov-Zainoulline ([Ni-Se-Za]) showed that there is an isomorphism

$$
M\left(\mathbf{G}_{k} / P_{k}\right) \cong \bigoplus_{i=0}^{7} M_{2}(i)
$$

We first recall the ordinary cohomology of $G / P([I s-T o],[D u-Z a])$.

$$
H^{*}(G / P)_{(3)} \cong \mathbf{Z}[t, y] /\left(r_{8}, r_{12}\right), \quad|t|=2, \quad|y|=8
$$

where $r_{8}=3 y^{2}-t^{8}$ and $r_{12}=26 y^{3}-5 t^{12}$. Hence we can rewrite

$$
H^{*}(G / P) \cong \mathbf{Z}\left\{1, t, \ldots, t^{7}\right\} \otimes\left\{1, y, y^{2}\right\} .
$$

Recall the Rost motive $C H^{*}\left(\left.M_{2}\right|_{\bar{k}}\right) \cong \mathbf{Z}[y] /\left(y^{3}\right)$,

$$
C H^{*}\left(M_{2}\right) \cong \mathbf{Z}\{1\} \oplus \mathbf{Z}\left\{3 y, 3 y^{2}\right\} \oplus \mathbf{Z} / 3\left\{v_{1} y, v_{1} y^{2}\right\}
$$

Of course, the above $y \in C H^{*}\left(M_{a}\right)$ can be identified with the same named element in $H^{*}\left(G_{k} / P_{k}\right)$ by the restriction map $C H^{*}\left(M_{a}\right) \rightarrow C H^{*}\left(\left.M_{a}\right|_{\bar{k}}\right) \subset$ $C H^{*}\left(G_{k} / P_{k}\right)$. From the above isomorphism, we have the decomposition
$(*) \quad C H^{*}\left(\mathbf{G}_{k} / P_{k}\right) \cong \mathbf{Z}\left\{1, t, \ldots, t^{7}\right\} \otimes\left(\mathbf{Z}\left\{1,3 y, 3 y^{2}\right\} \oplus \mathbf{Z} / 3\left\{v_{1} y, v_{1} y^{2}\right\}\right)$.
The ring structure is given as follows.
Proposition 8.3 (Theorem 6.2 in [Ya6]).

$$
\begin{aligned}
g r_{\text {geo }}^{*}\left(\mathbf{G}_{k} / P_{k}\right) & \cong C H^{*}\left(\mathbf{G}_{k} / P_{k}\right) \\
& \cong \mathbf{Z}\left[t, b, a_{1}, a_{2}\right] /\left(t^{16}, t^{8} b, b^{2}=3 t^{8}, b a_{i}, 3 a_{i}, t^{8} a_{i}, a_{1} a_{2}\right) \\
& \cong \mathbf{Z}\left\{1, t, \ldots, t^{7}\right\} \otimes\left(\mathbf{Z}\left\{1, \sqrt{ } 3 t^{4}, t^{8}\right\} \oplus \mathbf{Z} / 3\left\{a_{1}, a_{2}\right\}\right)
\end{aligned}
$$

where $|b|=8$ and $\left|a_{1}\right|=4,\left|a_{2}\right|=12$.
Proof. From the relation $r_{8}$ in $C H^{*}(G / P)$, we have

$$
3 y^{2}=t^{8}+v x \in \Omega^{*}(G / P) \quad \text { for } v \in \Omega^{<0} .
$$

Hence we can take $t^{8}$ instead of $3 y^{2}$ in (*). Of course

$$
(3 y)^{2}=3 t^{8}+3 v x \in \Omega^{*}\left(G_{k} / P_{k}\right) .
$$

Hence we write by $b=\sqrt{ } 3 t^{4}$ the element $3 y$. Write by $a_{1}, a_{2}$ the elements $v_{1} y, v_{1} y^{2}$ respectively. Elements in $I_{\infty} \Omega^{<0} \subset \Omega\left(G_{k} / P_{k}\right)$ reduces to zero in $C H^{*}\left(\mathbf{G}_{k} / T_{k}\right)$. Therefore we have the desired multiplicative results.

The element $b=3 y$ is represented by a Chern class $c_{4}(\xi)$ for some $\xi$ by the Riemann-Roch theorem without denominators. Unfortunately, we do not know if $a_{2}=v_{1} y^{2}$ are Chern classes in $C H^{*}\left(\mathbf{G}_{k} / P_{k}\right)$ or not.

Proposition 8.4. If $a_{2}=v_{1} y^{2} \in \operatorname{CH}^{*}\left(\mathbf{G}_{k} / P_{k}\right)$ is represented by a Chern class, then $\operatorname{gr}_{\gamma}(G / P) \cong C H^{*}\left(\mathbf{G}_{k} / P_{k}\right)$. Otherwise

$$
g r_{\gamma}(G / P) \cong \mathbf{Z}\left[t, b, a_{1}\right] /\left(t^{16}, t^{8} b, b^{2}=3 t^{8}, b a_{1}, 3 a_{1}, t^{8} a_{1}, a_{1}^{3}\right)
$$

where $|b|=8$ and $\left|a_{1}\right|=4$.
Proof. If $v_{1} y^{2}$ is not represented by Chern class of $\mathrm{CH}^{*}\left(\mathbf{G}_{k} / P k\right)$ (or $\Omega^{*}\left(\mathbf{G}_{k} / P_{k}\right)$ ), then the corresponding nonzero element in $g r_{\gamma}(G / T)$ is $v_{1}^{2} y^{2}$, which is written as $\left(v_{1} y\right)^{2}=\left(a_{1}\right)^{2}$.

## 9. Filtrations of the Morava $K$-theory

For most groups $G$ in the preceding sections, it is known that $K(n)^{\text {odd }}(B G)$ $=0$ (while Kriz gave some examples with $\left.K(n)^{\text {odd }}(B G) \neq 0\right)$. Hereafter, we only consider spaces $X$ such that

$$
\begin{gather*}
K(n)^{\text {odd }}(X(\mathbf{C}))=\tilde{K}(n)^{\text {odd }}(X(\mathbf{C}))=0,  \tag{9.1}\\
K(n)^{*}(X(\mathbf{C})) \cong A K(n)^{2 *, *}(X) . \tag{9.2}
\end{gather*}
$$

Then we can define the three filtrations for the Morava $K(n)$-theory

$$
\begin{gathered}
F(n)_{\text {top }}^{2 i}=\operatorname{Ker}\left(K ( n ) ^ { * } \left(X(\mathbf{C}) \rightarrow K(n)^{*}\left(X(\mathbf{C})^{2 i}\right),\right.\right. \\
F(n)_{\text {geo }}^{2 i}=\left\{f_{*}\left(1_{M}\right) \mid f: M \rightarrow X \text { and } \operatorname{codim}_{X} M \geq i\right\} \\
F(n)_{\gamma}^{2 i}=\left\{c_{i_{1}}^{K(n)}\left(x_{1}\right) \cdot \ldots c_{i_{m}}^{K(n)}\left(x_{m}\right) \mid i_{1}+\cdots i_{m} \geq i\right\},
\end{gathered}
$$

and let us write the associated graded algebras

$$
\operatorname{gr}(n)_{\gamma}^{*}(X), \quad \operatorname{gr}(n)_{g e o}^{*}(X), \quad \operatorname{gr}(n)_{\text {top }}^{*}(X(\mathbf{C})) .
$$

Here $c_{i_{s}}^{K(n)}\left(x_{s}\right)$ is the Chern class for $A K(n)^{*, *^{\prime}}$-theory for some $k$-representation $x_{s}: X \xrightarrow{s_{s}} B G L_{N}$. This Chern class is induced from the isomorphism

$$
A K(n)^{2 *, *}\left(B G L_{N}\right) \cong K(n)^{*} \otimes_{B P^{*}} \Omega^{*}\left(B G L_{N}\right)
$$

in fact, it is well known that in $\Omega^{*}(X)$, we can define Chern classes canonically (see [Mo-Le] for example). However each element in $K(n)^{*}(X(\mathbf{C}))$ (for $n \geq 2$ ) need not to be represented by $K(n)^{*}$-theory Chern classes. Hence we need the assumption

$$
\begin{equation*}
F_{\gamma}^{0}=K(n)^{*}(X) . \tag{9.3}
\end{equation*}
$$

(However, we also consider the cases where (9.3) is not assumed.) Of course the assumptions are satisfied for $K(1)^{*}$-theory, if they are so for $\tilde{K}(1)^{*}$-theory. Recall $P(n)^{*}(X)$ be the cohomology theory with the coefficient

$$
P(n)^{*}=B P^{*} /\left(p, v_{1}, \ldots, v_{n-1}\right) .
$$

It is well known, for all $X$,

$$
P(n)^{*}(X) \otimes_{B P^{*}} K(n)^{*} \cong K(n)^{*}(X) .
$$

Let us write by $E(P(n))_{r}^{*, *^{\prime}}$ (resp. $E(K(n))_{r}^{*, *^{\prime}}$ ) the AHss converging to $P(n)^{*}(X)$ (resp. $\left.K(n)^{*}(X)\right)$. Then we have

$$
E(P(n))_{r}^{*, *^{\prime}} \otimes_{B P^{*}} K(n)^{*} \cong E(K(n))_{r}^{*, *^{\prime}}
$$

If (9.1)-(9.3) are satisfied, then $K(n)$-version (exchanging $B P^{*}(X)$ to $\left.P(n)^{*}(X)\right)$ of all lemmas in $\S 2$ also hold.

Lemma 9.1. Suppose (9.1) for all $n \geq 1$, and that $\Omega^{*}(X) / p \cong B P^{*}(X(\mathbf{C})) / p$ and it is generated by (BP*-)Chern classes. Then (9.2) and (9.3) are satisfied and $\operatorname{gr}(n)_{\gamma}^{*}(X) \cong g r(n)_{\text {geo }}^{*}(X)$.

Proof. We consider the maps

$$
\Omega^{*}(X) \otimes_{B P^{*}} K(n)^{*} \xrightarrow{\rho_{1}} A K(n)^{2 *, *}(X) \xrightarrow{\rho_{2}} K(n)^{*}(X(\mathbf{C})) .
$$

Here the map $\rho_{1}$ is an epimorphism because $\Omega^{*}(X)$ (resp. $\left.A K(n)^{2 *, *}(X)\right)$ is generated as a $B P^{*}$-module (resp. $K(n)^{*}$-module) by elements in $C H^{*}(X)$.

On the other hand by Ravenel-Wilson-Yagita [Ra-Wi-Ya], we know that (9.1) implies

$$
K(n)^{*}(X(\mathbf{C})) \cong K(n)^{*} \otimes_{B P^{*}} B P^{*}(X(\mathbf{C}))
$$

From the supposion in the theorem, we see that $\rho_{2} \rho_{1}$ is an isomorphism. This means that $\rho_{1}, \rho_{2}$ are also isomorphisms.

The assumptions in the above lemma are satisfied for $X=B G, G=$ finite abelian, $p_{ \pm}^{1+2}, O_{n}, G_{2}$ and $P G L_{3}(p=3)$.

Of course $g r_{\text {top }}^{*}(X)$ and $g r(n)_{\text {top }}^{*}(X)$ are quite different. Let $G=\mathbf{Z} / p$. Then

$$
K(n)^{*}(B G) \cong K(n)^{*}(y] /\left(y^{p^{n}}\right) .
$$

and this is generated by Chern classes in $H^{*}(B G ; \mathbf{Z} / p)$.
Theorem 9.2. Let $G=\bigoplus^{s} \mathbf{Z} / p$. Then all three filtrations of $K(n)^{*}(B G)$ are same and

$$
\operatorname{gr}(n)_{t o p}^{*}(B G) \cong \mathbf{Z} / p\left[y_{1}, \ldots, y_{s}\right] /\left(y_{1}^{p^{n}}, \ldots, y_{s}^{p^{n}}\right)
$$

Similarly, we have
Theorem 9.3. Let $G=O_{m}$ and $p=2$. Then all three filtrations of $K(n)^{*}(B G)$ are same and

$$
g r(n)_{t o p}^{*}(B G) \cong\left\{\sum y_{1}^{i_{1}} \cdots y_{s}^{i_{s}}\left(y_{s+1} y_{s+2}\right)^{j_{s+1}} \cdots\left(y_{2 k+1} y_{2 k+2}\right)^{j_{2 k+1}}\right\}
$$

where $0 \leq i_{1} \leq \cdots \leq i_{s}<2^{n} \leq i_{s} \leq \cdots \leq i_{k}$.
For example, $\operatorname{gr}(n)_{\text {top }}^{*} \cong \mathbf{Z} / 2\left[c_{2}\right] \oplus \mathbf{Z} / 2\left\{c_{1}^{i} c_{2}^{j} \mid i+2 j<2^{n}\right\}$.
Next we consider the case $G=S O_{2 m}$ Recall for $m \geq 3, y_{2 m}$ is not represented by Chern classes

Theorem 9.4. Let $G=S O_{2 m}, p=2$ and $m>2$. Then

$$
\operatorname{gr}(n)_{g e o}^{*}(B G) \cong \mathbf{Z}\left[c_{2}, c_{4}, \ldots, c_{2 m}\right]\left\{y_{2 m}\right\} \oplus \operatorname{gr}(n)_{g e o}^{*}\left(B O_{2 m}\right) /\left(c_{1}\right) .
$$

However $\operatorname{gr}(n)_{\gamma}^{*}(B G) \not \equiv \operatorname{gr}(n)_{\text {geo }}^{*}(B G) \not \equiv \operatorname{gr}(n)_{\text {top }}^{*}(B G)$.
Proof. We only need the second non-isomorphism of the second statement. Since $y_{2 m}=(-1)^{*} 2^{m-1} w_{2 m} \in H^{*}(B G)$ is zero in $H^{*}(B G ; \mathbf{Z} / 2)$. Hence $0 \neq y_{2 m} \in$ $P(n)^{*}(B G)$ is represented in the AHss converging to $P(n)^{*}(B G)$ as element in $E_{\infty}^{*, *^{\prime}}$ with $*^{\prime}<0$ and $*>2 m$.

Next consider the case $G=G_{2}$ (and $p=2$ ). By the computation of the AHss for $P(1)^{*}(B G)\left(=B P^{*}(B G ; \mathbf{Z} / 2)\right)$, we have

$$
K(1)^{*}(B G) \cong K(1)^{*}\left[c_{4}, c_{6}\right]\left\{1, v_{1} w_{6}\right\} .
$$

By the direct computation of the AHss for $K(2)^{*}(B G)$, we see

$$
K(2)^{*}(B G) \cong K(2)^{*}\left[c_{4}, c_{6}\right]\left\{1, w_{4} w_{6}\right\} .
$$

Thus we have
Theorem 9.5. Let $G=G_{2}$ and $p=2$. Then

$$
g r(i)_{\alpha}^{*}(B G) \cong \mathbf{Z} / 2\left[c_{4}, c_{6}\right]\{1, a\}
$$

where $a^{2}=\left\{\begin{array}{l}c_{4} c_{6}|a|=10 \quad \text { if } i=2 . \alpha=\text { top } \\ c_{6}|a|=6 \quad \text { if } \quad i=1 . \alpha=\text { top } \\ 0|a|=4 \quad \text { if } i=1,2 . \alpha \neq \text { top. }\end{array}\right.$.
Proof. The above $a$ is represented as $a=w_{4} w_{6}$ (resp. $w_{6}, v_{1} w_{6}, v_{2} w_{4} w_{6}$ ) when $i=2, \alpha=$ top (resp. $i=1, \alpha=$ top, $i=1 \alpha \neq$ top), and $i=2 \alpha \neq$ top $)$ ).

When $n \geq 1$, the geometric and topological filtrations are quite different.
Theorem 9.6. Let $G$ be a simply connected simple Lie group such that $H^{*}(G)$ has $p$-torsion. Then for $n \geq 1$

$$
g r(n)_{\text {geo }}^{4}(B G) \neq 0 \quad \text { but } \quad \operatorname{gr}(n)_{\text {top }}^{4}(B G)=0 .
$$

Proof. The space $B G$ is 3 -connected and $H^{4}(B G) \cong \mathbf{Z}$ (so $H^{4}(B G ; \mathbf{Z} / p) \cong$ $\mathbf{Z} / p)$. Let us write by $x$ its 4-dimensional generator. To see $\operatorname{gr}(n)_{t o p}^{4}(B G)=0$, we only need to show

$$
(*) \quad d_{2 p^{n}-1}(x)=v_{n} \otimes Q_{n}(x) \neq 0
$$

in the AHss converging to $K(n)^{*}(B G)$.

For these groups, it is well known that there are embedding $G_{2} \subset G$ for $p=2,\left(F_{4} \subset G\right.$ for $p=3$ and $G=E_{8}$ for $\left.p=5\right)$. We will prove (*) for $G=F_{4}$ and $p=3$, then we can see $(*)$ for the other groups when $p=3$. (The other primes cases are similar).

Let $G=F_{4}$ and $p=3$. Then $G$ has a maximal elementary $p$-group $A \cong$ $(\mathbf{Z} / 3)^{3}$. We consider the restriction map for $i: A \subset G$,

$$
i^{*}: H^{*}(B G ; \mathbf{Z} / p) \rightarrow H^{*}(B A ; \mathbf{Z} / p) \cong \mathbf{Z} / p\left[y_{1}, y_{2}, y_{3}\right] \otimes \Lambda\left(x_{1}, x_{2}, x_{3}\right)
$$

The restriction image is $i^{*}(x)=Q_{0}\left(x_{1} x_{2} x_{3}\right)$ (see [Ka-Te-Ya]). Hence we show

$$
i^{*}\left(Q_{n}(x)\right)=Q_{n} Q_{0}\left(x_{1} x_{2} x_{3}\right)=\sum y_{1}^{p^{n}} y_{2} x_{3} \neq 0
$$

By [ $\mathrm{Ka}-\mathrm{Ya} 2$ ], it is known that $p x \in H^{4}(B G)$ is represented as the Chern class $c_{2}$ for some representation. Hence $\operatorname{gr}(n)_{\text {geo }}^{4}(B G) \neq 0$. Thus we have the theorem.

Now we recall arguments for quadrics. Let $m=2 m^{\prime}+1$, and let us write the quadratic form $q(x)$ defined by

$$
q\left(x_{1}, \ldots, x_{m}\right)=x_{1} x_{2}+\cdots+x_{m-2} x_{m-1}+x_{m}^{2}
$$

and the projective quadric $X_{q}$ defined by the quadratic form $q$. Then it is well known that (in fact $S O(m)$ acts on the affine quadric in $\mathbf{A}^{m}-0$ )

$$
X_{q} \cong S O(m) /(S O(m-2) \times S O(2))
$$

Let $G=S O(m)$ and $P=S O(m-2) \times S O(2)$. Then the quadric $q$ is always split over $k$ and we know $C H^{*}\left(G_{k} / P_{k}\right) \cong C H^{*}\left(X_{q}\right)$.

In particular we consider the case $m=2^{n+1}-1$. Let $\rho=\{-1\} \in K_{1}^{M}(k) / 2$ $=k^{*} /\left(k^{*}\right)^{2}$. We consider fields $k$ such that

$$
0 \neq \rho^{n+1} \in K_{n+1}^{M}(k) / 2
$$

Define the quadratic form $q^{\prime}$ by $q^{\prime}\left(x_{1}, \ldots, x_{m}\right)=x_{1}^{2}+\cdots+x_{m}^{2}$. Then this $q^{\prime}$ is a subform of $\langle\langle-1, \ldots,-1\rangle\rangle=\phi_{\rho^{n+1}}$ the $(n+1)$-th Pfister form associated to $\rho^{n+1}$. (That is, $q^{\prime}$ is the maximal neighbor of the $(n+1)$-th Pfister form.) Of course $\left.q\right|_{\bar{k}}=\left.q^{\prime}\right|_{\bar{k}}$ and we can identify $\mathbf{G}_{k} / P_{k} \cong X_{q^{\prime}}$. From Lemma 7.2 (or Rost's result), we know

$$
C H^{*}\left(\left.X_{q^{\prime}}\right|_{\bar{k}}\right) \cong \mathbf{Z}[t, y] /\left(2^{2^{n}-1}-2 y, y^{2}\right) .
$$

As stated in $\S 7$, there is a decomposition of motives

$$
M\left(X_{q^{\prime}}\right) \cong M_{n} \otimes \mathbf{Z} / 2[t] /\left(t^{2^{2}-1}\right)
$$

Hence we have the additive isomorphism

$$
C H^{*}\left(X_{\phi_{a}^{\prime}}\right) \cong \mathbf{Z}[t] /\left(t^{2^{n}-1}\right) \otimes\left(\mathbf{Z}\left\{1, c_{n, 0}\right\} \oplus \mathbf{Z} / 2\left\{c_{n, 1}, \ldots, c_{n, n-1}\right\}\right)
$$

With identification $t^{2^{n}-1}=2 y=c_{n, 0}$, and $u_{i}=c_{n, i}$ for $i>0$, we also get the ring isomorphism

Theorem 9.7 ([Ya6]). Let $0 \neq \rho^{n+1} \in K_{n+1}^{M}(k) / 2$ and let $\mathbf{G}_{k} / P_{k}$ be the above quadric $X_{q^{\prime}}$. Then there is a ring isomorphism

$$
C H^{*}\left(\mathbf{G}_{k} / P_{k}\right) \cong \mathbf{Z}[t] /\left(t^{2^{n+1}-2}\right) \oplus \mathbf{Z} / 2[t] /\left(t^{2^{n}-1}\right)\left\{u_{1}, \ldots, u_{n-1}\right\}
$$

where $u_{i}=v_{i} y \in \Omega^{*}\left(\mathbf{G}_{k} / p\right) \otimes_{\Omega^{*}} Z_{(2)}$ so $u_{i} u_{j}=0$. Hence for $1 \leq i \leq n-1$, we have

$$
g r(i)_{\text {geo }}\left(\mathbf{G}_{k} / P_{k}\right) \cong \mathbf{Z}[t] /\left(t^{2^{n+1}-2}\right) \oplus \mathbf{Z} / 2[t] /\left(t^{2^{n}-1}\right)\left\{u_{i}\right\} .
$$

Proof. In $K(i)^{*}(X)$, we see $v_{j}=0$ for $i \neq j$. Since $v_{j} u_{i}=v_{i} u_{j}$, we see $u_{j}=0$ for $i \neq j$.

## References

[Ad] J. F. Adams, Lectures on exceptional Lie groups, Univ. Chicago Press. Chicago, IL, 1996.
[At] M. Atiyah, Characters and the cohomology of finite groups, Publ. Math. IHES 9 (1961), 23-64.
[Bo] J. Bonnet, Un isomorphisme motivique entre deux variétés homogénes projective sous l'action d'un groupe de type $G_{2}$, Doc. Math. 8 (2003), 247-277.
[Ca-Pe-Se-Za] B. Calmès, V. Petrov, N. Semenov and K. Zainoulline, Chow motives of twisted flag varieties, Compositio Math. 142 (2006), 1063-1080.
[Du-Za] H. Duan and X. Zhao, The Chow ring of generalized Grassmanianns, Found. Comput. Math. 10 (2010), 245-274.
[Fi] R. Field, The Chow ring of the classifying space $B S O(2 n, \mathbf{C})$, J. Algebra 349 (2012), 330-339.
[Ga-Me-Se] S. Garibaldi, A. Merkurjev and J. P. Serre, Cohomological invariants in Galois cohomology, University lect. series 28, AMS, 2003.
[Ga-Za] S. Garibardi and K. Zainoulline, The $\gamma$-filktration and the Rost invariant, J. Reine Angew. Math. Math. 696 (2014), 225-244.
[Gr] A. Grothendieck, Torsion homologique et sections rationnelles, Sem. C. Chevalley, ENS 1958, expose 5, Secreatariat Math., IHP, Paris, 1958.
[Gu] P. Guillot, The Chow ring of $G_{2}$ and $\operatorname{Spin}(7)$, J. Reine angew. Math. 604 (2007), 137-158.
[Ha] M. Hazewinkel, Formal groups and applications, Pure and applied math. 78, Academic Press Inc., 1978.
[Is-To] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243.
[Ju] C. Junkins, The J-invariant and Tits algebras for groups of inner type $E_{6}$, Manuscripta Math. 140 (2013), 249-261.
[Ka-Yal] M. Kameko and N. Yagita, The Brown-Peterson cohomology of the classifying spaces of the projective unitary groups $P U(p)$ and exceptional Lie group, Trans. Amer. Math. Soc. 360 (2008), 2265-2284.
[Ka-Ya2] M. Kameko and N. Yagita, Chern subrings, Proc. Amer. Math. Soc. 138 (2010), 367-373.
[Ko-Ya] A. Kono and N. Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), 781-798.
[Le-Ya] I. Leary and N. Yagita, Some examples in the integral and Brown-Peterson cohomology of $p$-groups, Bull. London Math. Soc. 24 (1992), 165-168.
[Le-Mol] M. Levine and F. Morel, Cobordisme algébrique I, C. R. Acad. Sci. Paris 332 (2001), 723-728.
[Le-Mo2] M. Levine and F. Morel, Cobordisme algébrique II, C. R. Acad. Sci. Paris 332 (2001), 815-820.
[Mo-Vi] L. Molina and A. Vistoli, On the Chow rings of classifying spaces for classical groups, Rend. Sem. Mat. Univ. Padova 116 (2006), 271-298.
[Ni-Se-Za] S. Nikolenko, N. Semenov and K. Zainoulline, Motivic decomposition of anisotropic varieties of type $F_{4}$ into generalized Rost motives, J. K-theory 3 (2009), 85-102.
[Pe-Se-Za] V. Petrov, N. Semenov and K. Zainoulline, J-invariant of linear algebraic groups, Ann. Sci. Ec. Norm. Super. 41 (2008), 1023-1053.
[Qu] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.
[Ra] D. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and applied mathematics 121, Academic Press, 1986.
[Rol] M. Rost, Some new results on Chowgroups of quadrics, preprint, 1990.
[Ro2] M. Rost, On the basic correspondence of a splitting variety, preprint, 2006.
[Sc-Ya] B. Schuster and N. Yagita, Transfers of Chern classes in BP-cohomology and Chow rings, Trans. Amer. Math. Soc. 353 (2001), 1039-1054.
[Su-Jo] A. Suslin and S. Joukhovitski, Norm variety, J. Pure and Appl. Algebra 206 (2006), 245-276.
[Th] C. Thomas, Filtrations on the representation ring of a finite group, Contempt. Math. 19 (1983), 397-405.
[Tod] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199.
[Tod-Wa] H. Toda and T. Watanabe, The integral cohomology ring of $F_{4} / T$ and $E_{6} / T$, J. Math. Kyoto Univ. 14 (1974), 257-286.
[Tol] B. Totaro, The Chow ring of classifying spaces, Proc. of Symposia in Pure Math. "Algebraic $K$-theory" (University of Washington, Seattle, 1997) 67 (1999), 248-281.
[To2] B. Totaro, Group cohomology and algebraic cycles, Cambridge tracts in math. 204, Cambridge Univ. Press, 2014.
[Ve] G. Vezzosi, On the Chow ring of the classifying stack of $P G L_{3}(\mathbf{C})$, J. Reine Angew. Math. 523 (2000), 1-54.
[Vi-Ya] A. Vishik and N. Yagita, Algebraic cobordisms of a Pfister quadric, J. London Math. Soc. 76 (2007), 586-604.
[Vit] A. Vistoli, On the cohomology and the Chow ring of the classifying space $P G L_{p}$, J. Reine Angew. Math. 610 (2007), 181-227.
[Vol] V. Voevodsky, The Milnor conjecture, www.math.uiuc.edu/K-theory/0170, 1996.
[Vo2] V. Voevodsky (Noted by C. Weibel), Voevodsky's Seattle lectures: $K$-theory and motivic cohomology, Proc. of Symposia in Pure Math. "Algebraic $K$-theory" (University of Washington, Seattle, 1997) 67 (1999), 283-303.
[Vo3] V. Voevodsky, Motivic cohomology with $\mathbf{Z} / 2$ coefficient, Publ. Math. IHES 98 (2003), 59-104.
[Vo4] V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. IHES 98 (2003), 1-57.
[Vo5] V. Voevodsky, On motivic cohomology with Z/l-coefficients, Ann. Math. 174 (2011), 401-438.
[Wi] S. Wilson, The complex cobordism of $B O(n)$, J. London Math. Soc. 29 (1984), 352-366.
[Ya1] N. Yagita, Chomology for groups of $\operatorname{rank}_{p} G=2$ and Brown-Peterson cohomology, J. Math. Soc. Japan 45 (1993), 627-644.
[Ya2] N. Yagita, The image of cycle map of classifying space of the exceptional group $F_{4}$, J. Math. Kyoto Univ. 44 (2004), 181-189.
[Ya3] N. Yagita, Applications of Atiyah-Hirzebruch spectral sequence for motivic cobordism, Proc. London Math. Soc. 90 (2005), 783-816.
[Ya4] N. Yagita, Chow rings of nonabelian $p$-groups of order $p^{3}$, J. Math. Soc. Japan 64 (2012), 507-531.
[Ya5] N. Yagita, Algebraic BP-theory and norm varieties, Hokkaido Math. J. 41 (2012), 275-316.
[Ya6] N. Yagita, Note on Chow rings of nontrivial $G$-torsors over a field, Kodai Math. J. 34 (2011), 446-463.
[Za] K. Zainoulline, Twisted gamma filtration of a linear algebraic group, Compositio Math. 148 (2012), 1645-1654.

Nobuaki Yagita
Faculty of Education
Ibaraki University
Mito, Ibaraki
Japan
E-mail: yagita@mx.ibaraki.ac.jp


[^0]:    2000 Mathematics Subject Classification. Primary 11E72, Secondary 12G05.
    Key words and phrases. $\gamma$-filtration, $K$-theory, representation ring.
    Received December 20, 2013; revised September 5, 2014.

