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NOTE ON THE FILTRATIONS OF THE K-THEORY

Nobuaki Yagita

Abstract

Let X be a (colimit of ) smooth algebraic variety over a subfield k of C. Let

K 0
algðXÞ (resp. K 0

topðXðCÞÞ) be the algebraic (resp. topological) K-theory of k (resp.

complex) vector bundles over X (resp. XðCÞÞ). When K 0
algðXÞGK 0

topðXðCÞÞ, we study

the di¤erences of its three (gamma, geometrical and topological) filtrations. In par-

ticular, we consider in the cases X ¼ BG for algebraic group G over algebraically closed

fields k, and X ¼ Gk=Tk the twisted form of flag varieties G=T for non-algebraically

closed field k.

1. Introduction

Let X be a (colimit of ) smooth algebraic variety over a subfield k of C. We
consider the cases that

K 0
algðXÞGK 0

topðX ðCÞÞð1:1Þ
where K 0

algðXÞ (resp. K 0
topðX ðCÞÞ) is the algebraic (resp. topological) K-theory

generated by algebraic k-bundles (complex bundles) over X (resp. X ðCÞ). In this
assumption, we study the typical three filtrations

F i
g ðXÞHF i

geoðXÞHF i
topðXðCÞÞ

namely, the gamma and the geometric filtrations defined by Grothendieck [Gr],
and the topological filtration defined by Atiyah [At]. Namely, we study induced
maps of associated rings

gr�g ðXÞ ! gr�geoðXÞ ! gr�topðXðCÞÞ:

Atiyah showed that gr�topðXðCÞÞ is isomorphic to the infitite term E �;0
y of the

AHss (Atiyah-Hirzebruch spectral sequence) converging to K-theory K �ðX ðCÞÞ.
Moreover he showed that gr�topðXðCÞÞG gr�g ðX Þ if and only if E �;0

y is generated
by Chern classes in H �ðXðCÞÞ. We will see that similar facts hold for gr�geoðXÞ.
Namely, gr2�geoðX ÞGAE 2�;�;0

y of the motivic AHss converging to motivic K-theory
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AK �;�0 ðX Þ. Moreover we show that gr�geoðX ÞG gr�g ðXÞ if and only if AE2�;�;0
y is

generated by Chern classes in the Chow ring CH �ðXÞGH 2�;�ðXÞ.
Let G be a compact Lie group (e.g., a finite group) and Gk be the correspond-

ing algebraic group over an algebraically closed field k. Then by Merkurjev and
Totaro ([To1]), we have the isomorphisms

K 0
algðBGkÞGRðGkÞ5GRðGÞ5GK 0

topðBGÞ;

where RðGkÞ5 (resp. RðGÞ5) is the k-representation (resp. complex representation)
ring completed by the augmentation ideal, and BGk and BG are their classifying
spaces.
Atiyah had conjectured in [At] that F i

g ðBGÞ ¼ F i
topðBGÞ for all finite groups.

Weiss [Th] showed this does not hold for G ¼ A4. Counter examples of p-
groups were given by Leary-Yagita [Le-Ya] when G is rankpðGÞ ¼ 2 of class 3
with pb 5. We will see for the same group G, F 2pþ2

g ðBGkÞ0F 2pþ2
geo ðBGkÞ ¼

F
2pþ2
top ðBGkÞ.

We study these filtrations detailedly for connected groups ðOn;SOn; . . .Þ. In
particular we show

Theorem 1.1. (Let k be an algebraically closed field.) For G ¼ Spin7, there
is an element x in K 0

algðBGkÞ such that

00 x A gr4g ðBGkÞ; 00 x A gr6geoðBGkÞ; 00 x A gr8topðBGÞ:

These facts also hold for the extraspecial 2-group 21þ6
þ .

Remark. Quite recently B. Totaro published paper [To2]. In §15 in this
paper, he gives examples such that

gr�geoðBGÞðpÞ 0 gr�topðBGÞðpÞ
for all primes p.

We consider the di¤erent type of examples, which satisfy (1.1). (See also
[Ga-Za], [Za].) Here we do not assume that k is algebraically closed. Let us
write by MðXÞ the (pure) motive of X , and by Ma ¼ ðMnÞ the Rost motive for
a nonzero pure symbol a A KM

nþ1ðkÞ=p ([Ro1,2], [Su-Jo]). We consider the cases
X such that

MðXÞGMn nAðX Þð1:2Þ

where AðXÞ is a sum of k-Tate motives. Then we can see that (1.1) is satisfied
by the result from ([Vi-Ya], [Ya6]).

Some cases of flag manifolds G=P satisfy (1.2) ([Ca-Pe-Se-Za], [Ni-Se-Za],
[Pe-Se-Za]). We consider the exceptional Lie group G2. Let G2;k and Tk be
the corresponding splitting reductive group and its splitting maximal torus. Let
us write by G2;k the nontrivial G2;k-torsor (induced from a Rost cohomological
invariant 00 a A KM

3 ðkÞ=2, [Ga-Me-Se]). (Namely, G2;k=Tk is a twisted form
of G2=T .) Then for p ¼ 2 X ¼ G2;k=Tk satisfies (1.2) ([Bo], [Pe-Se-Za]).
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Note that H �ðG2=TÞ is torsion free, and we have

gr�geoðG2;k=TkÞG gr�topðG2=TÞGH �ðG2=TÞ:

By using the fact that CH �ðG2;k=TkÞ is generated by Chern classes, we can show

Theorem 1.2. Let G2;k be the nontrivial G2;k-torsor for the Rost cohomolog-
ical invariant in KM

3 ðkÞ=2. Then we have

gr2�g ðG2=TÞG gr2�geoðG2;k=TkÞGCH �ðG2;k=TkÞ:

From (1.1), the gamma filtration is defined purely topologically. Thus we
see that this topological invariant is isomorphic to a purely algebraic geometric
object such as the Chow ring of twisted form.

2. Filtrations

We first recall the topological filtration defined by Atiyah. Let Y be a
topological space (e.g., a CW -complex). Let K �ðY Þ be the complex K-theory;
the Grothendieck group generated by complex bundles over Y . Let Y i be an
i-dimensional skeleton of Y . Define the topological filtration of K �ðY Þ by

F i
topðY Þ ¼ KerðK �ðYÞ ! K �ðY iÞÞ

and the associated graded algebra gritopðY Þ ¼ F i
topðYÞ=F iþ1

top ðYÞ.
We consider the long exact sequence (exact couple)

� � � ! K �ðY i=Y i�1Þ ! K �ðY iÞ ! K �ðY i�1Þ !d K �þ1ðY i=Y i�1Þ ! � � �

Here we have K �ðY i=Y i�1ÞGK � nH �ðY i=Y i�1Þ; which induces the (well
known) AHss

E
�;�0
2 ðY ÞGH �ðYÞnK � ) K �ðY Þ:

By the construction of the spectral sequence, we have

Lemma 2.1 (Atiyah [At]). gr�topðYÞGE �;0
y ðY Þ.

Next we consider the geometric filtration. Let X be a smooth algebraic
variety over a subfield k of C. Let K 0

algðXÞ be the algebraic K-theory which
is the Grothendiek group generated by k-vector bundles over X . It is also
isomorphic to the Grothendieck group genrated by coherent sheaves over X (we
assumed X smooth). This K-theory can be written by the motivic K-theory
AK �;�0 ðY Þ ([Vo1,2], i.e.,

K i
algðX Þ ¼ 0� AK

2��i;�ðX Þ:

In particular K 0
algðXÞ ¼ 0� AK

2�;�ðXÞ.
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The geometric filtration ([Gr]) is defined as

F 2i
geoðX Þ ¼ f½OV � j codimX V b ig

(and F 2i�1
geo ðXÞ ¼ F 2i

geoðXÞ) where OV is the structural sheaf of closed subvariety V
of X .

We recall the algebraic cobordism MGL�;�0 ð�Þ [Vo1] and let us write
MGL2�;�ðXÞ ¼ W�ðXÞ; in fact, this is isomorphic to the algebraic cobordism
defined by Levine and Morel ([Le-Mo1,2], [Vo1,2]). Recall

W�ðSpecðkÞÞ ¼ W�ðpt:ÞGMU 2�ðpt:Þ ¼ MU �

where MU � GZ½x1; x2; . . .�, jxij ¼ �2i is the complex cobordism ring. Then we
have the isomorphism

W�ðX ÞnMU � ZGCH �ðX Þ; W�ðX ÞnMU � K � GK 0
algðX Þ

where the MU � module structure of K � is given by Todd genus (see §3 below).
Each element x A W�ðXÞ is represented by a projective map x ¼ ½ f : M ! X �
with codimX M ¼ i and M smooth ([Le-Mo1,2]), namely, x ¼ f�ð1MÞ for 1M A
W0ðMÞ and f� is the Gysin map. Then the geometric filtration is also defined as

F 2i
geoðXÞ ¼ f f�ð1MÞ j f : M ! X and codimX Mb ig

since f�ðMÞ ¼ ½OM � in K 0
algðXÞ:

Here we recall the motivic AHss ([Ya3, 4])

AE
�;�0;�00
2 ðX ÞGH �;�0 ðX ;K �00 Þ ) AK �;�0 ðXÞ:

(Of course this spectral sequence is not defined using skeleton as the topolog-
ical case. But we assume the existence of the AHss converging to the motivic
K-theory AK �;�0 ðXÞ.) Note that

AE2�;�;�00
2 ðXÞGH 2�;�ðX ;K �00 ÞGCH �ðXÞnK �00 :

Hence AE2�;�;0
y ðX Þ is a quotient of CH �ðXÞ by dimensional reason of degree

of di¤erential dr (i.e., drAE
2�;�;�00
r ðX Þ ¼ 0). Thus we have

Lemma 2.2. gr2�geoðXÞGAE2�;�;0
y ðXÞ.

Proof. Let q : W�ðXÞnK � ! K �ðX Þ. Then

F 2i
geoðXÞ ¼ qf f�ð1MÞ A W�ðXÞ j f : M ! X and codimX Mb ig:

Let q 0 : W�ðXÞ ! CH �ðXÞ and q 00 : CH �ðXÞ ! E2�;�;0
y . Then q j ðW�ðX Þn 1Þ ¼

q 00q 0. Thus we have

F 2i
geoðXÞ=F 2iþ2

geo ðX Þ ¼ q 00CH iðX Þ
since q 0 is an epimorphism. r

Lemma 2.3. Let tC : K 0
algðX Þ ! K 0

topðXðCÞÞ be the realization map. Then
F i
geoðXÞH ðt�CÞ

�1
F i
topðX ðCÞÞ:
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Proof. Let us write K 0
topðXðCÞÞ simply by KðX Þ. The Gysin map

f� : KðMÞ ! KðX Þ is defined by using Thom isomorphism

KðMÞGKðThX ðMÞÞ ! KðXÞ:

Let codimX Mb i. For an 2i-skeleton X 2i of X ðCÞ, we can show that the map

KðThX ðMÞÞ ! KðXÞ ! KðX 2iÞ

is zero. Because the above composition map is rewritten

KðThX ðMÞÞ ! KðThX ðMÞ2iÞ ! KðX 2iÞ:

Its first map is zero, because H �ðThX ðMÞÞ ¼ 0 for � < 2i and the exact sequence
(exact couple) for K-theory for skeletons of X (see the definition of the AHss).

r

At last, we consider the gamma filtration. Let l iðxÞ be the exterior power
of the vector bundle x A K 0

algðXÞ and ltðxÞ ¼
P

l iðxÞti. Let us denote

lt=ð1�tÞðxÞ ¼ giðxÞ ¼
X

g iðxÞti:
The Gamma filtration is defined as

F 2i
g ðX Þ ¼ fg i1ðx1Þ � . . . � g imðxmÞ j i1 þ � � � þ im b i; xj A K 0

algðXÞg:

Then we can see F i
g ðX ÞHF i

geoðX Þ (Proposition 12.5 in [At], Atiyah proved

F i
g ðXÞHF i

topðXÞ in KtopðXÞ. However the arguments work also in K 0
algðX Þ and

this fact is well known [Ga-Za]. [Ju].) Let e : K 0
algðXÞ ! Z be the augmentation

map and ciðxÞ A H 2i; iðXÞ the Chern class. Recall q 00 : CH �ðXÞ ! E2�;�;0
y be the

quotient map. Then (p. 63 in [At]) we have

q 00ðcnðxÞÞ ¼ ½gnðx� eðxÞÞ�:

Lemma 2.4 (Atiyah). The condition F 2�
g ðYÞ ¼ F 2�

topðYÞ (resp. F 2�
g ðXÞ ¼

F 2�
geoðXÞ) is equivalent to that E2�;0

y ðYÞ (resp. AE2�;�;0
y ðX Þ) is (multiplicatively)

generated by Chern classes in H 2�ðY Þ (resp. CH �ðX Þ).

3. Morava K-theory (K-theory localized at p)

In this paper, we assume that p is a fixed prime number and consider only
cohomology theories (Chow rings) localized at this prime p. Namely, for the
notation A�ðXÞ means A�ðXÞðpÞ in this paper. In particular, Z always means

ZðpÞ and MU �ðX Þ means MU �ðXÞðpÞ throughout this paper.

Let AMU �;�0 ðXÞ ¼ MGL�;�0 ðXÞ and recall MU � ¼ Z½x1; . . . ; xn; . . .�, degðxiÞ
¼ ð�2i;�iÞ. Given a sequence S ¼ ðxi1 ; xi2 ; . . .Þ of generators, we can construct
generalized cohomology theory (in the A1-homotopy category) such that

tC : AMUðSÞ�;�
0
ðX Þ ! MUðSÞ�ðX ðCÞÞ with MUðSÞ� ¼ MU �=ðSÞ:
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In particular letting xpn�1 ¼ vn and S ¼ ðxi j i0 pn � 1Þ, we have the motivic
BP-theory ([Ya3,5])

ABP�;�0 ðXÞ with MU �=ðSÞGBP� ¼ Z½v1; v2; . . .�:

Then we have the isomorphisms ([Ya3])

ABP�;�0 ðXÞGMGL�;�0 ðXÞnMU � BP�;

MGL�;�0 ðXÞGABP�;�0 ðX ÞnBP � MU �:

Similarly, we can construct the motivic connective Morava K-theory such that

AkðnÞ�;�
0
ðXÞ with kðnÞ� ¼ Z=p½vn�;

and the integral connected K-theory A~kkðnÞ�;�
0
ðX Þ with ~kkðnÞ ¼ Z½vn�. Moreover

let the (usual) motivic Morava K-theory

AKðnÞ�;�
0
ðXÞ ¼ AkðnÞ�;�

0
ðXÞ½v�1

n �; A ~KKðnÞ�;�
0
ðX Þ ¼ A~kkðnÞ�;�

0
ðX Þ½v�1

n �:

By the Landweber exact functor theorem ([Ra], [Ha]), it is well known that

AK �;�0 ðXÞG ðAMU �;�0 ðXÞnMU � ZÞnZ½B;B�1�

where the MU �-module structure of Z is given by the Todd genus, and B is
the Bott periodicity with degðBÞ ¼ ð�2;�1Þ. Since the Todd genus of v1 (resp.
vi, i > 1) is 1 (resp. 0), we can write

AK �;�0 ðX ÞGABP�;�0 ðXÞnBP� Z½B;B�1� identifying Bp�1 ¼ v1:

Then we have

Lemma 3.1. There is a natural isomorphism

A ~KK �;�0 ðXÞGA ~KKð1Þ�;�
0
ðX Þn ~KKð1Þ� Z½B;B�1� identifying v1 ¼ Bp�1:

Proof. Recall that we have the natural map (by the construction of
AMUðSÞ)

r : ABP�;�0 ðXÞnBP � Z½B;B�1� ! A ~KKð1Þ�;�
0
ðXÞn ~KKð1Þ� Z½B;B�1�:

Of course, the functor

A 7! An ~KKð1Þ� Z½B;B�1�GAnZf1;B; . . . ;Bp�2g

is exact, and we have the spectral sequence

E
�;�0;�00
2 ðA ~KKð1ÞÞn ~KKð1Þ� Z½B;B�1� ) A ~KKð1Þ�;�

0
ðX Þn ~KKð1Þ� Z½B;B�1�:

Since for a BP�ðBPÞ module A, the functor

A 7! AnBP� Z½B;B�1�
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is exact from the Landweber exact functor theorem, we have the spectral
sequence from the AHss for ABP�;�0 ðX Þ

E
�;�0;�00
2 ðABPÞnBP� Z½B;B�1� ) ABP�;�0 ðXÞnBP � Z½B;B�1�;

which is compatible with the map r. The E2-term of the both spectral sequences
are isomorphic to

H �;�0 ðX ;ZÞnZ½B;B�1�:

Therefore the two spectral sequences are isomorphic. r

We also note from the arguments in the above proof.

Lemma 3.2. Let EðABPÞ�;�
0;�00

r (resp. EðA ~KKð1ÞÞ�;�
0;�00

r ) be the AHss coverging

to ABP�;�0 ðXÞ (resp. A ~KKð1Þ�;�
0
ðX Þ). Then we have

EðABPÞ�;�
0;�00

r nBP� ~KKð1Þ� GEðA ~KKð1ÞÞ�;�
0;�00

r Þ:

From above lemmas, it is su‰cient to consider the Morava K-theory
A ~KKð1Þ�;�

0
ðX Þ when we want to study AK �;�0 ðXÞ. Hereafter of this paper, we

only consider the theories A ~KKð1Þ�;�
0
ðXÞ and A~kkð1Þ�;�

0
ðX Þ instead of AK �;�0 ðX Þ

or K �
algðXÞ. (We only consider the cohomology theories and Chow rings lo-

calied at p.)
We assume the following assumption

ð�Þ K 0
algðXÞGK 0

topðXðCÞÞ ðand K 1
topðXðCÞÞ ¼ 0Þ:

That is equivalent to

ð�Þ A ~KKð1Þ2�;�ðXÞG ~KKð1Þ2�ðXðCÞÞ ðand ~KKð1Þ2�þ1ðXðCÞÞ ¼ 0Þ:

From Lemma 2.3, we have

FgðX ÞHF i
geoðXÞHF i

topðXðCÞÞ:

Here we note that the gamma filtrations of topogical and algebraic geometrical
are same, i.e., F �

g ðX ÞGF �
g ðX ðCÞÞ. So we have the maps of associated graded

rings

gr�g ðXÞ ! gr�geoðXÞ ! gr�topðXðCÞÞ:

Lemma 3.3. gr2g ðX Þ ¼ gr2geoðX Þ.

Proof. If 00 x A gr2g ðXÞ, then x ¼ c1ðxÞ A A ~KKð1Þ2�;�ðXÞ for some bundle
x. In CH �ðX Þ, we know c1ðxÞ ¼ c1ðdetðxÞÞ which is determined by the line
bundle detðxÞ. Line bundles are determined by PicðXÞ ¼ CH 1ðXÞ. So 00 x A
CH 1ðXÞ. r
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Lemma 3.4. If an element y A A ~KKð1Þ2�;�ðX Þ is represented by 00 y (resp.
y 00; y 000) in grigðXÞ (resp. gr jgeoðXÞ, grktopðXðCÞÞ), then

ia ja k; and i ¼ k ¼ j modð2ðp� 1ÞÞ:

Proof. The element y is represented

y ¼ vs1 y
0 A A ~KKð1Þ2�;�ðXÞ=F 2iþ1

g y ¼ vt1 y
00 A A ~KKð1Þ2�;�ðXÞ=F 2jþ1

geo

for some s; t A Z. r

Remark. The above fact does not hold for y A K 0
topðXÞ (which is a sum of

~KKð1Þ2�;�ðX Þ, 0a �a p� 2). Let us write

y ¼ bkyk þ bkþ1ykþ1 þ � � � þ bkþp�2ykþp�2;

with bi A ~KKð1Þ�2i and yi A F 2i
topðY Þ: Suppose j < k. Then this means that there

is s such that 00 ys A gr jgeoðXÞ with s� j ¼ 0 modð2p� 2Þ. Of course if s0 k,
then k � j0 0 modð2p� 2Þ.

To study the di¤erence of F �
geoðXÞ and F �

topðXðCÞÞ, we consider AHss
E �;�0
r ðBPÞ converging to BP�ðXÞ. Suppose that

½v1 n x� A BP�0 nH �ðX ðCÞÞGEðBPÞ�;�
0

2

is an permanent cycle, but ½x� A H �ðXðCÞÞ itself is not (i.e., drðxÞ0 0 for some r).
Let x 0 A BP�ðX ðCÞÞ be a corresponding element for ½v1 n x� in E �;�0

y

Lemma 3.5. Let x A H 2�ðXðCÞÞ and x 0 A BP�0 ðXðCÞÞ be elements with the
assumption above. Suppose that

00 x 0 A BP�0 ðX ðCÞÞnBP � Z½v1; v�1
1 �G ~KKð1Þ�ðXðCÞÞ

and that x 0 A BP�0 ðX ðCÞÞnBP � Z is in the image of the Totaro cycle map

CH �0 ðX Þ ! BP2�0 ðXðCÞÞnBP � Z:

Then 00 x 0 A gr2�topðXðCÞÞ, but 00 x 0 A gr
2ð��pþ1Þ
geo ðXÞÞ:

Proof. In this case �0 ¼ � � ðp� 1Þ in the above arguments. Let x A

H 2iðXðCÞÞ. In fact x 0 A ImðCH i�pþ1ðXÞÞ and 00 x 0 A gr
2ði�pþ1Þ
geo ðXðCÞÞ, but

00 x 0 ¼ ½v1 n x� A gr2itopðXðCÞÞ. r

Next we consider the cases gr�g ðXÞG grtopðX ðCÞÞ. From the Atiyah theorem
(Lemma 2.4), the following lemma is immediate.

Lemma 3.6. Suppose (*) and suppose that the infinity term E2�;0
y ð ~KKð1ÞÞ

(of the AHss for ~KKð1Þ�ðXðCÞÞ) is generated by Chern classes in H �ðXÞ for all
�bN. Then for all �bN, we have

gr2�g ðXÞGE2�;0
y ð ~KKð1Þ�ðXðCÞÞÞ for all �bN:
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Lemma 3.7 (Lemma 2.8 in [Ya4]). Suppose (*) and that H �ðX ðCÞÞ is
generated by Chern classes. Then we have

CH �ðX ÞGH �ðXðCÞÞ for �a p� 1:

Moreover if X ðCÞ is simply connected (resp. 3-connected), then we have an
isomorphisms for �a p (resp. �a pþ 1)

CH �ðX ÞnZp GH 2�ðXðCÞ;ZpÞ:

Proof. By the assumption, we see

gr2�g ðX ÞG gr2�geoðXÞG gr2�topðX ðCÞÞ:

To compute the last graded ring, we consider AHss

E
�;�0
2 ð ~KKð1ÞÞGH �ðX ; ~KKð1Þ�

0
Þ ) ~KKð1Þ�ðXðCÞÞ:

Here ~KKð1Þ� GZ½v1; v�1
1 � with jv1j ¼ �2pþ 2. It is well known that the first non

zero di¤erential is

d2p�1ðxÞ ¼ v1 nQ1ðxÞ modðpÞ:
So each element in H 2�ðXðCÞÞ is not targent of any di¤erential dr when �a

p� 1. (Of course drðxÞ ¼ 0 for Chern classes x.) Hence we have gr2�topðXðCÞÞ
GH 2�ðXðCÞÞ for �a p� 1:

Similarly, considering AHss converging to A ~KKð1Þ�;�
0
ðXÞ, we have the iso-

morphism gr2�geoðX ÞGCH �ðXÞ for �a p� 1: Here we use the fact E2�;�;0
2 ðA ~KKð1ÞÞ

GCH �ðXÞ. Thus the isomorphism of the geometric and toplogical filtrations,
gives the first statements.

From the isomorphism

H 1;1ðX ;Z=pÞGH 1ðX ðCÞ;Z=pÞ ¼ 0:

we see that H 1;1ðX ;ZÞ is p-divisible. Since the image of the di¤erential of
p-divisible elements are also p-divisible,

H 2pðXðCÞÞG gr
2p
topðX Þ

G gr2pgeoðXÞGCH 2pðX Þ=ðp� divisibleÞ:

Hence we have the second isomorphism. (In 3-connected cases, the isomorphism
is seen similarly for �a pþ 1.) r

Remark. The first statement in the above lemma is also proved by the
Riemann-Roch formula without denominators, namely, the composition map

CH iðXÞ ! grigeoðXÞ !ci CH iðXÞ
is multiplication by ð�1Þ i�1ði � 1Þ!. Hence we get CH iðX ÞG grigeoðXÞ for ia p.
Moreover we know that CH iðXÞ is represented by the i-th Chern class ciðxÞ for
some bundle x.
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Remark. Lemma 2.8 in [Ya4] was not correct (assumed gr�geoðXÞ ¼
grtopðX ðCÞÞ there). Hence the assumption of Lemma 2.8 in [Ya4] is not su‰-
cient, and it should be changed as above Lemma 3.7.

4. Classifying spaces BG for finite groups

Let G be a compact Lie group (e.g., a finite group) and Gk be the correspond-
ing algebraic group over an algebraically closed field k in C. Then by Merkurjev
and Totaro ([To1]), we have the isomorphisms

K 0
algðBGkÞGRðGkÞ5GRðGÞ5GK 0

topðBGÞ;ð1:1Þ

where RðGkÞ5 (resp. RðGÞ5) is the k-representation (resp. complex representation)
ring completed by the augmentation ideal and K 0

algðBGkÞ (resp. K 0
topðBGÞ) is the

K-theory generated by k-bundles (resp. complex bundles) of the classifying space
BGk (resp. BG).

When k is algebraically closed, we write BGk by BG simply. For Section
4–6, we assume k is algebraically closed.

In this section, we consider cases that G are finite groups. At first, we
consider the case G ¼ Z=pr. Then H �ðBGÞGZ½y�=ðpryÞ, jyj ¼ 2 and y1 ¼ c1ðeÞ
for a nonzero linear representation e. So all three filtrations are the same. The
similar fact holds for its product.

Theorem 4.1 ( p ¼ 2, r ¼ 1 case by Atiyah [At]). Let q ¼ pr and G ¼
0n

Z=q. Then

gr�topðBGÞGZ½y1; . . . ; yn�=ðqyi; yq
i yj � yi y

q
j Þ:

Hence the three filtrations are the same.

Proof. Let Q 0
0 ¼ bq be the higher Bockstein. The integral cohomology is

isomorphic to a subring of the mod q cohomology

H �ðBGÞHH �ðBG;Z=qÞ; when � > 0:

Here H �ðBG;Z=qÞGZ=q½y1; . . . ; yn�nLðx1; . . . ; xnÞ with Q 0
0ðxiÞ ¼ yi, and we

know

H �ðBGÞGZ=q½y1; . . . ; yn�fQ 0
0ðxi1 � � � xisÞ j 1a i1 < � � � ; is a ng

with Q 0
0ðxi1 � � � xisÞ ¼

P
kð�1Þk�1

yikxi1 � � � x̂xik � � � xis .
We consider the AHss converging to ~KKð1Þ�ðBGÞ. We define the weight

degree for elements in this AHss by

wðv1Þ ¼ 0; wðyiÞ ¼ 0; wðxiÞ ¼ 1
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so that wðQ 0
0ðxi1 � � � xisÞÞ ¼ s� 1. We will prove

ðweight ¼ 0ÞVE
�;�0
2q GZ=q½y1; . . . ; yn�=ðyq

i yj � yi y
q
j Þ for � > 0;ð1Þ

ðweight ¼ 1ÞVE
�;�0
2q ¼ 0:ð2Þ

Then we can prove this theorem by the following arguments.
We consider the AHss converging to the motivic A ~KKð1Þ�ðBGÞ. The

weight wðxÞ of an element x A H �;�0 ðX : Z=qÞ is defined as 2 �0 ��. Since
xi A H 1;1ðBG;Z=qÞ and yi A H 2;1ðBG;Z=qÞ, their weights are in fact wðxiÞ ¼ 1
and wðyiÞ ¼ 0. The degree of the motivic AHss is

degðd2r�1Þ ¼ ð2r� 1; r� 1;�2ðr� 1ÞÞ with ðr� 1Þ ¼ 0 modðp� 1Þ;

namely, wðd2r�1Þ ¼ �1 which means

d2r�1ðweight ¼ sÞ ¼ ðweight ¼ s� 1Þ:

From (2), ðweight ¼ 0Þ-parts are not a target of any di¤rential d2r�1 for r > q.
By the naturality of realization map from the motivic AHss to the usual AHss,
we get the same fact for the AHss for ~KKð1Þ�ðBGÞ. Since ~KKð1Þ�ðBGÞ is generated
by only weght ¼ 0 elements, we have the theorem.

The first nonzero di¤erential is known d2q�1ðxiÞ ¼ v
1þpþ���þpr�1

1 y
q
i [Ya3].

Hereafter let v1 ¼ 1 for ease of notations. We see (1) from

d2q�1ðQ 0
0ðx1x2ÞÞ ¼ d2q�1ðy1x2 � y2x1Þ ¼ y1 y

q
2 � y

q
1y2:

Now we prove (2). Let x A Kerðd2s�1Þ and x ¼
P

aijQ
0
0ðxixjÞ. Then (since

dr is a derivation)

d2q�1ðxÞ ¼
X

aijðyi yq
j � y

q
i yjÞ ¼ 0 in Z=q½y1; . . . ; yn�:

Here we consider them in modðxi; yi j ib 4Þ. Then we see a12 ¼ a 0
12 y3 and we

see (by dividing y1 y2 y3)

a 0
12ðy

q�1
1 � y

q�1
2 Þ þ a 0

23ðy
q�1
2 � y

q�1
3 Þ þ a 0

31ðy
q�1
3 � y

q�1
1 Þ ¼ 0:

This implies that a 0
12 A idealðyq�1

1 ; yq�1
2 ; yq�1

3 Þ. Moreover we see that a12 con-
tains y

q
3 . Similarly a23, a13 contains y

q
1 and y

q
2 respectively.

On the other hand, we see

d2q�1ðQ 0
0ðx1x2x3ÞÞ ¼ d2q�1

X
y1x2x3

� �

¼
X

y1 y
q
2x3 �

X
y1x2 y

q
3 ¼

X
y1 y

q
2x3 �

X
y3x1 y

q
2

¼
X

y
q
2 ðy1x3 � y3x1Þ ¼ �

X
y
q
1Q

0
0ðx2x3Þ

Taking o¤ a 00d2r�1Q
0
0ðx1x2x3Þ for some adequate a 00 A Z=q½y1; . . . ; yn�, we can

prove (2). r
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Recall that a group G is called an extraspecial p-group if its center
ZðGÞGZ=p and there is a central extension

0 ! Z=p ! G ! 0
2n

Z=p ! 0:

For each prime p, such groups have only two types, namely, p1þ2n
þ , p1þ2n

� .
(e.g., 21þ2

þ GD8 the dihedral group (of order 8), 21þ2
� GQ8 the quaternion group).

We here only write down the case p1þ2
þ for pb 3. The cohomology is known

([Ya1,4])

HevenðBGÞG ðY lBÞnZ½cp�=ðp2cpÞ
where Y ¼ Z½y1; y2�=ðpyi; y1 yp

2 � y
p
1y2Þ, B ¼ Z=pfc2; . . . ; cp�1g and yi ¼ c1ðeiÞ

and ci ¼ ciðxÞ for some linear representations ei and p-dimensional representation
x. Hence the even dimensional part of this cohomology is generated by Chern
classes and all three filtrations are the same. The odd degree part is

HoddðBGÞGY nZ=p½cp�fa1; a2g=ðy2a1 � y1a2; y
p
2a1 � y

p
1a2Þ jaij ¼ 3:

Theorem 4.2. Let G ¼ p1þ2
þ and pb 3. Then

gr�topðBGÞGY l ðZfcpglBÞnZ½cp�=ðp2cpÞ:

Proof. We know the Milnor cohomology operation

v�1
1 d2p�1 ¼ Q1 : H

oddðBGÞ ! HevenðBGÞ
is injective and Q1ðaiÞ ¼ yicp. Hence we see

gr ~KKð1Þ�ðBGÞGE �;�0
y G ~KKð1Þ� nHevenðBGÞ=ðQ1H

oddðBGÞÞ

G ~KKð1Þ� nHevenðBGÞ=ðyicpÞ: r

When pb 5, the groups of rankp G ¼ 2 are classified by Blackburn. When

groups are of class 2 (i.e., ½G; ½G;G�� ¼ 1), cohomology rings are generated by
Chern classes ([Le-Ya], [Ya1]), and hence all three filtrations are the same.
Define the class 3 p-group (i.e., ½G; ½G;G��0 1) by

Gð4; 1Þ ¼ ha; b; c j ap ¼ bp ¼ cp
2 ¼ ½b; c� ¼ 1; ½a; b�1� ¼ cp; ½a; c� ¼ bi:

Let G ¼ Gð4; 1Þ. Then there is an element xpþ1 A H 2pþ2ðBGÞ [Le-Ya], [Ya]

such that it is a permanent cycle in AHss for ~KKð1Þ�ðBGÞ and xpþ1 is not
represented by Chern class. But all elemnts in HevenðBGÞ is represented by
transfers of Chern classes [Ya1]. Of course Chow rings have the transfer map.
Hence we have

Theorem 4.3. Let pb 5 and G ¼ Gð4; 1Þ. Then gr�topðBGÞG gr�geoðBGÞ but
grigðBGÞZ grigeoðBGÞ for i ¼ 4; 2pþ 2.

Proof. The first isomorphism follows from that all elements in HevenðBGÞ is
represented by transfer of Chern classes. The second statement follows from that
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xpþ1 is not represented by Chern classes and the element xpþ1 A E
2pþ2;0
y represents

a nonzero element in gr4g ðBGÞ from Lemma 3.4. r

5. Connected groups with p ¼ 2

Throughout this section, let p ¼ 2. At first we consider the case G ¼ On.
The mod 2 cohomology of the classifying space BOn of the n-th orthogonal
group is

H �ðBOn;Z=2ÞGH �ððBZ=2Þn;Z=2ÞSn GZ=2½w1; . . . ;wn�
where Sn is the n-th symmetry group, wi is the Stiefel-Whiteney class which
restricts the elementary symmetric polynomial in Z=2½x1; . . . ; xn�. Each element
w2
i is represented by Chern class ci of the induced representation On HUn. Let

us write w2
i by ci.

Recall the Milnor operation Qi which is defined Q0 ¼ b and Qi ¼ ½Qi�1;P
pi�1 �.

Let us write by QðiÞ the exteria algebra LðQ0; . . . ;QiÞ. W. S. Wilson ([Wi],
[Ko-Ya]) found a good QðiÞ-module decomposition for BOn, namely,

H �ðBOn;Z=2Þ ¼ 0
i¼�1

QðiÞGi with Q0 � � �QiGi A Z=2½c1; . . . ; cn�:

Let us write by PðnÞ� ¼ BP�=ðp; . . . ; vi�1Þ. The BP�-theory is then computed

gr BP�ðBGÞ=pG0Pði þ 1Þ�Q0 � � �QiGi:

Hence we have Kð1Þ�ðBGÞGKð1Þ�ðG�1 lQ0G0Þ:
Moreover, by Wilson, it is known that

BP�ðBOnÞGBP�½½c1; . . . ; cn��=ðc1 � c�1 ; . . . ; cn � c�n Þ

where c�i is the conjugation of ci. Hence ~KKð1Þ�ðBGÞ is generated by Chern
classes from H �ðBGÞ. Thus from Lemma 2.4, all filtrations are same.

Here Gk�1 is quite complicated (see for details [Wi]), namely, it is generated
by symmetric functionsX

x2i1þ1
1 � � � x2ikþ1

k x
2j1
kþ1 � � � x

2jq
kþq; k þ qa n;

with 0a i1 a � � �a ik and 0a j1 a � � �a jq; and if the number of j equal to ju is
odd, then there is some sa k such that 2is þ 2 s < 2ju < 2is þ 2sþ1.

Thus when ka 1, there is not above ju, that means numbers of j ¼ ju are
always even.

Theorem 5.1. Let G ¼ On. Then all three fitrations are the same, and
gr�topðBGÞGAlB=2 with (yi ¼ x2

i so that
P

y1 ¼ c1)

A ¼ Z
X

ðy1 y2Þ j1 � � � ðy2s�1y2sÞ js
n o

B ¼ Z
X

yi
1ðy2 y3Þ

j1 � � � ðy2s y2sþ1Þ js
n o

:

(Note A=2 ¼ G�1 and B=2 ¼ Q0G0.)
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Example. When G ¼ O2, we have the isomorphism

gr�topðBGÞGZ½c2�lZ=2½c1�:

When G ¼ SOodd , (since SOodd � Z=2GOodd ), the situations are same. Let
G ¼ SO2n. Then from Field, we have ([Fi], [Ma-Vi], [In-Ya])

CH �ðBGÞGZ½c2; . . . c2n�fy2nglCH �ðBO2nÞ=ðc1Þ;
BP�ðBGÞGBP�½c2; . . . ; c2n�fy2nglBP�ðBO2nÞ=ðF1Þ

where F1 ¼ KerðBdet�Þ and y22n ¼ ð�1Þn22n�2c2n. Hence

y2n ¼ ð�1Þ�2n�1w2n A H �ðBGÞð2Þ:

Theorem 5.2. Let G ¼ SO2n and nb 3. Then

gr�topðBGÞ ¼ gr�geoðBGÞGZ½c2; c4; . . . ; c2n�fy2ngl gr�topðBO2nÞ=ðc1Þ:

However we have gr2ng ðBGÞZ gr2ngeoðBGÞ.

We note when G ¼ SO4, all the three filtrations are same, since y4 is
represented by Chern classes. By Field, it is shown that just ðn� 1Þ!y2n (for
n > 2) is represented by Chern classes (Theorem 8, Corollary 2 in [Fi]). Thus we
have

Proposition 5.3. Let G ¼ SO2ðpþ1Þ and p0 2. Then

gr�g ðBGÞGZðpÞ½c2; . . . ; c2pþ2�n ðZðpÞf1; y 0glZ=pfygÞ

with jy 0j ¼ 2ðpþ 1Þ and jyj ¼ 4.

Next, we consider the exceptional Lie group G2. Let G ¼ G2. Its modð2Þ
cohomology is well known

H �ðBG;Z=2ÞGZ=2½w4;w6;w7�

and integral cohomology is

H �ðBGÞGZ½w4; c6�n ðZf1glZ=2½w7�fw7gÞ:

We can compute the AHss for BP�ðBGÞ ([Ko-Ya], [Sc-Ya])

gr BP�ðBGÞGZ½c4; c6�n ðBP�f1; 2w4glPð3Þ�½c7�fc7gÞ:

Here we can show the element f2w4g is represented by a Chern class c 02. We see
~KKð1Þ�ðBGÞG ~KKð1Þ�½c4; c6�n f1; 2w4gÞ; and ([Ya3], [Gu])

CH �ðBGÞGBP�ðBGÞnBP� ZGZ½c 02; c4; c6; c7�=ððc 02Þ
2 � 4c4; 2c7Þ:
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Theorem 5.4. Let G ¼ G2. Then all three filtrations are the same

gr�topðBGÞGCH �ðBGÞ=ðc7ÞGZ½c 02; c4; c6�=ððc 02Þ
2 � 4c4Þ:

Next we study the case G ¼ Spin7. Its modð2Þ cohomology is

H �ðBG;Z=2ÞGZ=2½w4;w6;w7;w8�:

The infinity term of the AHss for BP�ðBGÞ is still computed

gr BP�ðBGÞGZ½c4; c6�n ðBP�½c8�f1; 2w4; 2w8; 2w4w8; v1w8g
lPð3Þ�½c7�fc7glPð4Þ�½c7; c8�fc7c8gÞ:

Hence we see

gr ~KKð1Þ�ðBGÞG ~KKð1Þ�½c4; c6; c8�f1; 2w4; 2w8; 2w4w8; v1w8g:

Here it is known that 2w4, 2w8, 2w4w8 are represented by Chern classes. Write
them by c 02, c

0
4, c

0
6. But it is proved (Theorem 6.2 in [Sc-Ya]) that v1w8 is not

represented by (transfer) of Chern classes while it is in the image of cycle map.
Let clðxÞ ¼ ½v1w8� ([Gu], Lemma 9.6 in [Ya], §9 in [Ka-Te-Ya]). Totraro’s
conjecture also holds this case

CH �ðBGÞGBP�ðBGÞnBP� Z

GZ½c4; c6; c8�n ðZf1; c 02; c 04; c 06glZ=2fxglZ=2½c7�fc7gÞ

with jxj ¼ 6: Moreover, we can prove

Lemma 5.5. Let G ¼ Spin7. Any element x A BP�ðBGÞ such that

00 x ¼ ½v1w8�a A BP�ðBPÞ with a A Z½c4; c6; c8�;

can not be generated by Chern classes of BP�-theory.

Proof. Let N ¼ ZðGÞGZ=2 be the center of G and NlA is a maximal
elementary abelian 2-subgroup of G, so AG ðZ=2Þ3. A representation x of G is
said to be a spin representation, if x jN0 0. For a nonspin representation h,
we know the total Chern class

cðhÞjNlA ¼ cðhÞjA A BP�½c4; c6; c7�:

For a spin representation w, we have

ðwÞjN ¼ ð1þ uÞs A BP�ðBNÞGBP�½u�=ð½2�ðuÞÞ juj ¼ 2

where ½2�ðuÞ ¼ 2uþ v1u
2 þ � � � is the 2-th product of the BP�-formal group laws.

Here we note s ¼ 8s 0 since c8jN ¼ u8. It is known that v1w8jN ¼ v1u
4 [Sc-Ya].

Then

cðwÞjN ¼ ð1þ 8uþ 28u2 þ � � � þ u8Þ s
0
:
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Here we can compute in BP�ðBNÞ by using ½2�ðuÞ ¼ 0

8u ¼ 4v1u
2 ¼ 2v21u

3 ¼ v31u
4; 28u2 ¼ 14v1u

3 ¼ 7v21u
4; . . . :

Thus we see that v1u
4 is not represented by the restriction of Chern classes.

(However v21u
4 has its possibility, in fact jv1w8j ¼ 4 and it is represented by the

Chern class c2.)
Of course cðwl hÞ ¼ cðwÞcðhÞ, we get the lemma. r

Theorem 5.6. Let G ¼ Spin7. Then

gr�topðBGÞGZ½c4; c6;w8�f1; c 02g;
gr�a ðBGÞGZ½c4; c6; c8�ðZf1; c 02; c 04; c 06glZ=2fxgÞ

where degðxÞ ¼ 6 (resp. ¼ 4) if a ¼ geo (if a ¼ g).

Remark. ~KKð1Þ�ðBGÞ is generated as a ~KKð1Þ�½c4; c6; c8�-module by

f1; 2w4; 2w8; 2w4w8; v1w8g:
Since v�1

1 A ~KKð1Þ�, we have w8 A ~KKð1Þ�ðBGÞ. Hence ~KKð1Þ�ðBGÞ is generatd as
a Kð1Þ�½c4; c6; c8�-algebra by f1; 2w4;w8g.

Remark. The graded ring gr�topðBGÞ is also written as gr�a ðBGÞ in the right
hand side ring of the second isomorphism in the above theorem, with identifying
x ¼ w8, c 04 ¼ 2w8, c 06 ¼ c 02w8.

Recall that 21þ2n
þ is the extraspecial 2-group, which is isomorphic to the

central product of n-copies of the dihedral group D8 of order 8. Let G ¼ 21þ6
þ .

There is an inclusion i : GHSpin7 and its induced map i� : H �ðB Spin7;Z=2Þ !
H �ðBG;Z=2Þ is also injective by Quillen [Qu]. Let j : Z=2GZðGÞHG. Then
it is know [Qu], [Sc-Ya] j �i�ðw8Þ ¼ u4 A Z½u�=ð2uÞHH �ðBZðGÞÞ: Hence we
have in ~KKð1Þ�-theory

j �i�ðv1w8Þ ¼ v1u
4 0 0 A ~KKð1Þ�ðBZðGÞÞG ~KKð1Þ�½u�=ð2u� v1u

2Þ:
This element v1 nw8 is not generated by Chern classes also in H �ðBGÞ. Hence
we have

Corollary 5.7. Let G ¼ 21þ6
þ . Then there is an element x A A ~KKð1Þ�ðBGÞ

such that

00 x A gr4g ðBGÞ; x ¼ x A gr6geoðBGÞ; and x ¼ w8 A gr8topðBGÞ:

6. Connected groups for p odd

In this section, we assume pb 3. At first we consider the case G ¼ PGLp.

Its mod p cohomolgy is given by Vistoli and Kameko-Yagita ([Vi], [Ka-Ya]),
namely, there is a short exact sequence

0 ! M=p ! H �ðBG;Z=pÞ ! N ! 0
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where MGZ½x4; x6; . . . ; x2p� additively (but not as rings), and NGN 0 n
LðQ0;Q1Þfu2g, ju2j ¼ 2 for some Z=p-module N 0. (HevenðBGÞðpÞ is not generated
by Chern classes (in facts Q0Q1ðu2Þ is not represented by a Chern class).

The BP-theory BP�ðBGÞ is also studied. There is a short exact sequence

0 ! BP� nM ! gr BP�ðBGÞ ! N 00 ! 0

where gr N 00 GPð3Þ� nN 0fQ0Q1ðuÞg. In particular, Q0Q1ðu2Þ is v1-torsion,
and hence its becomes zero in ~KKð1Þ�ðBGÞ. Therefore we see additively
gr� ~KKð1Þ0ðBGÞGM. Totaro’s conjecture also holds this case. Thus we have

Theorem 6.1. Let G ¼ PGLp. Then

gr�topðBGÞG gr�geoðBGÞ ðGM additivelyÞ:

When p ¼ 3, the ring structure of M is known

ð�Þ M=3GZ=3½c2; c 03; c6�=ðc32 ¼ ðc 03Þ
2Þ

where c2, c 03, c6 are Chern classes for some representations. Hence

Mð3Þ G gr�g ðBPL3Þð3Þ G gr�geoðBPL3Þð3Þ:

The fact (*) is explicitly written

c2 ¼ c2ðsl3Þ; c 03 ¼ c3ðSym3ðEÞÞ; c6 ¼ c6ðsl3Þ

in the notation in Theorem 1.1 and Proposition 1.2 in [Ve] by Vezzosi and
Theorem 3.7 (a) in Vistoli [Vit]. Vistoli gives corrected generators and relations
(for example, w ¼ 0 for w in [Ve]).

However, for pb 5, it seems unknown that M above is generated by Chern
classes or not.

For exceptional Lie groups, we can compute BP�ðBGÞ except for ðG; pÞ ¼
ðE8; p ¼ 3Þ. So we know gr�topðBGÞ, but it seems not so easy to compute

CH �ðBGÞ now, and gr�geoðBGÞ seems unknown. For example, when G ¼ F4

we can compute BP�ðBGÞ. The modð3Þ cohomology is generated by x4; x8; x9;
x20; x21; . . . (by Toda). The BP-theory is computed

gr BP�ðBGÞGBP�½c18; c24�f1; 3x4glBP� nElPð3Þ�½x26�fx26g

where E ¼ Z½x4; x8�fab j a; b A fx4; x8; x20gg. Hence we have

gr ~KKð1Þ�ðBGÞG ~KKð1Þ� n ðZ½c18; c24�f1; 3x4glEÞ:

It is now unknown whether the element x2
8 A E (or x8x

2
4 A E) is in the image of

the cycle map (see (2.4) and the proof of Lemma 3.1 in [Ya2]). If it is so, then
gr�geoðBGÞG gr�topðBGÞ, otherwise grigeoðBGÞZ gritopðBGÞ for i ¼ 12; 16.
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7. Rost motives

In this section, we do not assume that k is algebraically closed. At first,
we recall the (generalized) Rost motive ([Ro1,2]). Let MðX Þ be the motive of
(smooth) variety X . For a non zero symbol a ¼ fa0; . . . ; ang in the mod 2
Milnor K-theory KM

nþ1ðkÞ=2, let fa ¼ hha0; . . . ; anii be the ðnþ 1Þ-fold Pfister
form. Let Xfa be the projective quadric of dimension 2nþ1 � 2 defined by fa.
The Rost motive Mað¼ MfaÞ is a direct summand of the motive MðXfaÞ rep-
resenting Xfa so that MðXfaÞGMa nMðP2 n�1Þ:

Moreover for an odd prime p and nonzero symbol 00 a A KM
nþ1=p, we

can define ([Ro2], [Vo4,5], [Su-Jo]) the generalized Rost motive Ma, which is
irreducible and is split over K=k if and only if ajK ¼ 0 (as the case p ¼ 2).

The Chow group of the Rost motive is well known. Let k be an algebraic
closure of k, X j

k
¼ X nk k, and i

k
: CH �ðX Þ ! CH �ðX j

k
Þ the restriction map.

Lemma 7.1 (Rost [Ro1,2], [Vo4], [Vi-Ya], [Ya5,6]). The Chow group
CH �ðMaÞ is only dependent on n. There are isomorphisms

CH �ðMaÞGZf1gl ðZfc0glZ=pfc1; . . . ; cn�1gÞ½y�=ðci yp�1Þ
and CH �ðMajkÞGZ½y�=ðypÞ

where 2 degðyÞ ¼ jyj ¼ 2ðpn�1 þ � � � þ pþ 1Þ and jcij ¼ jyj þ 2� 2pi. Moreover
the restriction map is given by i

k
ðc0Þ ¼ py and i

k
ðciÞ ¼ 0 for i > 0.

Remark. The element y does not exist in CH �ðMaÞ while ci y exists.
Usually CH �ðMaÞ is defined only additively, however when CH �ðMaÞ has the
natural ring structure (e.g., p ¼ 2), the multiplications are given by ci � cj ¼ 0 for
all 0a i; ja n� 1.

For the simplicity of notation, hereafter we always write by W�ðX Þ the
BP�-version of the algebraic cobordism

W�ðX ÞnMU � BP� GABP2�;�ðXÞ:

Hence we mean W� ¼ BP� hereafter.
Let In be the ideal in W� generated by v0; . . . ; vn�1, i.e.,

In ¼ ðp ¼ v0; v1; . . . ; vn�1ÞHW�:

Then it is well known that In and Iy are the only prime ideals stable under the
Landweber-Novikov cohomology operations ([Ra]) in W�.

The category of cobordism motives is defined and studied in [Vi-Ya]. In
particular, we can define the algebraic cobordism of motives. The following is
the main result in [Vi-Ya] (in [Ya5] for odd primes).

Lemma 7.2 ([Vi-Ya], [Ya5]). The restriction map

i
k
: W�ðMaÞ ! W�ðMajkÞGW�½y�=ðypÞ
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is injective and there is an W�-module isomorphism

W�ðMaÞGW�f1gl Infy; . . . ; yp�1gHW�½y�=ðypÞ
such that vi y ¼ ci in W�ðMaÞnW � ZGCH �ðMaÞ.

We consider the following assumption for X .

Assumption (*). There is an isomorphism of motives

MðXÞGMn nAðX Þ with AðXÞG0
s

T is

where T is the k-Tate module.

Lemma 7.3. Suppose Assumption (*). Then

K 0
algðXÞGK 0

algðX j
k
ÞGK 0

topðXðCÞÞ:

Proof. Since MðX j
k
Þ is a sum of k-Tate modules, we have the isomorphism

K 0
algðX j

k
ÞGK 0

topðXðCÞÞ from

K 0
algðTÞGK 0

algðS2;1j
k
ÞGK 0

topðS2Þ:
For the first isomorphism, we only need to show K 0

algðMnÞGK 0
algðMnjkÞ.

Recall

W�ðMnÞGBP� l Idealðp; v1; . . . ; vn�1Þ½y�=ðypÞ
by ci 7! vi y: Hence vic1 ¼ v1ci. Therefore for i > 1, we see ci ¼ 0 in
A ~KKð1Þ2�;�ðMnÞ where vi ¼ 0. So we have

A ~KKð1Þ2�;�ðMnÞG ~KKð1Þ�f1gl ~KKð1Þ�fc0; c1g½y�=ðv1c0 ¼ pc1; y
p�1Þ

G ~KKð1Þ�f1gl ~KKð1Þ�fc1g½y�=ðyp�1Þ

G ~KKð1Þ�f1gl ~KKð1Þ�fv1 yg½y�=ðyp�1Þ

G ~KKð1Þ�½y�=ðypÞGA ~KKð1Þ2�;�ðMnjkÞ: r

8. Flag manifolds G=T

Now we consider the flag variety G=T . Let G be a simply connected Lie
group and T the maximal torus. Moreover we assume that its cohomology is

H �ðG;Z=pÞGZ=p½y�=ðypÞnLðx1; . . . ; xlÞ
with jyj ¼ 2ðpþ 1Þ and jxij ¼ odd. Then it is well known that the cohomology
of G=T is torsion free ([Tod]) and

H �ðG=TÞGZ½y; t1; . . . ; tl�=ð fy; b1; . . . ; blÞ
where fy ¼ yp mod IdealðtiÞ and ðb1; . . . ; blÞ is a regular sequence in Z½t1; . . . ; tl�.
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Let k be a subfield of C which contains primitive p-th root of the unity.
Let us denote by Gk the split reductive group over k which corresponds G. By
definition, a Gk-torsor Gk over k is a variety over k with a free Gk-action such
that the quotient variety is SpecðkÞ. A Gk-torsor over k is called trivial, if it is
isomorphic to Gk or equivalently it has a k-rational point. In this paper by Gk,
we mean a nontrivial torsor at any finite extension K=k coprime to p.

Let H be a subgroup of G. Given a torsor Gk over k, we can form the
twisted form of G=H by

ðGk � Gk=HkÞ=Gk GGk=Hk:

Letting X ¼ G=T , we consider cases such that Assumption (*) in §7 hold.
By [Pe-Se-Za], exceptional Lie groups ðG2; p ¼ 2Þ and ðF4; p ¼ 3Þ are such cases.
The filtrations of K-theory of such spaces are also studied by Garibardi and
Zainouline ([Ga-Za], [Za], [Ju]) as the twisted gamma filtrations.

At first, we consider the case ðG; pÞ ¼ ðG2; 2Þ. We recall the cohomology
from Toda-Watanabe [To-Wa],

H �ðG=T ;ZÞGZ½t1; t2; y�=ðt21 þ t1t2 þ t22 ; t
3
2 � 2y; y2Þ

with jtij ¼ 2 and jyj ¼ 6. Let P be the maximal parabolic subgroup such
that G=P is isomorphic to a quadric. Then we have H �ðP=TÞGZf1; t1g (see
[To-Wa], [Ya6])

H �ðG=P;ZÞGZ½t2; y�=ðt32 � 2y; y2ÞGZf1; ygn f1; t2; t22g

Of course this is isomorphic to gr�topðG=PÞ.
Since G=P is a quadric, we have the decomposition ([Bo], §7 in [Pe-Se-Za])

MðGk=PkÞGM2 lM2ð1ÞlM2ð2Þ:

Theorem 8.1 (Theorem 5.2 in [Ya6]). There is a ring isomorphism

gr�g ðG=PÞG gr�geoðGk=PkÞGCH �ðGk=PkÞ

GZð2Þ½t2; u�=ðt62 ; 2u; t32u; u2ÞGZð2Þ½t2�=ðt62ÞlZ=2½t2�=ðt32Þfug

with jt2j ¼ 2, juj ¼ 4.

Proof. Recall that from Lemma 7.2,

W�ðM2ÞGW�f1; 2y; vygHW�f1; yg:

From the decomposition of the motive, we have the W�-module isomorphism

W�ðGk=PkÞGW�f1; v1 y; 2ygn f1; t2; t22gHW�ðGk=PkÞ:

Since CH �ðX ÞGW�ðX ÞnW � Z, we have the isomorphism

CH �ðGk=PkÞGZf1; 2ygf1; t2; t22glZ=2fv1 ygf1; t2; t22g:

(Note 2v1y ¼ v1ð2yÞ A W<0W�ðGk=PkÞ.)
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Here the multiplications are given as follows. Since 2y ¼ t32 modðW<0Þ in
W�ðGk=TkÞ, we can take 2y ¼ t32 A CH �ðG=PkÞ so that

Zf1; 2ygf1; t2; t22g ¼ Z½t2�=ðt62ÞHCH �ðG=PkÞ:
Let us write u ¼ v1 y in CH �ðGk=TkÞ. Then t32u ¼ 2yv1 y ¼ 0 and u2 ¼ v21 y

2 ¼ 0
in W�ðGk=TkÞnW � Z. Hence we have the second isomorphism in the theorem.

Since juj ¼ 4, the element u is represented by Chern classes, we see the first
isomorphism. r

Remark. The space Gk=Tk is isomorphic to the quadric defined by the
maximal neighbor of the 3-Pfister form. Hence its Chow ring is computed in
[Ya6].

It is well known that the representations (over CÞ) are written as

RðG=TÞGRðTÞ=RðGÞ:
Therefore each element which is represented by Chern classes is written as an
element in W�ðGk=TkÞ

cðxÞ ¼
Y

ð1þ l1t1 þ l2t2Þ A W�½t1; t2� li A Z=2

modulo ððt1; t2ÞW<0W�ðGk=TkÞÞ: By the similar arguments, we have (see Theorem
5.3 in [Ya6])

Theorem 8.2. There are ring isomorphisms

gr�g ðG=TÞGCH �ðGk=TkÞGZ½t1; t2�=ðt62 ; 2u; t32u; u2Þ
where u ¼ t21 þ t1t2 þ t22 .

Proof. The Chow ring is isomorphic to

ð�Þ CH �ðGk=TkÞGCH �ðGk=PkÞf1; t1g

G ðZf1; 2yglZ=2fv1 ygÞf1; t2; t22gf1; t1g:

Here 2y ¼ t32 . Since v1 y A ðt1; t2Þ and v1 y ¼ 0 A CH �ðGk=TkÞ, we see

v1 y ¼ lðt21 þ t1t2 þ t22Þ modððt1; t2ÞW<0W�ðGk=TkÞÞ
for l A Z. We can take l ¼ 1 modð2Þ. Otherwise v1 y ¼ 0 A W�ðGk=TkÞ=2,
which is an W�=2-free, and this is a contradiction. Hence we can take
t21 þ t1t2 þ t22 as v1 y. Hence in CH �ðGk=TkÞ we have the relation

ðt32Þ
2 ¼ 0; ðt32Þu ¼ 0; u2 ¼ 0; 2u ¼ 0: r

Next we consider the case ðG; pÞ ¼ ðF4; 3Þ. Let Gk be a nontrivial Gk-torsor
at 3 as previous sections. Let Pk be a maximal parabolic subgroup of Gk given
by the first three vertexes

�1 �� �2)¼�3 �� �4

192 nobuaki yagita



of the Dynkin diagram. Then Nikolenko-Semenov-Zainoulline ([Ni-Se-Za])
showed that there is an isomorphism

MðGk=PkÞG 0
7

i¼0

M2ðiÞ:

We first recall the ordinary cohomology of G=P ([Is-To], [Du-Za]).

H �ðG=PÞð3Þ GZ½t; y�=ðr8; r12Þ; jtj ¼ 2; jyj ¼ 8

where r8 ¼ 3y2 � t8 and r12 ¼ 26y3 � 5t12: Hence we can rewrite

H �ðG=PÞGZf1; t; . . . ; t7gn f1; y; y2g:

Recall the Rost motive CH �ðM2jkÞGZ½y�=ðy3Þ,

CH �ðM2ÞGZf1glZf3y; 3y2glZ=3fv1 y; v1 y2g:

Of course, the above y A CH �ðMaÞ can be identified with the same named
element in H �ðGk=PkÞ by the restriction map CH �ðMaÞ ! CH �ðMajkÞH
CH �ðGk=PkÞ. From the above isomorphism, we have the decomposition

ð�Þ CH �ðGk=PkÞGZf1; t; . . . ; t7gn ðZf1; 3y; 3y2glZ=3fv1 y; v1 y2gÞ:

The ring structure is given as follows.

Proposition 8.3 (Theorem 6.2 in [Ya6]).

gr�geoðGk=PkÞGCH �ðGk=PkÞ

GZ½t; b; a1; a2�=ðt16; t8b; b2 ¼ 3t8; bai; 3ai; t
8ai; a1a2Þ

GZf1; t; . . . ; t7gn ðZf1;p3t4; t8glZ=3fa1; a2gÞ

where jbj ¼ 8 and ja1j ¼ 4, ja2j ¼ 12.

Proof. From the relation r8 in CH �ðG=PÞ, we have

3y2 ¼ t8 þ vx A W�ðG=PÞ for v A W<0:

Hence we can take t8 instead of 3y2 in (*). Of course

ð3yÞ2 ¼ 3t8 þ 3vx A W�ðGk=PkÞ:

Hence we write by b ¼ p
3t4 the element 3y. Write by a1, a2 the elements

v1 y, v1 y
2 respectively. Elements in IyW<0 HWðGk=PkÞ reduces to zero in

CH �ðGk=TkÞ. Therefore we have the desired multiplicative results. r

The element b ¼ 3y is represented by a Chern class c4ðxÞ for some x by
the Riemann-Roch theorem without denominators. Unfortunately, we do not
know if a2 ¼ v1 y

2 are Chern classes in CH �ðGk=PkÞ or not.
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Proposition 8.4. If a2 ¼ v1 y
2 A CH �ðGk=PkÞ is represented by a Chern

class, then grgðG=PÞGCH �ðGk=PkÞ. Otherwise

grgðG=PÞGZ½t; b; a1�=ðt16; t8b; b2 ¼ 3t8; ba1; 3a1; t
8a1; a

3
1Þ

where jbj ¼ 8 and ja1j ¼ 4.

Proof. If v1 y
2 is not represented by Chern class of CH �ðGk=PkÞ (or

W�ðGk=PkÞ), then the corresponding nonzero element in grgðG=TÞ is v21 y
2,

which is written as ðv1 yÞ2 ¼ ða1Þ2. r

9. Filtrations of the Morava K-theory

For most groups G in the preceding sections, it is known that KðnÞoddðBGÞ
¼ 0 (while Kriz gave some examples with KðnÞoddðBGÞ0 0). Hereafter, we only
consider spaces X such that

KðnÞoddðX ðCÞÞ ¼ ~KKðnÞoddðX ðCÞÞ ¼ 0;ð9:1Þ
KðnÞ�ðX ðCÞÞGAKðnÞ2�;�ðXÞ:ð9:2Þ

Then we can define the three filtrations for the Morava KðnÞ-theory
FðnÞ2itop ¼ KerðKðnÞ�ðXðCÞ ! KðnÞ�ðXðCÞ2iÞ;

FðnÞ2igeo ¼ f f�ð1MÞ j f : M ! X and codimX Mb ig
FðnÞ2ig ¼ fcKðnÞ

i1
ðx1Þ � . . . � cKðnÞ

im
ðxmÞ j i1 þ � � � im b ig;

and let us write the associated graded algebras

grðnÞ�g ðXÞ; grðnÞ�geoðXÞ; grðnÞ�topðXðCÞÞ:
Here c

KðnÞ
is

ðxsÞ is the Chern class for AKðnÞ�;�
0
-theory for some k-representation

xs : X ! BGLN . This Chern class is induced from the isomorphism

AKðnÞ2�;�ðBGLNÞGKðnÞ� nBP � W�ðBGLNÞ;
in fact, it is well known that in W�ðX Þ, we can define Chern classes canonically
(see [Mo-Le] for example). However each element in KðnÞ�ðXðCÞÞ (for nb 2)
need not to be represented by KðnÞ�-theory Chern classes. Hence we need the
assumption

F 0
g ¼ KðnÞ�ðXÞ:ð9:3Þ

(However, we also consider the cases where (9.3) is not assumed.) Of course

the assumptions are satisfied for Kð1Þ�-theory, if they are so for ~KKð1Þ�-theory.
Recall PðnÞ�ðXÞ be the cohomology theory with the coe‰cient

PðnÞ� ¼ BP�=ðp; v1; . . . ; vn�1Þ:
It is well known, for all X ,

PðnÞ�ðX ÞnBP � KðnÞ� GKðnÞ�ðX Þ:
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Let us write by EðPðnÞÞ�;�
0

r (resp. EðKðnÞÞ�;�
0

r ) the AHss converging to PðnÞ�ðX Þ
(resp. KðnÞ�ðXÞ). Then we have

EðPðnÞÞ�;�
0

r nBP � KðnÞ� GEðKðnÞÞ�;�
0

r :

If (9.1)–(9.3) are satisfied, then KðnÞ-version (exchanging BP�ðX Þ to
PðnÞ�ðX Þ) of all lemmas in §2 also hold.

Lemma 9.1. Suppose (9.1) for all nb 1, and that W�ðXÞ=pGBP�ðXðCÞÞ=p
and it is generated by (BP�-)Chern classes. Then (9.2) and (9.3) are satisfied and
grðnÞ�g ðXÞG grðnÞ�geoðX Þ.

Proof. We consider the maps

W�ðXÞnBP � KðnÞ� !r1 AKðnÞ2�;�ðX Þ !r2 KðnÞ�ðX ðCÞÞ:
Here the map r1 is an epimorphism because W�ðX Þ (resp. AKðnÞ2�;�ðXÞÞ is
generated as a BP�-module (resp. KðnÞ�-module) by elements in CH �ðXÞ.

On the other hand by Ravenel-Wilson-Yagita [Ra-Wi-Ya], we know that
(9.1) implies

KðnÞ�ðXðCÞÞGKðnÞ� nBP� BP�ðX ðCÞÞ:
From the supposion in the theorem, we see that r2r1 is an isomorphism. This
means that r1, r2 are also isomorphisms. r

The assumptions in the above lemma are satisfied for X ¼ BG, G ¼ finite
abelian, p1þ2

G , On, G2 and PGL3 ( p ¼ 3).
Of course gr�topðXÞ and grðnÞ�topðXÞ are quite di¤erent. Let G ¼ Z=p. Then

KðnÞ�ðBGÞGKðnÞ�ðy�=ðypnÞ:
and this is generated by Chern classes in H �ðBG;Z=pÞ.

Theorem 9.2. Let G ¼ 0 s
Z=p. Then all three filtrations of KðnÞ�ðBGÞ

are same and

grðnÞ�topðBGÞGZ=p½y1; . . . ; ys�=ðypn

1 ; . . . ; ypn

s Þ:

Similarly, we have

Theorem 9.3. Let G ¼ Om and p ¼ 2. Then all three filtrations of
KðnÞ�ðBGÞ are same and

grðnÞ�topðBGÞG
X

yi1
1 � � � yis

s ðysþ1 ysþ2Þ jsþ1 � � � ðy2kþ1 y2kþ2Þ j2kþ1

n o

where 0a i1 a � � �a is < 2n a is a � � �a ik.

For example, grðnÞ�top GZ=2½c2�lZ=2fci1c
j
2 j i þ 2j < 2ng.

Next we consider the case G ¼ SO2m Recall for mb 3, y2m is not rep-
resented by Chern classes
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Theorem 9.4. Let G ¼ SO2m, p ¼ 2 and m > 2. Then

grðnÞ�geoðBGÞGZ½c2; c4; . . . ; c2m�fy2mgl grðnÞ�geoðBO2mÞ=ðc1Þ:

However grðnÞ�g ðBGÞZ grðnÞ�geoðBGÞZ grðnÞ�topðBGÞ:

Proof. We only need the second non-isomorphism of the second statement.
Since y2m ¼ ð�1Þ�2m�1w2m A H �ðBGÞ is zero in H �ðBG;Z=2Þ. Hence 00 y2m A
PðnÞ�ðBGÞ is represented in the AHss converging to PðnÞ�ðBGÞ as element in
E �;�0
y with �0 < 0 and � > 2m. r

Next consider the case G ¼ G2 (and p ¼ 2). By the computation of the
AHss for Pð1Þ�ðBGÞ (¼ BP�ðBG;Z=2Þ), we have

Kð1Þ�ðBGÞGKð1Þ�½c4; c6�f1; v1w6g:

By the direct computation of the AHss for Kð2Þ�ðBGÞ, we see

Kð2Þ�ðBGÞGKð2Þ�½c4; c6�f1;w4w6g:
Thus we have

Theorem 9.5. Let G ¼ G2 and p ¼ 2. Then

grðiÞ�a ðBGÞGZ=2½c4; c6�f1; ag

where a2 ¼
c4c6 jaj ¼ 10 if i ¼ 2: a ¼ top

c6 jaj ¼ 6 if i ¼ 1: a ¼ top

0 jaj ¼ 4 if i ¼ 1; 2: a0 top:

8<
: :

Proof. The above a is represented as a ¼ w4w6 (resp. w6, v1w6, v2w4w6)
when i ¼ 2; a ¼ top (resp. i ¼ 1, a ¼ top, i ¼ 1 a0 topÞ, and i ¼ 2 a0 topÞ).

r

When nb 1, the geometric and topological filtrations are quite di¤erent.

Theorem 9.6. Let G be a simply connected simple Lie group such that
H �ðGÞ has p-torsion. Then for nb 1

grðnÞ4geoðBGÞ0 0 but grðnÞ4topðBGÞ ¼ 0:

Proof. The space BG is 3-connected and H 4ðBGÞGZ (so H 4ðBG;Z=pÞG
Z=p). Let us write by x its 4-dimensional generator. To see grðnÞ4topðBGÞ ¼ 0,
we only need to show

ð�Þ d2pn�1ðxÞ ¼ vn nQnðxÞ0 0

in the AHss converging to KðnÞ�ðBGÞ.
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For these groups, it is well known that there are embedding G2 HG for
p ¼ 2, (F4 HG for p ¼ 3 and G ¼ E8 for p ¼ 5). We will prove (*) for G ¼ F4

and p ¼ 3, then we can see (*) for the other groups when p ¼ 3. (The other
primes cases are similar).

Let G ¼ F4 and p ¼ 3. Then G has a maximal elementary p-group AG
ðZ=3Þ3. We consider the restriction map for i : AHG,

i� : H �ðBG;Z=pÞ ! H �ðBA;Z=pÞGZ=p½y1; y2; y3�nLðx1; x2; x3Þ:

The restriction image is i�ðxÞ ¼ Q0ðx1x2x3Þ (see [Ka-Te-Ya]). Hence we show

i�ðQnðxÞÞ ¼ QnQ0ðx1x2x3Þ ¼
X

y
pn

1 y2x3 0 0:

By [Ka-Ya2], it is known that px A H 4ðBGÞ is represented as the Chern class
c2 for some representation. Hence grðnÞ4geoðBGÞ0 0: Thus we have the theorem.

r

Now we recall arguments for quadrics. Let m ¼ 2m 0 þ 1, and let us write
the quadratic form qðxÞ defined by

qðx1; . . . ; xmÞ ¼ x1x2 þ � � � þ xm�2xm�1 þ x2
m

and the projective quadric Xq defined by the quadratic form q. Then it is well
known that (in fact SOðmÞ acts on the a‰ne quadric in Am � 0)

Xq GSOðmÞ=ðSOðm� 2Þ � SOð2ÞÞ:

Let G ¼ SOðmÞ and P ¼ SOðm� 2Þ � SOð2Þ. Then the quadric q is always split
over k and we know CH �ðGk=PkÞGCH �ðXqÞ.

In particular we consider the case m ¼ 2nþ1 � 1. Let r ¼ f�1g A KM
1 ðkÞ=2

¼ k �=ðk �Þ2. We consider fields k such that

00 rnþ1 A KM
nþ1ðkÞ=2:

Define the quadratic form q 0 by q 0ðx1; . . . ; xmÞ ¼ x2
1 þ � � � þ x2

m: Then this q 0 is a
subform of hh�1; . . . ;�1ii ¼ fr nþ1 the ðnþ 1Þ-th Pfister form associated to rnþ1.
(That is, q 0 is the maximal neighbor of the ðnþ 1Þ-th Pfister form.) Of course
qj

k
¼ q 0j

k
and we can identify Gk=Pk GXq 0 . From Lemma 7.2 (or Rost’s result),

we know

CH �ðXq 0 j
k
ÞGZ½t; y�=ðt2 n�1 � 2y; y2Þ:

As stated in §7, there is a decomposition of motives

MðXq 0 ÞGMn nZ=2½t�=ðt2 n�1Þ:

Hence we have the additive isomorphism

CH �ðXf 0
a
ÞGZ½t�=ðt2 n�1Þn ðZf1; cn;0glZ=2fcn;1; . . . ; cn;n�1gÞ:
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With identification t2
n�1 ¼ 2y ¼ cn;0, and ui ¼ cn; i for i > 0, we also get the ring

isomorphism

Theorem 9.7 ([Ya6]). Let 00 rnþ1 A KM
nþ1ðkÞ=2 and let Gk=Pk be the above

quadric Xq 0 . Then there is a ring isomorphism

CH �ðGk=PkÞGZ½t�=ðt2 nþ1�2ÞlZ=2½t�=ðt2n�1Þfu1; . . . ; un�1g
where ui ¼ vi y A W�ðGk=pÞnW � Zð2Þ so uiuj ¼ 0. Hence for 1a ia n� 1, we
have

grðiÞgeoðGk=PkÞGZ½t�=ðt2nþ1�2ÞlZ=2½t�=ðt2 n�1Þfuig:

Proof. In KðiÞ�ðXÞ, we see vj ¼ 0 for i0 j. Since vjui ¼ viuj, we see uj ¼ 0
for i0 j. r
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