O. KOBAYASHI KODAI MATH. J. **38** (2015), 166–171

THE CONFORMAL ROTATION NUMBER

Osamu Kobayashi

Abstract

The rotation number of a planar closed curve is the total curvature divided by 2π . This is a regular homotopy invariant of the curve. We shall generalize the rotation number to a curve on a closed surface using conformal geometry of ambient surface. This conformal rotational number is not integral in general. We shall show the fractional part is relevant to harmonic 1-forms of the surface.

1. Introduction

Let *M* be a connected oriented closed surface with a Riemannian metric *g*. The conformal Laplacian L_g is defined as $L_g u = -\Delta_g u + K_g$, where K_g is the Gauss curvature of *g*. If we denote by G_p a Green function of L_g with pole at $p \in M$, we have a flat surface $(M_p, g_p) = (M \setminus \{p\}, e^{2G_p}g)$. Then for a regular closed curve $\gamma : S^1 \to M_p$ we set $r(\gamma, p) = \frac{1}{2\pi} \int_{\gamma} \kappa \, ds$, which will be called *relative rotation number* or *conformal rotation number*, where κ is the curvature of γ with respect to g_p . This is a conformally invariant with repect to *g*, and a regular homotopy invariant of γ , but not in general integer valued. We think of $r(\gamma, p)$ as a function in $p \in M$. It turns out that $r(\gamma, p)$ is not continuous for $p \in \gamma(S^1)$ if $\chi(M) \neq 0$, but the differential extends smoothly on *M*, and we write α_{γ} for this 1-form. The main result of this paper is the following.

THEOREM 1.1. If $\chi(M) < 0$, then $\frac{1}{\chi(M)} \alpha_{\gamma}$ is the harmonic form whose de Rham cohomology class is the Poincaré dual of γ .

We shall also explain the relation between our conformal rotation number and Reinhart's $mod \chi(M)$ invariant ([3]).

²⁰¹⁰ Mathematics Subject Classification. 53A30.

Key words and phrases. conformal geometry, regular homotopy. Received March 25, 2014; revised July 31, 2014.

2. Conformal Laplacian of a surface

Let (M,g) be a connected closed surface and K_g the Gauss curvature of g. The conformal Laplacian is defined as $L_g u = -\Delta_g u + K_g$.

LEMMA 2.1. If $\tilde{g} = e^{2u}g$, then we have (1) $L_g u = e^{2u}K_{\tilde{g}}$; (2) $L_g v = e^{2u}L_{\tilde{g}}(v-u)$; (3) $\Delta_g v = e^{2u}\Delta_{\tilde{g}}v$; (4) $\int_M L_g u \, d\mu_g = 2\chi(M)$; (5) u - v = const if $L_g u = L_g v$.

Proof. (4) is the Gauss-Bonnet theorem. The others are easily verified. \Box

Now we assume moreover that M is oriented. κ_g denotes the curvature of a regular curve γ .

LEMMA 2.2. Suppose $\tilde{g} = e^{2u}g$ and γ is a regular curve. (1) $\int_{\gamma} \kappa_{\tilde{g}} ds_{\tilde{g}} - \int_{\gamma} \kappa_g ds_g = -\int_{\gamma} (\partial_{\gamma} u) ds_g$, where v is the unit normal vector of γ . (2) If $\gamma = \partial U$ then $\int_{\gamma} \kappa_{\tilde{g}} ds_{\tilde{g}} - \int_{\gamma} \kappa_g ds_g = \int_U (\Delta_g u) d\mu_g$. (3) If $\gamma = \partial U$ then $\int_{\gamma} \kappa_{\tilde{g}} ds_{\tilde{g}} = 2\pi \chi(\overline{U}) - \int_U (L_g u) d\mu_g$.

Proof. (1) is a direct calculation. (2) follows from (1). (3) is Gauss-Bonnet. \Box

DEFINITION 2.3. $G_p \in C^{\infty}(M_p)$ is called a *Green function* of L_g with pole at $p \in M$ if $L_g G_p = a \delta_p^g$ for some constant a, where δ_p^g is the Dirac δ -function at p with repect to the metric g.

LEMMA 2.4. (1) $a = 2\pi\chi(M)$. (2) G_p is unique up to an additive constant. (3) $G_p - u$ is a Green function of $e^{2u}g$.

Proof. From Lemma 2.1.

We remark that G_p has no pole at p if $\chi(M) = 0$.

COROLLARY 2.5. (M_p, g_p) is flat and its homothety class depends only on the conformal class of (M, g).

PROPOSITION 2.6. There is a Green function G_p , and $G_p(x) + \chi(M) \log d(x, p)$ is continuous at p.

OSAMU KOBAYASHI

Proof. We have a metric $\tilde{g} = e^{2\lambda}g$ which is flat near p. Let $u \in C^{\infty}(M_p)$ be a function such that $u(x) = -\chi(M) \log \tilde{d}(x, p)$ near p and we have $-\Delta_{\tilde{g}}u = 2\pi\chi(M)\delta_p^{\tilde{g}}$ near p. Put

$$v(x) = \begin{cases} 0 & x = p \\ \Delta_{\tilde{g}}u & \text{otherwise.} \end{cases}$$

Then $v \in C^{\infty}(M)$ and $\Delta_{\tilde{g}}u = v - 2\pi\chi(M)\delta_{p}^{\tilde{g}}$. It follows from the Gauss-Bonnet theorem that $\int_{M} (K_{\tilde{g}} - v) d\mu_{\tilde{g}} = 0$. Hence we have $w \in C^{\infty}(M)$ such that $\Delta_{\tilde{g}}w = K_{\tilde{g}} - v$, and $G_{p} = u + w - \lambda \in C^{\infty}(M \setminus \{p\})$ is the desired Green function. \Box

We will give a proof of the following classical theorem.

PROPOSITION 2.7. Any metric g is conformal to a metric of constant curvature.

Proof. Case $\chi(M) = 0$: The Poisson equation $-\Delta_g u + K_g = 0$ is solvable. Case $\chi(M) < 0$: Let $u \in C^{\infty}(M)$ be a solution of $L_g u = 2\pi\chi(M) / \int_M d\mu_g$, and put $u_+ = u - \min_x u(x)$ and $u_- = u - \max_x u(x)$. Because $\chi(M) < 0$ the method of sub- and super-solutions (pp. 35–36 of [2]) is applicable, and we get $v \in C^{\infty}(M)$ such that $L_g v = e^{2v} \cdot 2\pi\chi(M) / \int_M d\mu_g$. Case $\chi(M) > 0$: Take $p \in M$ and consider (M_p, g_p) . We have $g_p = \lambda d(p, x)^{-2\chi(M)}g$, where λ is a fucntion continuous at p. Hence (M_p, g_p) is a complete flat surface with one end because $\chi(M) > 0$. Therefore (M_p, g_p) is isometric to either (\mathbf{R}^2, g_0) or $(S^1 \times \mathbf{R} / \pm 1, g_0)$. That is, (M, g) is conformal to (S^2, g_0) or (\mathbf{RP}^2, g_0) .

We set $G(x, y) = G_x(y)$, $x \neq y \in M$, and call it a *Green kernel* of L_a .

PROPOSITION 2.8. We can choose a Green kernel so that G(x, y) = G(y, x).

Proof. Suppose $\tilde{g} = e^{2u}g$ has constant Gauss curvature \tilde{K} . Take a Green function \tilde{G}_p of $L_{\tilde{g}}$. Note that \tilde{G}_p is integrable and set $G'(x, y) = \tilde{G}_x(y) - \int_M G_x(y) \, dy / \int_M dy$. It is not hard to see that G'(x, y) = G'(y, x). G(x, y) = G'(x, y) + u(x) + u(y) is the desired Green kernel.

Remark 2.9. Let $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \cdots$ be the eigenvalues of $-\Delta_{\bar{g}}$, and ϕ_i be eigenfunction with eigenvalue λ_i such that $\int_M \phi_i \phi_j = \delta_{ij}$. Then $G'(x, y) = 2\pi\chi(M) \sum_{k>0} \frac{1}{\lambda_k} \phi_k(x) \phi_k(y)$. (cf. [1].)

In the case of nonpositive Euler characteristic (M_p, g_p) is no longer complete, that is, p may be regarded as a singular point rather than a point at infinity. The following describes a local picture around p.

PROPOSITION 2.10. Suppose $\chi(M) \leq 0$. Then there are neighborhoods U of p and V of 0 in \mathbb{R}^2 , and a mapping $f: U \to V$ such that f is a ramified covering of degree $1 - \chi(M)$ branched at p with f(p) = 0 and $g_p = f^*g_0$, where g_0 is the

168

Euclidean metric. In particular, there is a local coordinates x^1 and x^2 around p such that $g_p = |x|^{-2\chi(M)} \delta_{ij} dx^i dx^j$ near p.

Proof. Routine and omitted.

3. Rotation number relative to a reference point

Let (M,g) be as before and $\gamma: S^1 \to M$ be a regular closed curve. For $p \in M \setminus \gamma(S^1)$ we set

$$r(\gamma, p) = \frac{1}{2\pi} \int_{\gamma} \kappa \, ds,$$

where the curvature κ of γ and the line element ds are with respect to the flat metric g_p .

Lemma 3.1.

- (1) $r(\gamma, p)$ depends only on the conformal class of g.
- (2) If $\tilde{\gamma}$ is regularly homotopic to γ in M_p , then $r(\tilde{\gamma}, p) = r(\gamma, p)$.
- (3) Suppose that $\tilde{\gamma}$ is regularly homotopic to γ in M, and that in the course of homotopy the point p is passed once in such a way that p is in the left of γ and in the right of $\tilde{\gamma}$. Then $r(\tilde{\gamma}, p) = r(\gamma, p) + \chi(M)$.

Proof. (1) Since κds is invariant under homothety of ambient metric, the result follows from Corollary 2.5. (2) We have only to consider a regular homotopy whose support is very small. Then the result is evident because g_p is flat. (3) Let D be a sufficiently small disk around p with smooth boundary $c = \partial D$. Then it is easy to see that $r(\tilde{\gamma}, p) - r(\gamma, p) = 1 - r(c, p)$. On the other hand we have, from Lemma 2.2 (3), $r(c, p) = 1 - \chi(M)$.

COROLLARY 3.2. $r_{\gamma}: M \to \mathbf{R}/\chi(M)\mathbf{Z}; r_{\gamma}(p) = r(\gamma, p) \mod \chi(M)$ is welldefined and smooth.

Proof. From Lemma 2.2 (1) and Proposition 2.8 it follows that $r(\gamma, p)$ is smooth in $p \notin \gamma(S^1)$. The result then follows from Lemma 3.1.

PROPOSITION 3.3. If γ is null homologous in $H_1(M, \mathbb{Z})$, then

- (1) $r(\gamma, p) \in \mathbb{Z};$
- (2) $r(\gamma, p)$, as a function of p, is locally constant for $p \notin \gamma(S^1)$;
- (3) $r(\gamma) := r(\gamma, p) \mod \chi(M)$ is well-defined.

Proof. Let q be a point on γ . Since g_p is flat, we have holonomy φ : $\pi_1(M_p, q) \to SO(2) = U(1)$. This is explicitly given as $\varphi([c]) = \exp(-2\pi r(c, p))$. Since U(1) is Abelian, and $H_1(M_p, \mathbb{Z}) = H_1(M, \mathbb{Z})$, φ induces a homomorphism $\varphi: H_1(M, \mathbb{Z}) \to U(1)$. Hence $\varphi([\gamma]) = 1$, which implies (1). From Corollary 3.2 we get (2) because of (1). Then (3) follows from Lemma 3.1 (3).

OSAMU KOBAYASHI

For a regular closed curve γ on $M = S^2$ we have $r(\gamma) = 0$ or $1 \mod 2$. It is easy to see that this is a complete invariant of regular homotopy on S^2 (see also [4]).

We note that the above definitions and arguments make sense for multiple curve $\gamma: S^1 \cup \cdots \cup S^1 \to M$. Thus we have

COROLLARY 3.4. If γ is homologous to $\tilde{\gamma}$ in $H_1(M, \mathbb{Z})$, $r(\gamma, p) - r(\tilde{\gamma}, p) \in \mathbb{Z}$ for $p \in M \setminus (\gamma \cup \tilde{\gamma})$, and its residue class modulo $\chi(M)$, which will be denoted by $r(\gamma, \tilde{\gamma})$, is independent of p.

Let μ_1, \ldots, μ_{2g} be regular curves which generate $\pi_1(M)$, where $g = 1 - \chi(M)/2$. Then they constitute also a basis for $H_1(M, \mathbb{Z})$. Hence for γ , we have $n_i \in \mathbb{Z}$ such that γ is homologous to $\tilde{\gamma} = \sum n_i \mu_i$. The rotation number defined by Reinhart [3] is $r(\gamma, \tilde{\gamma})$ in our terminology.

Suppose N is a compact surface with boundary and $f: N \to M$ is an immersion. Obviously $c = f | \partial N$ is null homologous. In this setting we have a simple formula.

LEMMA 3.5.
$$r(c, p) + m_p \chi(M) = \chi(N)$$
, where $m_p = \# f^{-1}(p)$.

Proof is easy and omitted.

COROLLARY 3.6. If $\chi(M) \ge 0$ then $\chi(N) \ge r(c, p)$. If $\chi(M) \le 0$ then $\chi(N) \le r(c, p)$.

4. Proof of Theorem 1.1

From Corollary 3.2 we have $r(\gamma, \cdot) \in C^{\infty}(M \setminus \gamma)$. Thus $\alpha_{\gamma} = dr(\gamma, \cdot) = dr_{\gamma}$ extends smoothly on *M* as a closed 1-form. Moreover Lemma 3.1 (3) yields the following.

$$\int_c \alpha_{\gamma} = \chi(M) \gamma \cdot c,$$

where c is a smooth 1-cycle and "·" in the right hand side is the homology intersection. Therefore if $\chi(M) < 0$, $\frac{1}{\chi(M)} [\alpha_{\gamma}] \in H^{1}_{DR}(M)$ is the Poincaré dual of the cycle γ .

The key of the proof is Proposition 2.8. We write K for K_g .

$$-\Delta_x G_p(x) + K(x) = 0$$
 if $p \neq x$.

We see from Proposition 2.8 that

$$-\Delta_p G_p(x) + K(p) = 0$$
 if $p \neq x$.

170

Therefore v being the unit normal vector of γ , we have

$$-\Delta_p \partial_\nu G_p(x) = -\partial_\nu \Delta_p G_p(x) = \partial_\nu (-\Delta_p G_p(x) + K(p)) = 0 \quad \text{if} \ p \neq x.$$

This together with Lemma 2.2 (1) shows that $r(\gamma, \cdot)$ is harmonic in $M \setminus \gamma$, and hence α_{γ} is harmonic.

5. Supplementary remarks

Regular homotopy of closed curves is completely described by Smale [4] in terms of algebraic topology. We are interested in differential geometric interpretation of regular homotopy. Our conformal rotation number is not a complete invariant of regular homotopy. There is another non-trivial regular homotopy invariant $t(\gamma)$ (see [5]). It is of interest to understand $t(\gamma)$ from differential geometric point of view.

We distinguish the term "rotation number" from "winding number." The winding number is also generalized to a curve γ on a surface M, which is given as

$$w(\gamma, p_0, p_\infty) = -\frac{1}{\chi(M)}(r(\gamma, p_0) - r(\gamma, p_\infty)), \quad p_0, p_\infty \in M \setminus \gamma,$$

if $\chi(M) \neq 0$.

References

- [1] I. CHAVEL, Eigenvalues in Riemannian geometry, Academic Press, 1984.
- [2] J. L. KAZDAN AND F. W. WARNER, Curvature functions for compact 2-manifolds, Ann. of Math. 99 (1974), 14–47.
- [3] B. L. REINHART, The winding number on two manifolds, Ann. Inst. Fourier, Grenoble 10 (1969), 271–283.
- [4] S. SMALE, Regular curves on riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492-512.
- [5] H. TANIO AND O. KOBAYASHI, Rotation numbers for curves on torus, Geom. Dedicata 61 (1996), 1–9.

Osamu Kobayashi Department of Mathematics Osaka University, Toyonaka Osaka 560-0043 Japan E-mail: kobayashi@math.sci.osaka-u.ac.jp