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LOWER BOUNDS FOR BLOW-UP TIME IN A PARABOLIC
PROBLEM WITH A GRADIENT TERM UNDER VARIOUS
BOUNDARY CONDITIONS
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Abstract

This paper deals with the blow-up phenomena of the solution u of a nonlinear
parabolic problem with a gradient nonlinearity and time dependent coeflicients. By
using techniques based on Sobolev type and differential inequalities, we derive explicit
lower bounds for the blow-up time, if blow-up occurs, when different boundary
conditions are taken into account.

1. Introduction

In recent years there has been considerable attention paid to the question of
blow-up to solutions of nonlinear parabolic problems, whose source term depends
on the gradient of the solution. We cite the book [11] (chapter IV) and the
references therein.

In this paper we discuss the following problem

uy = Au+ ki (Hu? — ka(1)|Vul?, xeQ, te(0,1),
(L.1) oy +opu =0, xe€0Q,te (0,1,
u=uy(x) >0, xeQ,

where Q is a bounded domain in RY, N > 2, whose boundary dQ is sufficiently
smooth. The coefficients k;(¢) and k,(¢), associated respectively to the source
term and the dissipative gradient term, are positive and regular functions in
[0,7%), t* being the blow-up time, p > 1,4 >1, oy and o, are nonnegative
constants, and uy(x) is a nonnegative function in Q satisfying the compatibility
conditions on 0Q. Moreover u, represents the normal derivative of u with
respect the exterior unit vector v= (vi,...,vy) to 0Q. It follows by the
maximum principle that in the interval of existence u(x,7) >0. We remark
that the gradient term in (1.1) has a damping effect, working against blow-up.
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We will focus our study on lower bounds for blow-up time of problem (1.1),
which are of a great interest in several practical cases (see, for example, [10] and
[11]), since an explicit value of * cannot be generally determined. More precisely,
as we are interested in solutions blowing up at finite time ¢*, we will assume in
the problem (1.1) p > ¢, since for p < g it is well known that the solution will not
blow up in finite time (see [11]).

We also have to underline that only in the case ki(7) = k(¢) =1, oy =0 and
op = 1 in (1.1), a lower bound for blow-up time was obtained by Payne and Song
in [9]. In the same way, [1]-[8] provide good references about upper and lower
bounds of blow-up time for solutions of various parabolic problems.

In Section 2 we consider problem (1.1) under Dirichlet boundary conditions
(¢j =0 and oy = 1) and in order to obtain an explicit lower bound for * we
derive a first order differential inequality by using the Talenti-Sobolev inequality
(see [4] and [12]) which is valid for a nonnegative function that vanishes on JQ
and for a bounded domain Q = R>.

Lower bounds under Neumann and Robin boundary conditions on 0Q are
also derived in Sections 3 and 4, if the spatial domain Q < R® is star-shaped,
convex in two orthogonal directions and the origin inside, assumption due to the
use of a Sobolev type inequality (see [7] and [8]).

Throughout the paper we will assume p > ¢ > 2. Moreover the blow-up
time of the solution u is considered in L"*~Y-norm (n > 2).

2. Lower bound under Dirichlet boundary condition

In this section we choose as parameters of problem (1.1) o; =0 and o, = 1,
i.e. we consider the homogeneous Dirichlet condition # =0 on dQ x (0,7*). In
order to derive a lower bound of ¢*, let us introduce the auxiliary function

(2.1) Y(1) = kl(t)J u" PV dx, n>2,
Q
with ¥(0) > 0; if we set s = p — 1, by differentiation, we lead to
(2.2) W'(1) = ki J u™ dx + klnsJ u™ ' Au dx
Q Q
+ nsklzj w dx — nsk1k2J u™ 1 \Vu|? dx.
Q Q
Due to the divergence theorem and the boundary condition, from the identity
‘ 4
(2.3) " 2|V = —— Va2,
(ns)
we obtain
, -1 ,
(2.4) J W Audx = —45 J Va2 dx.
o (ns)” Ja
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Next, arguing as in (2.3) and using inequality (2.10) in [6], we achieve
, 2V N
(2.5) J u™ NVul? dx > (\/_1> J u™tl dx,
Q ns + q — 1 Q
A1 being the first positive eigenvalue of the fixed membrane problem
Aw+iw =0, xeQ,
w=0, xedQ,
w>0 xeQ.

!
Let us assume k; such that 11?8 < f, with f > 0; replacing (2.1), (2.4) and (2.5)
1

into (2.2) and setting u* = V' we obtain

-1
(2.6) W) < p— 4By J VIR dx

ns Q

+ nskl2 J prrl gx — nskzklmJ e dx,
Q Q
NIERN —1
where m = <7M and x=1"~ <1 (recall p >¢q). With the aim of
ns+q—1 S

reducing (2.6) to a differential inequality containing only powers of ¥ in its right
hand side, let us analyze the term |, V't dx.  Since n > 2, Hoélder inequality
returns

1/p 1/q
(27) J Vn+1 dx < <J pnte dX) <J V(3/2)n dx) ’
Q Q Q

1 -2 2(1 — . .
where 5: " and — = ( oc); moreover due to the same inequality we

1
n—2u a n—2a
obtain

3/4 1/4
(2.8) J yem gy < (J yn dx) (J p3n dx) .
Q Q Q

As u=0 on 0Q, the Talenti-Sobolev inequality provides

1/4 3/4
(2.9) (J y3n dx) <372 (J vy dx) ,
Q Q
2\2/3
r= (E) 3-1/2 being the best Sobolev constant. Therefore, by replacing (2.9)
and (2.8) into (2.7) we can write

1/p
(2.10) et ax < T (L[ g gy
Q JZLIE P

/a

3/4 37471
Q Q
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where we have introduced a time dependent and positive function u, to be
successively chosen. Therefore, using

(2.11) a'b'" <ra+ (1 —r)b,

valid for a,b >0 and 0 <r <1, we have

34 3/4 | 33
(J & dx> <J |VV"/2|2dx> 33(J & dx> +va VY22 dx,
Q Q 4y Q 4 Jo

where also v is a positive and time dependent function to be computed; (2.10) is
so reduced to

1/p
(2.12) J el dxgl"quJ pte dx) i
Q Hlao

1 3 3 Ve
n n/2\2
X[v3 (J V dx) -|-4VJ VP72 dx] )

being i = u*~'. Now, arranging (2.12) by means of (2.11), we have

1 1 u 3
2.13 prtlgx < T3/ | = H’J Vx4~ | = J Vnd
2.13) L} x= Pﬂ Q X+q 43\ Jo X

Jrév,uJ VY22 dx)].
47 Jo

Consequently, by replacing (2.13) into (2.6), we can write

‘P’(z)gﬂ‘I’+d1(t)J |VV”/2|2dx+d2(t)J VI dx 4 dy ()P,
Q Q

with
B 3 3, 1 ns —1
d](l)—k] <4F I’lSqV/,tk] 4 s s
(214) dz(t) = nsky <F3/2le l,uliv - kgm) ,
p
—173/2q M
d}(l) = nskl lr / QW.

Choosing in (2.14) firstly u# to make d» =0 and successively v to make the
coefficient d; =0, we conclude

(2.15) Y1) < BY + ds ().

Since we have assumed W(¢) blowing up at time ¢*, W¥(#) can be non decreasing,
so that W(¢) > ¥(0) with ¢ [0,¢), or non increasing (possibly with some kind
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of oscillations), in which case there exists a time #; where ¥(7;) = ¥(0). As a
consequence, ¥ (7) > W(0), € [#,r*). It implies that

(2.16) Y() <W(0)W(1)?, reln,r),

so that (2.15) and (2.16) produce the desired differential inequality

(2.17) ¥'(r) < D()Y(1)}, reln, ),
with
(2.18) D(1) = f¥(0) > + ds(1).
Integrating (2.17) between #; and ¢*, the inequality

1 t* t*
2.19 SJDTdTSJDTdT,
(2.19) w0 =, (7) . (7)

provides a lower bound for ¢*.
Therefore, we have proven the following

ki(2)

<
p=0. If uis a classical solution of problem (1.1), with u=0 on 0Q, blowing
up in L"?~V-norm (n > 2), then a lower bound of the blow-up time t* is given by
(2.19).

THEOREM 2.1. Let Q be a bounded domain in R>: assume

3. Lower bound under Neumann boundary condition

In this section we will study problem (1.1) under homogeneous Neumann
boundary conditions, u, = 0 on 0Q x (0, ¢*), corresponding to o; = 1 and o, = 0.
!
kl([) < ﬂ;
kl(l‘)
f = 0, thanks to the divergence theorem and the boundary condition, we lead to

As in the previous section, starting from equation (2.2), if we suppose

ns — 1

(3.1) Y (1) <pY -4 ky J VY2 |? dx
Q

ns

+ nsk12 J il dx — nskzklﬁzJ Vi dx,
Q Q
2/l

h V=u's=p—1,m=
where u,s=p , m (ns+q—l

q
> , U, being the first positive eigenvalue
of the free membrane problem

Aw+uw =0, xeQ,

w, =0, xe€0dQ,
w>0 xeQ.
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As far as the term [, V1 dx is concerned, by using Holder inequality and (2.11)
we obtain, since n > 2,

I 1 1
(32) J Vn+l dx < __IJ p e dx""}’J V<3/2>n dX,
o PP o a’ Ja

y being a positive and time dependent function to be chosen, and where p and g
are defined in (2.7). Now, by supposing Q a bounded domain of R*® with the

origin inside, star-shaped and convex in two orthogonal directions, the following
Sobolev type inequality (see Lemma A.2 of [8])

3 n d 32
(3.3) J B2 gx < {—J v dx + = (1 + —> J v" Vo dx} ,
Q 2py Ja 2 Po/ Ja

valid for any nonnegative C'-function v(x) defined in Q, with n > 1 and

(3.4) Po = rr}gizn(x -¥) >0 and d=max|x|,
o Q

holds. By choosing v =V in (3.3) and by applying
(3.5) (a+b)** <V2(a? + b3/,

valid for a,b > 0, we obtain:
3 3/2
(3.6) J Y32 gx <2 (J |24 dx)
Q 2py Ja

32
+F(1+E>J vl dx} }
2 Po/ Jo

2
On the other hand, being V" !|VV| = . y"2\Vy 2| Hélder inequality produces
3/2 1\32 34,0 3/4
(3.7) (J vl dx) < () {(J pn dx) (J VY22 dx) }
Q n Q Q
b 3/2 3 1/4 3/4
= <_> (J V" dx) ] (J |V V"/2|2 dx)
n Q Q
2\ 1 53
<(2) |==(| v ax) +3 J vy ax|,
(”> [453 (Lz ) it g‘ |

{ being another positive and time dependent function to be determined.
Ultimately, (3.2), (3.6) and (3.7) into (3.1) return
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(3.8) Y (1) < Y + m ()P + ny (1) P>

+m(0) J VY21 dx + ma(2) J g
Q Q

where
3V 1
ni(t) = nsy\/2k; (2/)0> v
2 321
na(t) = ”’SV‘/; (1 +i) -,
4k1£ Po q
(39) 3V2 AV 1 1
m (1) = l4nsk1yé<l +) S L 11«1,
P/ a ns
yir
I’l4([) = nsk; |:pk1 — mk2:| .

If in (3.9) y is taken such that ny = 0 and successively { such that n3 = 0, relation
(3.8) is reduced to

(3.10) V(1) < BY +m ()P 4+ ny ().

Since we have assumed W(¢) blowing up at time ¢*, then reasoning as in Section 2
there exists a time #; € [0,7*) such that W(¢) > W(0), 7€ [f,¢*). It implies that

Y(1) <W(0) (1), teln,r),
W) <W(0)PW(), reln, ),
so that (3.10) and (3.11) produce the desired differential inequality

(3.11)

(3.12) Y1) < N(¥(1)*, teln,r),

with

(3.13) N(1) =P(0) 2 (mi (1) + B0) ) + ma(1).

Integration (3.12) between #; and *, the following inequality
1 t* t*

3.14 7SJN7:dr£JNrdr,

(3.14) o <), V@S | N

provides a lower bound for ¢*.
These results are summarized in the following

THEOREM 3.1. Let Q be a bounded domain in R>, with the origin inside,
ki(2) .
<B p=0. 1
L <k B0y
u is a classical solution of problem (1.1), with u, = 0 on 0Q, blowing up in L"P~1)-
norm (n > 2), then a lower bound of the blow up time t* is given by (3.14).

star-shaped and convex in two orthogonal directions; assume
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4. Lower bound under Robin boundary condition

In this section we will study problem (1.1) under Robin boundary conditions,
u, = —opu on 0Q x (0,¢*), corresponding to o; =1 and ap > 0. First we prove
an inequality to be used in deriving a lower bound for ¢*.

LEMMA 4.1. Let Q be a bounded star-shaped domain of RY, N > 2, with
the origin inside. If & is the first positive eigenvalue of the free membrane
problem

Aw+Ew=0, xeQ,
(4.1) wy+oow =0, xedQ,a >0,
w>0, xeQ,

and the geometry of Q is chosen such that

N
4.2) G, Nrd
o2 Po
then
(4.3) J IVw|? dx > MJ w? dx,
Q Q

valid for any nonnegative C'-function w(x) solving (4.1), with d and p, defined in

— (N +d
(3.4) and M:poél (N + )

po +ond

Proof.  We have for the variational definition of &;

(4.4) & J w?dx < J IVw|* dx + (ZQJ w? dS.
Q Q o

Regards the second term in (4.4), the following Sobolev type inequality (see
Lemma A.l1 of [8]) is considered:
N d
(4.5) J u"dS < —J u" dx+n—J u" 1| Vu| dx,
0 PoJa Po Ja
with d and p, given in (3.4). By using (4.5), with u = w and n =2, we obtain
N 2d
(4.6) J w? dS < —J w? dX—f——J w|Vw| dx
Q Pola PoJo

N d d
< —J w? dx—l——J w? dx—|——J \Vw|? dx,
Pola Pola Pola
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where in the last step both Schwarz and Young inequalities have been applied.
Now, by replacing (4.6) into (4.4) we can write

d d
N+ J w? dx—l—(l—&-&)J |Vw|? dx;
Po Ja Po/ Ja

since oy > 0 and (4.2) is verified, (4.3) is proven.

flj w2 dx < o
Q

In order to estimate a lower bound for ¢*, we differentiate W(#) defined in (2.1),
obtaining one more time (2.2). Let us set s = p — 1; by the identity (2.3), the
divergence theorem and the boundary condition

4.7 J u™ 'Audx = —OCzJ u™ dS — (ns — I)J u"~2|Vul? dx
Q o0 Q
-1
< 4B 5 J V2|2 dx,
(ns)” Jo

where in the last step we have dropped the term —u, [,, u”™ dS and set, as before,
V' =wu®. On the other hand, using Holder and (2.11) inequalities, we achieve as
before

(4.8) J yrrlgx < %(5J prte dx+l !
Q

| pGan

0 being a positive and time dependent function to be chosen, and where p and g
are defined in (2.7). If Q is a bounded domain of R* with the origin inside, star-
shaped and convex in two orthogonal directions, relations (3.5), (3.6) and (3.7)
return

3/2 32 3/2 3
J VORI dx < ﬁ<i> (J v dx) + £23 (1 + 1) (J v dx)
Q 2p, Q 4o Po Q

3/2
+ﬂa<1+i> J VY22 dx,
4 Po Q

o being another positive and time dependent function to be computed, and with
po and d as in (3.4). By replacing this inequality into (4.8), we can write

1 11 3 \? 3/2
(4.9) J yrldx < 75J VX 4 — V2 <> (J v dx)
Q P Jao qs'/e= 2p, Q

1 1 \/E d 3/2 ., 3
T ST 363 (1 U—o) (L d d")

1 1 32 d\"?
—|——l—ia 1 +— J \VV"2)? dx.
qsl/e-1) 4 Po Q
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With reference to the term [, u™~'|Vu|? dx, let us apply (4.3) of Lemma 4.1 with
w = umte-1/2; by setting z =ns+¢g — 1, we obtain

(4.10) &/J u® dx < J \Vu/?|? dx.
Q Q

2
On the other hand, |Vu2/2|2:<g> u@2E/9|\Vyu?/1% so that, using Holder
inequality for ¢ > 2,

7\ (a-2)/q 2/q
(4.11) J |Vu/?|? dx < <) <J u’ dx> (J |Vu/a)|? dx> :
Q 2 Q Q

Therefore, (4.10) and (4.11) allow us to write

7\ (4-2)/q 2/q
,sziJ u? dx < (—> <J u’ dx> (J Vil dx) ,
Q 2 Q Q
ie.,

(4.12) oA 1? (%>q

u® dx < J |Vu/4)? dx.
q Q

Q

Now, arguing as in (2.3) and applying (4.12), we lead to

q q q q 2 q
(4.13) J WVl dx = (—) V)7 dx > (—) S (-) J W dx
Q zZ) Ja z q) Jao

=m| udx= th VI dx,
Q

S AN . ki(2) .
with m = (=) .«/9- and o« = ——. If ky is such that < B, with >0,
z s k(1)
using (4.7), (4.9) and (4.13) into (2.2) we obtain

(4.14) ‘I”sﬂ‘P+r1(t)T3/2+r2(t)‘P3+r3(t)J ynte dx+r4(z)J VY212 dx,
Q

Q
where
3\/2 1
r1(t) = 2k <Z_p0> ”Srl/(p—l) ,
r(6) nsv2 1 (1 N d)3/2
W) =———= 77 -,
(4‘15) 4qu03 51/@71) Po

ok
r3(t) = (pl — kgi’;l) I’lSkl,

W21 d\"? ns — 1
r4(l) = |‘K WU<1 +p—o> k] —4(”7 nsk].
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If in (4.15) ¢ is taken such that r3 = 0 and successively ¢ such that r4 =0, (4.14)
is reduced to
(4.16) W (1) < BY + ()P 4 ().

Following the same steps used in the previous sections for the Dirichlet and
Neumann problems, we obtain the desired differential inequality

(4.17) ¥'(1) < ROY(1)?, te[n,r),

with

(4.18) R(t) = P(0) *(r (1) + BP(0) /%) + ra(0).

Integrating (4.17) between ¢; and ¢*, the following inequality
1 t* t*

4.19 7SJR‘L’d‘L’SJRTdT,

(4.19) 20 = ), (7) . (7)

provides a lower bound for ¢*.
Therefore the following theorem is proven:

THEOREM 4.1. Let Q be a bounded domain in R®, with the origin inside,

ki (1)
0 <p, p=0 If

u is a classical solution of problem (1.1), with u, + oou =0 on 0Q and p > q > 2,
blowing up in L"P~Y-norm (n > 2), then a lower bound of the blow up time t* is
given by (4.19).

star-shaped and convex in two orthogonal directions; assume
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